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The use of the class G oil well cement for cementing in high-temperature deep-seated oil
and gas wells declines its mechanical properties, which limit its application under high-
temperature conditions. The high belite cement (HBC), a new class of energy-saving and
environmentally friendly cement, has been widely used in recent years. In this study, the
mechanical properties, phase composition and microstructure of HBC and quartz sand
have been analyzed at high temperature, so as to optimize the amount of sand and provide
guidelines for further exploring the application of HBC in the high-temperature oil and gas
well cementing. The experimental results show that the high-temperature mechanical
properties of the cement stone mixed with 40% quartz sand are the highest, thus, delaying
the decline in the strength to the greatest extent. The microscopic analysis reveals that
HBC produces dicalcium silicate hydrate and hydroxyl silicon calcium stone at high
temperature. On mixing the quartz sand, xonotlite is observed to appear in the cement
hydrate phase. These products are observed to be small in size and dense in structure,
thus, leading to a delay in the decline of the high-temperature mechanical properties of the
cement stone.
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INTRODUCTION

Currently, the petroleum exploration and exploitation technologies are becoming more mature, and
the exploitation is gradually advancing to the deep and ultra-deep wells (Vidal et al., 2018; Guo et al.,
2019; Kuzielová et al., 2019). At present, the temperature of the deep wells can reach up to 110–150°C
(Wang et al., 2019), whereas the temperature of the ultra-deep wells can reach above 200°C (Bu et al.,
2016; Vidal et al., 2018; Guo et al., 2020). Under such working conditions, the mechanical properties
of the conventional class G cement systems are significantly deteriorated and cannot meet the
cementing quality requirements (Wei et al., 2021).

Reducing the calcium to silicon ratio in the cement materials is an effective strategy to overcome
the significant deterioration in the performance of the class G oil well cement at high temperatures.
The currently used high belite cement (HBC) (Cuesta et al., 2021) consists of C2S as the dominant
mineral component. The CaO/SiO2 molecular ratio in this cement material is significantly higher
than that of the class G oil well cement, thus, retaining the high temperature cement strength to a
certain extent (Jiang et al., 2021a). The clinker system of HBC can be easily grinded and possesses a
low firing temperature (Koumpouri et al., 2021). It also exhibits significant advantages such as low
heat of hydration and high later strength (Sui et al., 2015; Cuesta et al., 2021). In terms of the
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production technology, HBC, as a new type of environmentally
friendly cement material with low energy consumption and low
emissions, is of high significance for the energy conservation and
emission reduction, thereby realizing the national policies of
“carbon peak” and “carbon neutrality”.

In the current research, some scholars have developed Belite
sulphoaluminate cement (Gong and Fang, 2016). However, its high
sulfur content limits its application, and the cement can only be used
under a few specific working conditions. In addition, the literature
studies have shown that the curing temperature (Bahafid et al., 2017)
and type of the doping cations also affect the performance of HBC
(Jiang et al., 2021b; Shirani et al., 2021); At the same time, the
hydration rate of HBC is significantly accelerated at high
temperatures, which can effectively improve its early strength.
Thus, at present, the quartz sand is still used for compounding at
high temperatures (Li et al., 2016; Liu et al., 2021). However, HBC is
currently rarely used in high-temperature deep wells, with amajority
of the wells still using the class G oil well cement slurry system. In
addition, HBC lacks a mature system under high temperature
conditions (above 200°C), along with a lack of systematic
research on its application in the high-temperature deep wells.

This study analyzes the chemical and mineral compositions of
HBC to study the influence of the quartz sand on its slurry and
high temperature performances. In addition, XRD, TG, SEM,
BET and other micro-testing methods have been used to explore
the phase composition and microstructure of the cement stone,
thereby analyzing the mechanism of strength change, so as to
provide guidelines for the high-temperature deep well cementing.

EXPERIMENTAL

Raw Materials
1) High belitec (HBC): provided by Jiahua Special Cement Co.

Ltd. Its chemical composition and mineral composition are
presented in Table 1 and Table 2.

