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A novel Three-Point Bending Beam Test (3-PBT) using a Dynamic Shear Rheometer (DSR)
with linear drive motor is introduced for testing asphalt binder at low temperature
conditions. This 3-PBT in DSR can be used as surrogate for Bending Beam
Rheometer (BBR) tests. Advantages in comparison to BBR are that (i) 3-PBT works
without harmful cooling medium ethanol, (ii) the amount of asphalt binder for testing is
significantly lower (using material equivalent of 10% of BBR tests), (iii) a silicone rubber
mold is used for specimen preparation instead of standard aluminum mold for BBR tests,
which makes handling easier, and (iv) the loading protocol is more practical without
applying contact load manually. The novel 3-PBT in DSR is presented with respect to
preparation, installation, and conditioning of specimens, as well as to the loading protocol.
Tests were conducted at temperatures of −10, −16, and −20°C. For the purpose of
comparison to BBR tests, and of identifying most suitable testing conditions from
alternative setups, a test series was run including 9 different asphalt binders. As to
BBR tests, two different cooling media were used, i.e., ethanol and air. Finally, all test
results obtained from DSR and BBR tests were analyzed in view of precision and
correlation. DSR results correlated well with BBR results, while precision of 3-PBT in
DSR was found to be satisfying.
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bending beam rheometer

INTRODUCTION

Thermal cracking is known as a major mode of deterioration in poorly designed asphalt pavements
(Arand, 1983; Arand, 1998; Bouldin et al., 2000; Wistuba et al., 2009; Wistuba, 2019). The specific
asphalt mixture composition such as geometric characteristics of aggregates and surface state of the
aggregate as well as the choice of the asphalt binder type play an important role in the occurrence and
progression of cracks (Isacsson and Zeng, 1998; Pszczola et al., 2018; Li et al., 2019; Sun et al., 2020;
Wei et al., 2021). The resistance of asphalt binder to low-temperature is usually addressed via
Bending Beam Rheometer (BBR) tests (AASTHO T313-12, 2012; EN 14771, 2012). However, there
are some drawbacks reported with BBR testing and new test instruments might be able to replace the
rather simple BBR.
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BACKGROUND

Flexural Creep Stiffness Measured in BBR
In BBR tests, the low-temperature flexural creep stiffness and
the relaxation properties of the asphalt binder are addressed. For
this purpose, an asphalt binder prismatic beam (125 mm in
length, 6.25 mm in height, and 12.5 mm in width) is
horizontally placed in a cold fluid bath, and is loaded by
applying a constant load of 980 mN to the midpoint of the
beam. From the measured deflection of the specimen, the
flexural creep stiffness is calculated from the actual load and
the actual specimen dimensions. Typically, the flexural creep
stiffness S at a loading time of 60 s, and the corresponding
m-value, which represents the absolute value of the slope of
stiffness versus time curve on a double logarithmic scale, are
derived at various constant test temperatures in the low
temperature range. The characteristic temperatures T (S =
300) and T (m = 0.3) are determined by interpolation, or
extrapolation respectively, and serve as key parameters to
evaluate the asphalt binder’s resistance to low temperature
cracking.

The BBR asphalt binder beam is manufactured using a specific
metal mold as defined in AASHTO T313-12 or EN 14771. After
demolding, the specimen is conditioned at the test temperature in
the fluid bath for about 1 hour using suitable bath fluids like
ethanol, methanol or glycol–methanol mixtures (AASTHO
T313-12, 2012; EN 14771, 2012). BBR has developed as the
primary testing tool for measuring low-temperature
characteristics of asphalt binders (mostly long-term aged prior
to BBR testing). However, various authors have reported
significant drawbacks of BBR testing related to specimen
preparation and testing conditions, i.e.,

• Conventional BBR test requires an amount of asphalt binder
of 15 g per beam specimen. As usually, three test replicates
and three test temperatures are considered, there is need for
135 g of testing material, which requires considerable effort
for providing the suitable amount of asphalt binder. In
particular in the case of field studies, the amount of available
asphalt binder extracted from field cores is significantly
constrained (Lu et al., 2017; Wang et al., 2019b).

• Preparation of specimen beams is elaborate, time
consuming, and the manual work quality significantly
influences accuracy of test results (EN 14771, 2012). In
particular, trimming of the bulge and removing from the
mold may lead to small but influential deficiencies in
specimen shape. Additionally, binders of high viscosity
provoke partial breaking or flaking of the specimen,
while binders of low viscosity will result in slightly
twisted specimen shape.

