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Photocatalysis is regarded as a green technology to degrade organic dyes driven by light
energy. The selection of photocatalyst restricts the development of photocatalytic
technology. Aluminate is a kind of potential broad-gap semiconductor photocatalyst
and also an excellent phosphor substrate materials. The physical and chemical
properties of aluminate are strongly dependent on the preparation method. Insight into
the influence of synthesis methods on photocatalytic activity of aluminate based
photocatalysts is helpful for the development of novel aluminate based photocatalysts.
In this paper, the typical synthesis methods of aluminate photocatalysts, ion-doped
aluminate based photocatalysts and heterojunction type aluminate photocatalysts, and
their photocatalytic activities are reviewed. Based on the energy band theory, the
photocatalytic mechanisms of single component aluminate photocatalyst, ion-doped
aluminate based photocatalyst, and heterojunction type aluminate photocatalyst were
reviewed. The future development of aluminate based photocatalyst will give priority to the
salinization of aluminate modified by silver and other metal particles and the photocatalytic
application of activated ion modified aluminate based phosphors.
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INTRODUCTION

The economic development of all countries in the world has a great impact on the environment,
especially human beings’ thirst for necessities such as leather, textiles, medicines, food and so on, and
the increasing demand for dyes, thus causing different degrees of pollution to the environment.
(Wang et al., 2021a; Piriyanon et al., 2021; Ibrahim et al., 2022; Lahiri et al., 2022). Since water is
needed for all kinds of necessities, and these factories are built along rivers, direct discharge of
organic dyes into rivers will cause devastating pollution to the environment. This forces mankind to
consider the problem of environmental pollution while developing. To deal with the pollution of
organic dyes to water resources, the countries all over the world have invested a lot of money to solve
this problem. Many mature methods have been developed to solve the problem of organic dye
contamination, including: 1) Thermocatalytic technique driven by thermal energy. (Bao et al., 2020;
Forouzesh et al., 2021) 2) Electrocatalytic technique driven by electric field or magnetic field. (Li et al.,
2017; Szroeder et al., 2019). 3) Piezoelectric catalytic technique driven by mechanical energy. (Cheng
et al., 2021a; Cheng et al., 2021b) 4) Biodegradation technique (Ghalei and Handa, 2022; Mathew
et al., 2022). 5) Adsorption technique (Gao et al., 2021; Liu et al., 2022). 6) Photocatalytic technique
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driven by light energy (Pu et al., 2021; Gao et al., 2022; Zhang
et al., 2022). 7) Multi - technology hybrid degradation of organic
matter. (Wang et al., 2021b). Among these technologies, the
catalyst is the key factor affecting the degradation rate of dyes.

Recently, a series of photocatalysts have been developed to
degrade organic dyes. There are three main types of
photocatalysts (Wang et al., 2017; Wang et al., 2020a;
Rajabathar et al., 2020; Shifa Wang et al., 2020; Cheng et al.,
2021c; Wang et al., 2021c; Ivashchenko et al., 2021; Kim et al.,
2021; Kumar and Luxmi, 2021; Musa et al., 2021; Taazayet et al.,
2021): 1) Single-component photocatalysts 2) Photocatalyst of
two components 3) Ternary or multi-component photocatalysts.
For a long time, single-component photocatalysts have been
widely favored by researchers because of their advantages of
simple composition and easy synthesis. Spinel aluminate is a
kind of such single component photocatalyst, which has wide
application prospect in the field of photocatalysis due to its high
chemical and thermal stability, high catalytic activity, high
specific surface area, and high surface defects and active sites.
(Kharlanov et al., 2019; Boudiaf et al., 2020; Chen et al., 2021).
Spinel aluminate generally has the structure of MB2O4, A is
generally Mg, Ca, Sr, Ba, Co, Ni, Cu, Mn, and other bivalent metal
ions, B is Al, Fe, Ga, Cr, and other trivalent metal ions. (Sharma
et al., 2014; Sriram et al., 2020). Among these spinel aluminates,
MAl2O4 (A = Mg, Sr, and Ba) has attracted extensive attention
from researchers due to its excellent physicochemical properties
make it can be used as long afterglow phosphor base materials,
lightweight helmets, photoelectric devices, microwave dielectric
capacitors, and high temperature windows, etc. (Han et al., 2018;
Takebuchi et al., 2020; Basyrova et al., 2021; Kiryakov et al., 2021)
Simultaneously, MAl2O4 is a kind of environmental friendly
material, in the photocatalytic field, especially in the
degradation of organic dyes has a good application. (Wang
et al., 2019a; Shifa Wang et al., 2020; Liu et al., 2022).
Therefore, the work of MAl2O4 and MAl2O4 based
photocatalysts in the degradation of organic dyes is reviewed,
which has important research significance for the development of
new aluminate based photocatalysts.