2) Quartz sand: provided by Henan Weihui Chemical Co. Ltd.

The particle size distribution of HBC and quartz sand is shown
in Figure 1.

As per Figure 1, the median particle size can be obtained as:
dHBC (0.5) = 43.230 um and d quartz sand (0.5) = 46.407 um. It
can be observed that the average particle size of the two materials
is relatively close, thus, leading to a superior particle gradation
and effective dispersion during the preparation of the cement
slurry, thereby ensuring the sedimentation stability of the slurry.

3) Additives: mainly fluid loss agent G33S and dispersant SXY-2,
provided by Henan Weihui Chemical Co. Ltd.

Experimental Methods
Sample Preparation and Curing
The cement slurry was prepared by following the GB/T 19139-
2012 “Oil Well Cement Test Method” (Standard C N. GB/T
19139-2012, 2012) and API RP 10B standards “Oil Well Cement
Material and Experiment Specification” (Institute A P. API RP
10B-2, 2013). The performance of the cement slurry was tested
referring to GB/T 10238-2015 “Oil Well Cement” (Standard C N.
GB/T 10238-2015, 2015). The cement slurry was poured into a
50.8*50.8*50.8 square mold and placed in a water bath at 30°C,
50°C, 70°C and 90°C for curing for 1, 3 and 7 d. The high
temperature curing experiment of the cement stone was
carried out in a specialized high-temperature and high-
pressure curing kettle. The curing temperatures were 110°C,
150°C, 180°C and 220°C, and the curing duration was 7 d.

Sample Testing and Analysis
Use TY-300 pressure testing machine to test its compressive
strength. The loading rate is 2 kN/min ± 0.2 kN/min. The phase
composition of cement stone is tested by dx-2000 X-ray
diffractometer (Dandong Haoyuan Instrument Co., Ltd.): The
test angle range is 5–70°, the pace is 0.04°/s, and the test
equipment voltage and current are 30 kV and 20 mA,
respectively. The micro morphology of the cement stone was
tested with ZEISS EV0MA15 scanning electron microscope (Carl

TABLE 1 | HBC chemical composition and percentage content.

Composition Loss SiO2 AlO3 Fe2O3 CaO MgO SO3 Total

Content/% 0.56 22.88 4.26 4.71 62.42 1.52 2.43 98.78

TABLE 2 | HBC mineral composition and percentage content.

Composition KH N P C3S C2S C3A C4AF C4AF+2C3A

Content/% 0.812 2.55 0.9 37.87 36.97 3.3 14.32 20.92

Notes: KH: lime saturation factor. Indicates the degree to which silica oxide in the clinker is saturated with calcium oxide to produce tricalcium silicate.
N: silica rate (Also known as silicic acid rate). It represents the mass ratio of silica content to alumina and iron oxide in the clinker, and also represents the ratio of silicate minerals to solvent
minerals in the clinker.
P: Aluminum rate (Also known as aluminum oxygen rate). It represents the mass ratio of alumina and iron oxide content in the clinker, and also represents the ratio of tricalcium aluminate to
tetracalcium aluminate ferrite in the clinker solvent mineral.
C3S: 3CaO·SiO2, tricalcium silicate.
C2S: 2CaO·SiO2, dicalcium silicate.
C3A: 3CaO·Al2O3, tricalcium aluminate.
C4AF: 4CaO·Al2O3·Fe2O3, tetracalcium aluminoferrite.
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Zeiss, Germany): Resolution: high vacuummode, 3.0 nm (30 kV);
magnification: 5X-300000X; acceleration voltage: 0.3–30 kV. S8
TIGER X-ray fluorescence spectrometer (Bruck AXS, Germany)
was used to test the mineral composition and chemical
composition of the samples at 25°C, with an applicable power
supply of 380 V ± 10%, a frequency of 50 HZ, and an external
argon supply with a purity of 99.999%. An external UPS power
supply was utilized in order to prevent sudden power failures and
damages to the instrument. The F-Sorb 3,400 specific surface area
and pore size analyzer (BET) was used to measure the pore size of
the cement stone. The principle of the test is that at the
temperature of liquid nitrogen, the amount of nitrogen
adsorbed on the surface of the cement stone pores depends on
the ratio of the nitrogen partial pressure P and the saturated vapor
pressure P0 of nitrogen at the liquid nitrogen temperature (P/P0).
When P/P0≥0.4, capillary aggregation will occur, so that the pore
size distribution of cement stone can be measured.