• Considering the fluid bath medium, ethanol is usually used
in Europe (EN 14771, 2012). However, it was reported that
ethanol potentially changes chemical and physical binder
properties through inhomogeneous diffusion into the
asphalt binder and consequently influences the test
results (Marasteanu et al., 2018). Moreover, ethanol
production is controlled by REACH registrations, as it is

toxic, volatile, and has a low flash point (Iman, 2005).
REACH is a chemical management regulation that
requires the registration, evaluation, approval and
restriction of specific chemicals manufactured or
imported in the EU. Therefore, various authors studied
alternative cooling media, and running BBR tests in air
was also investigated, also because the specific heat capacity
of air (Cp = 1.012, J g−1 K−1 at room temperature) is smaller
than the one of ethanol (Cp = 2.44 J g−1 K−1) (Wilhelm,
2010) and thus the target temperature in air is reached in
relatively short time (Cannone Falchetto et al., 2012;
Riccardi et al., 2017; Cannone Falchetto et al., 2018;
Marasteanu et al., 2018; Moon et al., 2018; Wang et al.,
2019a).

• Depending on the specific type of the BBR instrument,
tempering the liquid bath takes relatively long (total 60 min,
including a stabilization time of 20 min to achieve ± 0.2°C),
and moreover, it can be challenging to ensure a
homogenous temperature distribution within the bath
(EN 14771, 2012; Riccardi et al., 2017).

• During storage of the BBR specimen at constant low
temperature, physical hardening was observed (Lu and
Isacsson, 2000; Baglieri et al., 2012; Santagata et al., 2016;
Wang et al., 2019b; Santosh and Kim, 2019; Zeng et al.,
2020; Xu et al., 2021). The specific conditions of storage
(temperature and conditioning time) may have a significant
effect on BBR test results. Note that physical hardening can
also occur prior to DSR testing as observed by Farrar et al.
(2015) or Laukkanen et al. (2018b).

• BBR load is usually applied automatically through the
instrument system using pressurized air and a pressure
valve (Cannon, 2019). Because there is no electrical drive
to exactly adjust the position of the loading shaft on the
specimen, manual operation is necessary (EN 14771, 2012),
and the subsequent pre-defined testing routine is rather
complex, consisting of contact loading (between 25 and
45 mN), impulse loading (980 ± 50 mN), contact loading
(between 25 and 45 mN), and test loading (between 930 and
1,030 mN). This pre-defined testing routine also allows
rather broad tolerances to apply the loads.

• It has been reported that silicone grease was applied to a
steel mold to easily separate the mold and specimen, and
silicone oil had no effect on the BBR test results (Al-Qadi
et al., 2008). Furthermore, some authors identified
aluminum an inferior material for specimen molds, and
proposed silicone rubber molds instead because of their
easier handling and of less consumption of laboratory work
compared to aluminum molds (Mamlouk and Zaniewski,
2006; D’Angelo, 2012). Even though the beams produced
with silicone molds are slightly thinner, identical test results
were found (Dongré et al., 2001). Today, silicone molds are
also available from BBR manufacturers, even though they
are not represented in the respective standards (EN 14771,
2012; AASTHO T313-19, 2019).

• Having to do the conventional BBR test, involves
purchasing, maintenance and calibration costs of an
instrument only capable of this specific test. This adds to
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the cost as well as requires more space in the laboratory, all
for just one test.

Low Temperature Properties Measured
in DSR
In recent years, the Dynamic Shear Rheometer (DSR) has been
established for rheological characterization of asphalt binders
in the full temperature range (Radenberg and Gehrke, 2016;
Gehrke, 2017; Wistuba et al., 2019; Büchner and Wistuba,
2020; Büchner and Wistuba, 2021; Kim et al., 2021; Radenberg
and Staschkiewicz, 2021; Büchner and Wistuba, 2022b). For
identifying rheological properties in the low-temperature
range, the DSR is usually equipped with a 4 mm plate-plate
test setup. With this setup the linear viscoelastic properties can
accurately be analyzed using the oscillation mode, as
previously demonstrated by various authors (Sui et al.,
2011; Lu et al., 2017; Riccardi et al., 2017; Laukkanen et al.,
2018a; Büchner et al., 2019; Wang et al., 2019b; Grazulyte et al.,
2019; Hajj et al., 2019; Büchner et al., 2020). Alternatively, the
relaxation properties, which significantly governs the asphalt
mixture low-temperature cracking resistance, can be
determined by applying a relaxation test using the quasi-
static mode of the DSR (Büchner, 2021; Büchner and
Wistuba, 2022a).