It is well known that the photocatalytic activity of aluminate
based photocatalysts is strongly dependent on the preparation
method. Different preparation methods will produce
aluminate with different morphology, which may have
special defect structure, thus enhancing the photocatalytic
activity of aluminate. Ion doping and heterostructure
construction will accelerate the transfer and separation of
electrons and holes, and improve the photocatalytic activity
of the system. Therefore, the influence of ion doping and
heterostructure construction on the photocatalytic activity
of aluminate photocatalyst should not be underestimated. In
this paper, we start from the preparation of aluminate based
photocatalysts, reviewed the preparation of single-component
aluminate, metal ion doped aluminate and multiple
heterojunction aluminate based photocatalysts, and their
applications in the field of photocatalysis. Based on electron
hole pair transfer, separation and energy band theory, the
photocatalytic mechanism of single component aluminate and
heterojunction aluminate photocatalysts was reviewed, and

which provided technical support for the development of
aluminate based photocatalysts.

SYNTHESIS OF MAL2O4(M = MG, SR, AND
BA) BASED PHOTOCATALYSTS

The photocatalytic activity of catalysts strongly depends on
morphology, size, dimension, specific surface area, defec,t and
impurity. Ultimately, these parameters affect the electron hole
pair transfer and separation efficiency of the photocatalyst, which
in turn accelerates the oxidation or reduction capacity of the
electrons and holes. The dye is oxidized or reduced to form non-
toxic small organic molecules. To regulate these parameters, the
special synthesis methods are necessary. Currently, the
MAl2O4(M = Mg, Sr, and Ba) based photoatalysts have been
synthesized in a number of ways to construct specific defect
structures.

Synthesis of MAl2O4(M = Mg, Sr, and Ba)
Photocatalysts
Spinel aluminate is a wide-gap semiconductor, such as BeAl2O4

(6.450 eV) (Ching et al., 2001), MgAl2O4 (3.923 eV) (Wang et al.,
2019a), CaAl2O4 (7.400 eV) (Moirangthem et al., 2019), SrAl2O4

(3.984 eV) (Shifa Wang et al., 2020), BaAl2O4 (3.910 eV) (Nair
and Pillai, 2021), MnAl2O4 (4.030 eV) (Bhavani et al., 2018),
FeAl2O4 (1.780 eV) (Mu et al., 2017), CoAl2O4 (1.948 eV) (Gao
et al., 2018), NiAl2O4 (3.000 eV) (Chellammal Gayathri et al.,
2021), CuAl2O4 (2.920 eV) (Potbhare et al., 2019), and ZnAl2O4

(3.800 eV) (Shang-Pan et al., 2020). Based on the obtained optical
band gap value and band theory, the conduction band potential
and valence band potential of MAl2O4 were calculated.

ECB � X − Ee − 0.5Eg (1)
EVB � X − Ee + 0.5Eg (2)

Where,X ofMAl2O4 was estimated by Eq. 3, Ee is 4.5 eV and Eg is
optical band gap value.

X(MAl2O4) �
����������������
X(M)X(AI)2X(O)47

√
(3)

TABLE 1 | The conduction band potential and valence band potential of MAl2O4

photocatalyst.

Samples Eg (eV) X (V) Conduction
band potential (V)

Valence
band potential (V)