RESULTS AND DISCUSSION

Engineering Performance of HBC Slurry
A large amount of external admixtures affects the basic
engineering performance of the cement paste to a certain
extent, even affecting the construction in severe cases. The

content of quartz sand is set in this study as 0, 10, 20, 30, 40
and 50%. The amount of the fluid loss agent is 1%, whereas
the dispersant amount is 0.5%, both of which are the mass
percentages of HBC. Further, the water-solid ratio is 0.44.

FIGURE 1 | Particle size distribution of HBC (A) and quartz sand (B).

TABLE 3 | The HBC slurry properties.

ID Cement (%) Quartz sand (%) Density (g/cm³) Liquidity (cm) Fluidity index(n) Consistency
coefficient (K(Pa.sn))

Sedimentation stability/
△ρsc/%

Top Middle Bottom

B-0 100 0 1.93 23.50 0.82083 0.65720 100 100 100
B-10 100 10 1.92 23.00 1.02953 0.17884 100 100 100
B-20 100 20 1.90 22.70 0.9534 0.28751 99.9 99.9 100.1
B-30 100 30 1.89 22.40 1.081459 0.12936 99.9 99.9 100.1
B-40 100 40 1.89 21.90 0.92272 0.31251 99.9 99.9 100.2
B-50 100 50 1.86 19.50 0.87132 0.43673 99.8 99.9 100.2

FIGURE 2 | The low temperature compressive strength of HBC.
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The properties of the tested cement paste are shown in
Table 3.

It can be observed from the experimental data that increasing
the amount of the quartz sand gradually decreases the density of
the cement slurry. In addition, the liquidity, fluidity and
consistency coefficien of the cement slurry are in excellent
condition. The settlement stability of cement slurry is
excellent. Taking into account the performance and cost of the
slurry as well as the mixing ratio of the external admixtures, the
amounts of quartz sand are determined to be 0, 10, 20, 30 and
40%, followed by their use in the follow-up experiments.

Compressive Strength of HBC
Figure 2 shows the low temperature compressive strength of
HBC at curing temperatures of 30°C, 50°C, 70°C and 90°C. As can
be observed, the strength of the cement stone increases with the
curing temperature and curing age. This is due to the reason that
an enhanced temperature increases the rate of the cement
hydration, and the prolongation of the curing time makes the
cement hydration more complete, thus, enhancing the strength.
However, the absolute strength of the samples cured for 1 and
3 days is noted to be low. This is due to the reason that HBC
possesses C2S as the dominant mineral, and its hydration rate at
low temperatures is slower than that of the conventional class G
oil well cement (Cuesta et al., 2021).

Figure 3 shows the high-temperature compressive strength of
HBC with and without quartz sand (B-0 to B-4 respectively
represent 0–40% of quartz sand in HBC). The curing
temperatures are 110°C, 150°C, 180°C, and 220°C. As observed
from the figure, the overall strength of the cement stone decreases
significantly on enhancing the temperature. The decline in the
strength of pure HBC is noted to be the most serious (90%) after
curing at 220°C as compared to 110°C. On increasing the amount
of quartz sand, the decline in the strength of the cement stone is

significantly improved. For instance, HBC exhibits the highest
strength and least decline at a quartz sand content of 40%. On
curing at 220°C, the strength is observed to decline by 40%. After
7 days of curing, the compressive strength is noted reach 30 ±
0.5 MPa, and the strength recession phenomenon is significantly
improved.

Phase Composition of HBC Hydration
Products
Figure 4 shows the XRD pattern of HBC after low-temperature
hydration for 7 days.