Until now DSR test results cannot directly be compared with
BBR test results, as the standard DSR setup only allows for
measuring shear properties but not bending properties (flexural
creep stiffness). However, many authors previously identified
correlations between BBR and DSR by converting shear
properties to bending properties and time domain to
frequency domain using different rheological models (Sui
et al., 2011; Farrar et al., 2015; Lu et al., 2017; Riccardi
et al., 2017; Wang et al., 2019a; Wang et al., 2019b; Hajj
et al., 2019; Zeng et al., 2020). Other authors obtained
empirical correlations with linear functions between the
viscoelastic values from DSR and the flexural creep values
from BBR (Lu et al., 2017; Oshone, 2018). Overall, it can be
stated that rheological material properties at low-temperatures
can theoretically either be obtained via bending tests in the BBR
or via shear test in the DSR with identical significance.
However, the acceptance of the 4 mm geometry in the
asphalt community is still limited.

In special DSR instruments equipped with a linear drive, a
bending beam setup can be installed for running a bending test
similar to BBR test, and for directly measuring flexural creep
stiffness. Such novel approach using DSR to test beams of asphalt
binders under bending load allow for measuring flexural creep
stiffness at low-temperature, while eliminating some drawbacks
of BBR testing at the same time. Significant advantages of Three-
Point Bending Beam Test in DSR in comparison to BBR are that
(i) harmful cooling medium ethanol is not used, (ii) the amount
of asphalt binder for testing is significantly lower, (iii) there is no
need to apply any contact load manually, the effect of which on
the test specimen is unknown and (iv) the time to reach
equilibrium temperature in the sample and in the tempering
cell and thus the total test time can be drastically reduced.

OBJECTIVES OF THIS STUDY

A Three-Point Bending Beam Test (3-PBT) using a Dynamic
Shear Rheometer (DSR) with linear drive is introduced for testing
asphalt binder at low temperature conditions. The objectives of
this study are

• to develop a 3-PBT in DSR suitable to serve as a surrogate
for Bending Beam Rheometer (BBR) test,

• to identify suitable specimen dimensions, a procedure to
prepare asphalt binder beams for 3-PBT in the DSR, and to
carefully analyze the precision of the specimen dimensions,

• to identify suitable duration for temperature conditioning in
the DSR testing chamber, and to determine the suitable
temperature range for 3-PBT,

• to transfer the BBR loading scheme to the DSR system,
• to analyze repeatability of the novel 3-PBT,
• and to validate the novel test procedure by comparing test
results from BBR and DSR considering a variety of different
materials and test temperatures, and considering the effect
of the cooling medium.

METHODOLOGY AND TESTING

Flexural creep stiffness in three-point-bending is measured of
various asphalt binders. All tests are conducted using BBR as well
as DSR, at test temperatures −10, −16, and −20°C. As a result, the
measured flexural creep stiffnesses obtained from BBR and from
DSR are comparatively analyzed, and the suitability of the novel
3-PBT in the DSR is validated.

BBR tests are conducted based on conventional BBR
instrument and standard test protocol using ethanol as cooling
medium (BBRethanol). In addition, a BBR instrument is used that
allows for running the standard test protocol in air instead of
ethanol as the cooling medium (BBRair).

DSR tests are conducted based on a modern DSR equipped
with a linear drive motor and a test setup especially developed for
Three-point Bending Tests (3-PBT). As the bearing distance for
3-PBT in the DSR is limited to 40 mm compared to 102 mm in
the BBR, there is need to identify suitable DSR specimen

TABLE 1 | Asphalt binders considered for BBR tests and DSR tests.

Number Material Property (penetration /
Softening point)

1 20/30 20 dmm, 64.85°C
2 50/70 57 dmm, 51.70°C
3 50/70 (R + P)a 25 dmm, 67.50°C
4 70/100 82 dmm, 47.75°C
5 10/40-65 22 dmm, 70.55°C
6 25/55-55 43 dmm, 59.05°C
7 25/55-55 (R + P)a 21 dmm, 74.20°C
8 40/100-65 58 dmm, 73.20°C
9 45/80-50 66 dmm, 53.10°C

aAfter aging through Rolling-Thin-Film-Oven-Test (RTFOT; EN 12607-1, 2014) at 163°C
for 75 min in combinationwith aging in Pressure Ageing Vessel (PAV; EN 14769, 2012) at
100°C with 2.1 MPa pressure for 20 h.
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dimensions and a new specimen conditioning protocol, as well as
a new test protocol by adopting the applied load to the DSR test
geometry.

Materials
In this study, nine different penetration graded asphalt binders
are used (Table 1), i.e., three plain binders, and four polymer
modified binders, all representing common asphalt binder
products of the European market.

All binder samples are subjected to BBR tests in ethanol, BBR
tests in air, and DSR tests in air, always considering a number of 3
test replicates (Table 2). Due to material quantity restrictions, for
the BBR tests conducted in air, the materials 50/70 (R + P) and 25/
55-55 (R + P) are tested only at the lowest temperature of −20°C
as this is the worst-case scenario. Additionally, as good
correlation is shown between the BBRethanol and BBRair results
(cp. Precision of BBR Tests and DSR Tests), extra tests would be
redundant, the materials 70/100, 40/100-65, 45/80-50 are not
tested at −16°C in the DSR also due to material restrictions and
availability of laboratory equipment.