As observed from the figure, the main hydration products of pure
HBC under low temperature curing are calcium hydroxide, C-S-H
gel, calcium carbonate and periclase. There is no obvious difference in
the types of the hydration products under different low temperature
curing conditions, however, the strength of the diffraction peaks
exhibits a change. The main diffraction peaks in the figure represent
the presence of calcium hydroxide. As the temperature increases, the
diffraction peaks of calcium hydroxide increase significantly, and the
diffraction peaks of the other hydration products such as hydrated
calcium silicate gel, calcium carbonate and periclase also increase to a
certain extent. Therefore, as the temperature increases, the degree of
cement hydration deepens, and the strength of the cement stone
increases.

Figures 5, 6 present the XRD patterns of HBC with and
without quartz sand after high temperature curing for 7 days.

According to Figure 5, the high temperature hydration products
of pure HBC contain calcium hydroxide, dicalcium silicate hydrate,
hydroxyl silicon calcium stone and C-S-H gel. However, as compared
with the cement stone after low temperature curing, the cement stone
after high temperature curing appears to be the hydroxyl silicon
calcium stone. Almost no diffraction peaks of hydroxyl silicon
calcium stone are observed in the cement stone cured at 110°C,
however, strong diffraction peaks of the hydroxyl silicon calcium

FIGURE 3 | The high-temperature compressive strength of HBC mixed
with quartz sand.

FIGURE 4 | The XRD pattern of HBC after low temperature curing for
7 days.
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stone are noted in HBC cured at 180°C. On increasing the curing
temperature, the calciumhydroxide content inHBC increases. This is
due to the reason that the temperature significantly promotes the
hydration reaction of theHBC cement and simultaneouslymakes the
cement to produce products with a high calcium to silicon ratio. The
phase composition of the high-temperature sanded cement hydrate is
shown in Figure 6. As can be observed, after adding 40% quartz sand,
xonotlite appears in the cement stone. Further, as the temperature
increases, the diffraction peaks of xonotlite are strengthened, and the
number of diffraction peaks gradually increases. On the other hand,
the diffraction peak of silica is weakened. As the temperature rises to
220°C, the diffraction peak of silica is almost unobservable. This is
owing to the reason that as the temperature increases, the reactivity of
quartz sand is increased. As a result, and the consumption of silicon
dioxide increases, which ismore involved in the hydration reaction of
cement.

The hydroxyl silicon calcium stone is a high-calcium silicate
substance transformed from the C-S-H gel due to the calcium ion
precipitation at high temperatures, which exhibits a negative
effect on strength. Xonotlite reduces the calcium-silicon ratio
of cement, especially leading to the accumulation and
precipitation of the calcium ions. The resulting low-calcium
silicate material is able to prevent its strength from declining
(Churakov and Mandaliev, 2008). The findings from the phase
analysis of the cement stone hydration products after mixing with
quartz sand confirm this conclusion.

Pore Size Analysis of HBC
The pores with a pore diameter of less than 50 nm in the cement
stone are classified as micropores and mesopores, which are
conducive to the development of the cement stone strength. This
is due to the reason that the pore size range of the C-S-H gel plays a
major role in the strength of the cement stone. The pores with a pore
diameter above 50 nm are termed as the harmful pores. Themore are
the harmful pores, the more unfavorable is the development of the
cement stone strength (Wang et al., 2022).

Figures 7, 8 present the pore size distribution of HBC. As the
temperature increases, the number of pores with a diameter less than
50 nm decreases. Thus, as the temperature rises, the C-S-H gel
content in the cement stone is reduced, and the hydroxyl silicon
calcium stone is formed. The structure of the cement stone is noted to
be loose, thus, the strength of the cement stone decreases. With a
gradual increase in the content of the quartz sand, the content of the
hydroxyl silicon calcium stone in the cement stone decreases, leading
to the formation of the fine xonotlite, thereby causing the number of
favorable pores below 50 nm to increase sharply. At the same time,
due to an increase in the amount of the quartz sand, the internal voids
of the cement stone become large, thus, resulting in a certain increase
in the number of the unfavorable pores above 50 nm. However, in
general, the number of favorable pores in the cement stone after
mixing with quartz sand is more than that of the harmful pores,
which is conducive for the development of strength.