Conventional BBR Tests
For conventional BBR tests using ethanol as cooling medium
(BBRethanol), the instrument Cannon TE-BBR is used. Standard
tests are run (in ethanol fluid bath) according to AASTHO T313-
19 (2019), EN 14771 (2012).

Standard metal molds are used to prepare the prismatic
specimens with standard dimensions of 125 mm × 6.35 mm ×
12.5 mm, and prior to testing, the specimens are conditioned to
the test temperature (tolerance of ±0.2°C) in the fluid bath for
60 min.

According to the standard test protocol, testing consists of
four stages. First, a contact load of 35 ± 10 mN is manually
adjusted and applied for a short time to the asphalt binder beam
to ensure contact of the specimen with the support and the load
frame. Then, the software automatically applies the test load of
980 ± 50 mN for one second before returning to the contact load
and holding it for 20 s. Finally, the test load of 980 mN is applied
for 240 s and the resulting beam deflection is measured with a

data recording interval of one second. In the end, the load
returns to the contact load (35 ± 10 mN).

BBR Tests in Air
For running BBR tests in cooling medium air (BBRair), the
instrument Cannon TE-BBR Pro™ is used. The procedures for
specimen preparation, installation and conditioning, as well as
the test protocol exactly followed standard BBR test (cp. Section
3.2). Note that a fan is installed inside the chamber to ensure
homogeneous temperature distribution.

Bending Tests in DSR
Instrument and Test Setup
For DSR tests, the instrument MCR 702 MultiDrive rheometer
from manufacturer Anton Paar (Graz, Austria) is used (Figure 1).
The instrument is equipped with a linear drive motor and a three-
point bending measuring system with a free length of 40 mm
(TPB40). This measuring system is designed for bending tests. For
specimen conditioning, the DSR is equipped with a convection
oven device CTD 180, which covers a temperature range from −20

TABLE 2 | Test plan.

Device T (°C) Asphalt binder

20/30 50/70 50/70
(R + P)

70/100 10/40-65 25/55-55 25/55-55
(R + P)

40/100-65 45/80-50

BBR ethanol −10 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

−16 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

−20 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

BBR air −10 ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔

−16 ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔

−20 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

DSR MCR702 −10 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

−16 ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✘

−20 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

FIGURE 1 | DSR instrument of the type MCR 702 MultiDrive Rheometer
(Anton Paar) used for Three-Point Bending Tests.
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to 180°C. This convection oven can be used for temperature control
with inert gas (e.g., N2) or directly with the air. For the experiments
presented here, air is used to control the temperature. The TPB40
measuring system contains a Pt100 close to the sample location.
The temperature system is calibrated using an external calibration
system consisting of a digital thermometer and a temperature
sensor placed in the sample itself. Under these conditions, the
accuracy of the CTD 180 in combination with the TPB40 is the
equivalent of a Pt100 class A. For a temperature of −20°C this
corresponds to a minimum accuracy of ± 0.19°C. For temperatures
of −16°C and −10°C, the accuracy corresponds to ± 0.18°C and ±
0.17°C, respectively.

The geometry of the new specimen is carefully selected so as
not to generate disturbances in the bending test that could
arise from the new size. The free length of the TPB40
measuring system in the DSR (LDSR

0 = 40 mm) conditions
the design of the new dimensions of the sample to be
studied. A total specimen length of 50 mm is selected for
the experiments. This corresponds to a length equivalent to
125% of the free length [Grellmann and Seidler (2013) as
recommended by ISO 178 (2019)]. A specimen height of 3 mm
is selected for two reasons. First, this guarantees proper
preparation and handling. Secondly, the resulting length-to-
thickness ratio remains above 16 for avoiding any influences of
internal shear stress on the measurement [recommended by
ISO 178 (2019) and ISO 6721-5 (2019)]. The length-to-width
ratio is 10, which is the same for specimens used for standard
BBR tests [acc. EN 14771 (2012)]. This corresponds to a width
of exactly 5 mm. This length-to-width ratio is within the
recommendations of the standard ISO 6721-5 (2019) in
order to avoid significant errors associated with constraints
to deformations along the width direction.

In the case of BBR tests, the dimensions of the specimen are
usually assumed to be identical to the dimensions of the
predetermined mold size. For the case of the DSR tests
performed in this study, the width and height of the specimen
are actually measured. In particular, the mean value of 8
individual measurements is determined. Measured widths
ranged from 4.9 to 5.2 mm, and coefficient of variation was
below 2%, measured heights ranged from 2.4 to 3.2 mm, and
coefficient of variation was below 5%.

The test load is adjusted to the new specimen geometry to be
such that the maximum stress generated during the DSR test is
the same as in the BBR tests (cp. Eq. 1).

σBBRmax � σDSR
max (1)

The resulting maximum stress for a rectangular specimen
under a load in a three-point bending setup is given by the
formula below (Grellmann and Seidler, 2013) (cp. Eq. 2),

σmax � 3L0F/2wt
2 (2)

where, F is the loading force, and the other parameters
correspond to specimen free length (L0), width (w) and
thickness (t). Assuming stress equivalency, equivalent DSR
force can be calculated from Eq. 3.

FDSR � LBBR
0

LDSR
0

wDSR

wBBR

hDSR2

hBBR2 F
BBR (3)

The free length, LBBR0 , the width, wBBR and the height, hBBR in
the BBR test correspond to 102, 12.5, and 6.35 mm, respectively.
The load force implemented in the BBR test corresponds to
980 mN. Substituting these values into Eq. 3 gives a load for the
experiment at DSR of approximately 220 mN. The load of
220 mN is also considered suitable both in terms of
measurement technology and instrument limitations. The
applied force and the resulting axial displacement are within
the safe dynamic measuring window of the instrument. Relative
errors derived from the force and displacement transducer in that
range are expected to be much less than 1% as the relevant
standards advise [see for instance ISO 6721-5 (2019)]. When
designing the size and the loading of the new specimen special
care was taken to respect relevant standards for bending tests and
to ensure adequate rheological testing of the specimen.
Additionally, care was taken to prepare and test homogeneous
and intact specimens. Therefore, the size effect of the reduced
specimen size was expected to be negligible.

Specimen Preparation and Loading Scheme
Figure 2 illustrates the manufacturing process of the specimens.
The specimen is fabricated using a heat-resistant two-component
silicone mold. First, the asphalt binder is slowly poured into the
silicone mold, while taking care that no air bubbles are included
(Figure 2A). After 15 min, the excess material is trimmed with a
hot spatula (Figure 2B). Afterwards, the specimen is cooled to a
temperature of −18°C for a duration of 3 min, so that it can easily
be demolded from the silicone mold (Figure 2C). For unmolding
the silicone mold including the specimen is held upside down. By
slightly bending the silicon mold on both sides the specimen in
loosened and can be placed on a flat surface without any
deformation (Figure 2D). Silicone has excellent self-lubricating
properties so that the binder specimen can be demolded without
using a separating agent. This also reduces manufacturing time if
compared to BBR tests using metal molds.

Conditioning of specimen is carried out in two stages, lasting
1 h in total (as for BBR tests): For the first 30 min, the unmolded
specimen is stored in a separate conditioning chamber on top of a
flat silicon plate (Figure 3A). For the remaining 30 min, the
specimen is aligned to the bearing supports and to the central
upper load geometry (lifted up), and it is then conditioned by the
convection oven of the DSR instrument (Figure 3B).

After 30 min, the upper measuring system is lowered with a
speed of 600 μm until it lightly touches the specimen surface. A
sufficiently small force within the viscoelastic limit of the sample
was used for the first contact between the measuring system and
the specimen. This ensures that the first contact between the
upper measuring system and the specimen does not alter the
subsequent measurement. Hence, unlike to standard BBR tests
using pneumatic pressure, there is no need to manually control
the contact load.

Then, the load of 220 mN is applied to the specimen for 240 s.
Measurement points are obtained every 0.25 s. At the end of the
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test, the load is immediately removed. Figure 4 visualizes the
loading scheme in comparison to the one of conventional
BBR test.

CALCULATION OF FLEXURAL CREEP
STIFFNESS

Flexural creep stiffness is considered a key parameter for
evaluating the binders’ resistance to low-temperature cracking.
Based on beam theory, the flexural creep stiffness can be
calculated from Eq. 4 (see for instance Grellmann and Seidler,
2013).

FIGURE 2 | Specimen preparation: (A) Pouring into silicone mold, (B) Trimming of specimen using a heated spatula, (C) Conditioning at −18°C for 3 min, (D)
demolding of specimen.

FIGURE 3 | (A) Silicone specimen molds placed in conditioning chamber, (B) specimen placed on bearings.

FIGURE 4 | Loading scheme of DSR test, in comparison to BBR test.
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S(t) � F · L3
0

4 · b · h3 · δ(t) [MPa] (4)

where, S(t) [MPa] is the flexural creep stiffness at time t, F [N] is
test load, L0 (mm) is the distance between the bearings, b (mm) is
width of specimen, h [mm] is thickness of specimen, δ(t) (mm) is
the deflection of the specimen at time t.