FIGURE 5 | The XRD pattern of HBC after high temperature curing for
7 days.

FIGURE 6 | The XRD pattern of HBC with quartz sand after high
temperature curing for 7 days.

FIGURE 7 | Pore size distribution of HBC with different silica sand
contents after curing at 180°C for 7 days.
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The Microstructure of HBC
Figure 9 shows the micro-morphology of pure HBC under
different high temperature curing conditions.

The C-S-H gel with a network structure can be observed in the
pure cement (Figure 9A) cured at 110°C (Zhao et al., 2021). The
overall structure of the cement stone is also very dense, and the
strength of the cement stone is high at this stage, with no

deterioration. The layered crystals embedded in the stone can
also be observed, exhibited the presence of calcium hydroxide
(Liu et al., 2018). However, as the temperature is increased, the
plate-shaped dicalcium silicate hydrate is formed in the cement
stone cured at 150°C. Its crystal density and crystallinity are noted
to be high. A large number of pores are observed to exit the
structure, thereby resulting in a low cement strength. On further
increasing the curing temperature to 180°C, the hydroxyl silicon
calcium stone is formed in the pure cement as clusters, which is
caused by the further reaction of the dicalcium silicate hydrate.
These crystals can still be observed in large quantities after curing
at 220°C. This is also one of the main reasons contributing to the
decline of the strength of the HBC cement stone (Koumpouri
et al., 2021).

The SEM analysis of the materials is presented in Figure 10.
Figure 10A reflects the microstructure of the cement with sand at
110°C, which is observed to be significantly different from the
structure of the cement without sand. The hydration products are
observed to contain the C-S-H gel and layered calcium hydroxide.
As the curing temperature is increased, as shown in Figures
10B,C, xonotlite is no longer formed, however, a fine needle-like
xonotlite is formed inside the cement stone. As the temperature is
increased further, as shown in Figure 10D, the xonotlite content
is also enhanced. Comparing the microscopic morphology of the
pure HBC, it can be observed that the overall structure of the
cement stone becomes dense after adding quartz sand, and the
volume of xonotlite produced is smaller than that of the hydroxyl
silicon calcium stone. It represents the main reason for the
enhanced compactness and strength of the cement stone

FIGURE 8 | Pore size distribution of HBC after curing for 7 days under
different high temperature conditions.

FIGURE 9 | The microscopic morphology of HBC hydrated at 110°C (A), 150°C (B), 180°C (C), and 220°C (D) for 7 days.
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structure. This is also confirmed by the findings from the phase
analysis of the cement and stone (Xiawei et al., 2019).

CONCLUSION

This study uses quartz sand to delay the decline in the strength of the
high belite cement at high temperatures. The high-temperature
mechanical properties have been explored, and the corresponding
mechanism has been analyzed through the microscopic
characterization methods. The following conclusions can be drawn:

1) The mixing of quartz sand affects the engineering
performance of the cement paste to a certain extent,
resulting in poor fluidity and rheology.

2) The strength of the high belite cement does not decline at low
temperatures. The strength of the pure cement declines
significantly at high temperatures, and the mixing of quartz
sand can delay its strength decline to a large extent.

3) The pure cement generates the hydrated dicalcium silicate and
hydroxyl silicon calcium stone at high temperatures. After mixing
with quartz sand, the overall structure becomes denser than the pure
cement stone,with the appearance of thefineneedle-shaped xonotlite.

4) The reason for the decline in the strength of the pure cement
stone at high temperatures is the sharp reduction in the number
of fine pores conducive for the strength development of the
cement stone. However, the number of fine pores in the cement
stone increases significantly after the addition of quartz sand, and

the formation of a large extent of the C-S-H gel and xonotlite
delays the decline in its strength to a certain extent.
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FIGURE 10 | The microscopic morphology of HBC mixed with 40% quartz sand at 110°C (A), 150°C (B), 180°C (C), 220°C (D) after hydration for 7 days.
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