Flexural creep stiffness is measured after t = 8, 15, 30, 60, 120,
and 240 s. A quadratic polynomial regression function is used to
fit these data (cp. Eq. 5).

log(Sc(t)) � A + B · log(t) + C · [log(t)]2 [MPa] (5)
where, Sc(t) [MPa] is calculated flexural creep stiffness at loading
time t [s], and A, B and C are regression coefficients. From the
regression line represented by Eq. 5, the m-value can be derived,
representing the slope at an arbitrary time t in the time-flexural
creep stiffness diagram (when using logarithmic scales), reading
(Eq. 6)

m(t) � ∣∣∣∣B + 2 · C · log(t)∣∣∣∣[ − ] (6)
In this study, flexural creep stiffness S60 at 60 s was determined

from Eq. 5, and m60 from Eq. 6 respectively, for every individual

test specimen. From three test replicates the mean values for S60
and m60 are calculated. The mean values derived for different
temperatures are shown in Figure 5. With increase in
temperature the flexural creep stiffness S60 decreases, while
m60 increases. Further, the characteristic temperatures
corresponding to S = 300 MPa and to m = 0.3 are determined
from data interpolation or extrapolation respectively, designated
as T (S = 300) and T (m = 0.3) (Figure 5). Note that extrapolation
was necessary for soft binders having temperatures T (S = 300)
below −20°C (such as 70/100, 45/80-50, and 40/100-65), because
the minimum test temperature of the DSR instrument used in this
study was limited to −20°C.

Precision of BBR Tests and DSR Tests
Precision of any test method is addressed by calculating the mean
value and the coefficient of variation from a number of three test
replicates for any binder sample. The coefficient of variation is a
measure of the relative variability of test result with respect to the
mean value, and hence, it is useful for comparing data series with
different mean values. It refers to the ratio of the standard
deviation to the mean value. A large coefficient means that the
standard deviation of the data range is rather large compared to
the mean value.

In Figure 6 the coefficient of variation (CV) is depicted for
always three replicates of the flexural creep stiffness measured at
−20°C with BBR (considering both cooling media ethanol and air)
and with DSR.

From these results it can be stated, that for DSR tests the
coefficient of variation is less than 10%, except for binder 50/70
(R + P), while for BBR tests it is even less than 8%.

TEST RESULTS AND EVALUATION

Flexural creep stiffness and corresponding m-value are obtained
from bending tests using BBR and ethanol as cooling medium
(BBRethanol), BBR and air as cooling medium (BBRair), and DSR.
While the results from BBRethanol and BBRair were comparatively
analyzed to determine the effect of the cooling medium on the test
results, the results of BBRethanol and DSR were comparatively
analyzed to evaluate the novel three-point bending test in DSR.

Correlating the Results Obtained From
BBRethanol Tests and BBRair Tests
Figure 7 shows mean flexural creep stiffnesses (S60) of all
investigated binders and temperatures as obtained from
BBRethanol and BBRair tests. Colors are used to differentiate
binders, while different shapes are used to indicate different
test temperatures. The absolute deviation of individual test
results from the mean value are also displayed.

Flexural creep stiffness always increases with decreasing
temperature. A linear trend line is drawn with the intercept
value set to zero. All data (n = 23) are almost evenly
distributed along the linear regression line regardless of the
asphalt binder type, aging state, and test temperature. It can
also be observed that the deviations of the individual test results

FIGURE 5 | Example for determining characteristic temperatures of
asphalt binder 10/40-65: (A) T (S = 300), and (B) T (m = 0.3).
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from the mean values are quite small and within the precision of
the test method. Data obtained from BBRethanol and BBRair are
linked via a coefficient of determination of 0.98.

It is noteworthy that in comparison with the results of
previous study (Riccardi et al., 2017), which presumably
applied AASTHO T313-12 (2012) to evaluate the effects of
the cooling medium on the low PG value of the asphalt binder,
BBRethanol and BBRair tests almost result in same stiffnesses
S60. If testing conditions and derivation of results is carried out
in a proper manner, there is hardly any difference between
BBR tests run according to EN 14771 (2012) either in ethanol
or in air.

In analogy, Figure 8 shows mean m-values (m60) of all
investigated binders and temperatures as obtained from
BBRethanol and BBRair tests. Value m60 decreases with

decreasing temperature, which is explained by the fact that
relaxation capability decreases with decreasing temperature.

Again, a linear regression line is drawn, and all data (n = 23)
are found to be almost evenly distributed along this line regardless
of the asphalt binder type, aging state, and test temperature. Data
obtained from BBRethanol and BBRair are linked via a coefficient of
determination of 0.94. However, at a temperature of −10°C the
m-values60 of binders 50/70, 70/100, and 25/55-55 shows rather
large deviations between BBRethanol and BBRair tests, and from the
mean values obtained from BBR tests in air.

It is stated, that the obtained BBR results are very similar
independently of the cooling medium (ethanol or air), both in
terms of flexural creep stiffness and m-value. In summary it is
concluded that the obtained values are accurate and correct as
they are similarly obtained with two different rheometers, and

FIGURE 6 | Comparison of coefficient of variation of flexural creep stiffness at −20°C of BBRethanol, BBRair, and DSR.

FIGURE 7 | Correlating flexural creep stiffnesses (S60) obtained from BBRethanol tests and BBRair tests.
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that the choice of cooling medium, ethanol or air, does not
influence the test result.

Correlating Results Obtained From BBR
Tests and DSR Tests
Flexural Creep Stiffness and Characteristic
Temperature T(S = 300)
Figure 9 shows mean flexural creep stiffnesses (S60) of all
investigated binders and temperatures as obtained from
standard BBR tests (BBRethanol) and DSR tests. Colors, shapes,

and deviations from mean values are displayed in analogy to
Figure 7, and again the data are found along the linear
regression line.

Deviations of the individual test results from the mean value
are quite similar. Data obtained from BBR and DSR are linked via
a coefficient of determination of 0.96. It is concluded that both
test methods deliver similar results.

Stiffnesses determined at a temperature of −20°C are
illustrated in the bar chart in Figure 10, which demonstrates
the similarity of test results obtained from BBR tests and
DSR tests.

FIGURE 8 | Correlating m-values60 obtained from BBRethanol tests and BBRair tests.

FIGURE 9 | Correlating flexural creep stiffnesses (S60) obtained from BBR tests and DSR tests.
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Temperatures T (S = 300) are calculated from the stiffness
values obtained from BBR tests and DSR tests at different
temperatures (Figure 11). It is found that data obtained from
BBR and DSR are linked via a coefficient of determination of 0.94.

m-Value and Characteristic Temperature T(m = 0.3)
Figure 12 shows mean m-values (m-value60) of all investigated
binders and temperatures as obtained from standard BBR tests
(BBRethanol) and DSR tests.

Deviations of the individual test results from the mean value
are quite similar, and DSR data are slightly higher. However, data
obtained from BBR and DSR are linked via a coefficient of
determination of 0.90.

Note that the difference of BBR and DSR results is not
consistent for a specific material. E.g., for asphalt binder 20/30

tested at −16°C the m-value fromDSR is approximately 14% above
the m-value from BBR, while at −10°C the m-value from DSR is
approximately 3% below the m-valued from BBR. At the same
time, for asphalt binder 25/55-55 RTFOT + PAV the m-value from
DSR is between 6 and 24% above the m-value from BBR. It could
be that the stress applied to the specimen (despite being equivalent
in both BBR and DSR systems) is slightly above the viscoelastic
limit for some of the materials. This would induce a non-linearity
in the system. In that case, the fit used in Eq. 5 and its derivative
with time as shown in Eq. 6 for the evaluation of the m-value could
lose its pragmatic sense as a universal material function. In such a
non-linear scenario, the parameters are strongly affected by test
apparatus or chosen test conditions. This type of non-linearity
actually makes interpretation and equivalence of results difficult
when different devices come into play.

FIGURE 10 | Flexural creep stiffnesses (S60) at −20°C obtained from BBR tests and DSR tests.

FIGURE 11 | Correlating characteristic temperatures T (S = 300) obtained from BBR tests and DSR tests.
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Temperatures T (m = 0.3) are calculated from the m-values
obtained from BBR tests and DSR tests at different
temperatures (Figure 13). It is found that data obtained
from BBR and DSR are linked via a coefficient of
determination of 0.55, indicating an inferior quality of
correlation. This is because the characteristic temperature T
(m = 0.3) is a very sensitive parameter. Although m-values
obtained from DSR and BBR are rather similar (cp. Figure 12),
the results for temperatures T (m = 0.3) are significantly
different. For softer binders 70/100, 50/70, 45/80-50, 40/

100-65, 25/55-55 the difference between DSR and BBR is
smaller compared to the results for harder (and aged)
binders 20/30, 10/40-65, 50/70 (R + P), and 25/55-55 (R +
P), tested at −16°C and −20°C. Additionally, the measurements
were made at only three temperatures values (−10, −16, and
−20°C) and the T (m = 0.3) is linearly interpolated (or
extrapolated) from the data obtained at these discrete
temperature values. A linear interpolation as suggested in
(AASTHO T313-12, 2012; EN 14771, 2012) could lead to a
strong oversimplification. Note that, a non-linear dependence

FIGURE 12 | Correlating m-values60 obtained from BBR tests and DSR tests.

FIGURE 13 | Correlating characteristic temperatures T (m = 0.3) obtained from BBR tests and DSR tests.
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with temperature of viscoelastic parameters such as creep
compliance or flexural creep stiffnesses is expected.

From the results of T (S = 300) and T (m = 0.3) the parameter
ΔTc was calculated by simple subtraction. The ΔTc-values are
significantly affected by the very sensitive parameter T (m = 0.3)
and therefore no sound correlation could be identified between
DSR and BBR tests.

SUMMARY AND CONCLUSIONS

In this study, a novel Three-Point Bending Beam Test (3-PBT)
using a Dynamic Shear Rheometer (DSR) with linear drive motor
is presented for testing asphalt binder at low temperature
conditions. It can be used as a surrogate for Bending Beam
Rheometer (BBR) tests. Significant advantages in comparison
to BBR are that

(i) 3-PBT works without harmful cooling medium ethanol, but
in air,

(ii) the specimen geometry and the thermal chamber are
considerably smaller. Therefore, reaching thermal
equilibrium not only in the specimen but also in the
measuring cell requires less time, Note that the DSR can
save up to 30 min compared to BBR to achieve the required
thermal equilibrium.

(iii) the amount of asphalt binder for specimen fabrication (with
dimensions of 50 mm³ × 5 mm³ × 3 mm³) is around 1.2 g
and therefore significantly lower, using a material equivalent
of 10% of BBR tests only,

(iv) a silicone rubber mold is used for specimen preparation
instead of standard aluminum mold for BBR tests, which
makes handling easier and saves time,

(v) the loading protocol is more practical without any need to
apply contact load manually, the effect of which on the test
specimen is unknown,

(vi) one and the same DSR instrument can be used for the
determination of characteristic rheological binder properties
in shear mode and in bending mode. This can save costs of
purchasing and maintenance of a separate instrument and
save space in the laboratory.

Depending on the accessories and the manufacturer of each
device, the price of a DSR including an axial system for 3-PBT can
range from two to three times the price of a BBR. Initial costs are
therefore slightly higher than BBR. The aforementioned
advantages, however, may still show DSR as an alternative to
BBR. The temperature control system used in this study (CTD
180) is based on a convection oven in combination with a Peltier
and therefore achieves a minimum temperature of −20°C. To
reach lower temperatures it would be necessary to use another
type of furnace which can be directly coupled to liquid nitrogen
(minimum temperature of −160°C) or to an external chiller (e.g., a
gas cooling unit, capable of cooling the air inside the cell down to
−90°C). This kind of system would be necessary if the BBR is to be
fully replaced.

For the purpose of comparison to BBR tests, and of identifying
most suitable testing conditions from alternative setups, a test
series was run including 9 different asphalt binders ranging from
soft to hard (aged) types, and tests were conducted at
temperatures of −10, −16, and −20°C.

As to BBR tests, two different instruments were used for the
purpose of identifying any influence of the cooling medium,
i.e., ethanol and air.

From DSR and BBR tests, the flexural creep stiffness after
60 s (S60) and the corresponding m-value after 60 s
(m-value60) were calculated for each test temperature. In
addition, the characteristic temperatures T (S = 300) and T
(m = 0.3) were determined. All test results obtained from DSR
and BBR tests were analyzed in view of correlation and
precision. From this analysis, the following conclusions
were drawn:

• The cooling medium (ethanol or air) did not affect BBR test
results. The degree of determination between BBR in
ethanol and BBR in air was in the range of 0.94–0.98.
The deviation of individual results measured in air was
found to be slightly higher compared to results measured in
ethanol.

• Flexural creep stiffness obtained in DSR tests was almost
identical to the one obtained in BBR tests. Based on a
number of 24 different test results considering three
replicates, the slope of the linear regression line was
0.97, and the degree of determination was 0.96. Further,
the characteristic temperature T (S = 300) was found to
be similar for DSR and BBR tests, with a degree of
determination of 0.94. However, especially for hard
binders the value obtained from DSR tests was
slightly smaller compared to the one obtained from
BBR tests.

• In terms of the m-value, slight differences were identified
between DSR and BBR tests, the degree of determination
was found to be 0.90. Regarding the characteristic
temperature T (m = 0.3) no significant correlation was
identified between DSR and BBR tests. The temperature
T (m = 0.3) parameter appear to be very sensitive to the type
of instrument used.

• Based on the coefficient of variation of three replicates the
repeatability of different instruments was evaluated. For
conventional BBR tests (in ethanol), a coefficient of
variation in the range of 1–5% was identified, while for
measuring in air it ranged from 1 to 8%. As concerned
DSR tests, the coefficient of variation was higher than for
BBR tests for almost all materials, demonstrating slightly
lower repeatability. However, as DSR results correlated
well with BBR results, precision of 3-PBT was found to be
satisfying.

It is assumed that the repeatability of the 3PBT in the DSR
could be improved after more routine testing, as this was just a
preliminary study to demonstrate applicability of the novel
method.
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