BeAl2O4 6.450 5.565 −2.160 4.290
MgAl2O4 3.923 5.356 −1.106 2.817
CaAl2O4 7.400 4.963 −3.237 4.163
SrAl2O4 3.984 4.896 −1.596 2.388
BaAl2O4 3.910 5.025 −1.430 2.480
MnAl2O4 4.030 5.350 −1.165 2.865
FeAl2O4 1.780 5.417 0.027 1.807
CoAl2O4 1.948 5.462 −0.012 1.936
NiAl2O4 3.000 5.480 −0.520 2.480
CuAl2O4 2.920 5.494 −0.466 2.454
ZnAl2O4 3.800 5.489 −0.911 2.889
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Table 1 shows the X value, conduction band potential and
valence band potential of MAl2O4 photocatalyst. The related
energy level diagram of MAl2O4 photocatalyst can be described
in Figure 1. As can be seen from Figure 1, the band gap value of
MAl2O4 (M = Fe, Co, and Cu) is less than 3, which can easily
respond to visible light and degrade organic dyes under visible light
conditions (Gholami et al., 2016; Mu et al., 2017; Feng et al., 2021).
Other aluminate photocatalysts must adopt special preparation
methods to introduce impurities or defects if they are to respond
to visible light. Wang et al. (Wang et al., 2019b) used amorphous
alumina and α-alumina to modify MnAl2O4 spinel type oxides
exhibits high visible light photocatalytic activity. However, these
mainly introduce impurities in the form of doping or coupling to
enhance the photocatalytic activity of single component aluminate.
In particular, the band gap values of MAl2O4 (M = Mg, Sr, and Ba)
are close to 4, making it difficult to respond to visible light.
Traditional methods such as the solid state reaction method,
(Ganesh et al., 2004; Canaza-Mamani et al., 2021), the sol-gel
method, (Habibi et al., 2017; Salehabadi et al., 2017), the
solvothermal method, (Zhu et al., 2012), the hydrothermal
method (Sera et al., 2021), and the coprecipitation method
(Zawrah et al., 2007) are difficult to make its have special defect
structure. In order to make a single component aluminate
photocatalytic activity, special preparation methods must be used
to enhance the electron and hole pairs transfer and separation ability.
Wang et al. (Wang et al., 2019a) synthesizedMgAl2O4 photocatalyst
with special defective structure by gamma ray irradiation assisted
polyacrylamide gel method, which showed that it had high visible
light photocatalytic activity for the degradation of methylene blue.
However, the extreme conditions such as high energy, high pressure
and high temperature are often needed to prepare aluminate
photocatalyst with defective structure by special preparation
process, which are very difficult to achieve in general laboratory.
Therefore, other meansmust be found to enhance the photocatalytic
activity of single component aluminate photocatalyst.

Synthesis of Metal Ion Doped MAl2O4(M =
Mg, Sr, and Ba) Photocatalysts
Ion doping is an effective way to enhance the photocatalytic
activity of a single component semiconductor photocatalyst.

Generally, ion doping can change the band gap value of a single
component semiconductor photocatalyst. For the MAl2O4, doping
can choose A site substitution and Al site substitution, A site
substitution of ion radius should be close to the A site ion. In
the synthesis of dense ceramics, the solid state reaction method is
relatively better, and the high temperature, and high pressure
conditions are easy to doping ions into the lattice of a single
component aluminate. However, due to the small specific surface
area and porosity of dense ceramics, the photocatalytic degradation
of organic dyes is not favorable, which will greatly limit the
application of solid phase reaction method in the synthesis of ion
doped aluminate photocatalysts. Alam et al. (Alam et al., 2022)
synthesized the Cr3+-doped MgAl2O4 nanoparticles by the solution
combustion method exhibits excellent photocatalytic activity against
Acid Red-88 (AR-88) dye. Solution combustion method is easy to
control the morphology of Cr3+-doped MgAl2O4, adjust the doping
ratio, reduce the particle size, resulting in a single component of
MgAl2O4 exhibit novel physicochemical properties. Chen et al.
(Chen et al., 2009) synthesized MgAl2O4:Eu

3+ phosphors by
hydrothermal method exhibits high photoluminescence
properties. Different morphologies of MgAl2O4:Eu

3+ phosphors
can be obtained by changing the ratio of precursor salts. The
SEM images of MgAl2O4:Eu

3+ phosphors as shown in Figure 2.
The results further show that it is easy to synthesize different
morphologies of ion doped aluminate photocatalysts by
hydrothermal method. Wang et al. (Wang et al., 2019c) reported
that the Mg1–xCoxAl2O4 photocatalysts synthesized by the
irradiation assisted polyacrylamide gel route exhibits high
photocatalytic activity. The method can be used to synthesize
aluminate photocatalysts with different proportions and
morphologies, which is beneficial to improve the photocatalytic
activity of single component aluminate photocatalysts.

Synthesis of MAl2O4(M = Mg, Sr, and Ba)
Based Multivariate Heterojunction
Photocatalysts
Another way to enhance the photocatalytic activity of
semiconductor photocatalysts is to construct multiple
photocatalysts with special heterojunction structure. Similarly, the
aluminate based phosphors can be used in a similar way to enhance

FIGURE 1 | The related energy level diagram of MAl2O4 photocatalyst.
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the photoluminescence properties of a single component aluminate
(Wang et al., 2020b; Liu et al., 2020). Surface modification of
MgAl2O4 with metal particles can enhance its photoluminescence
properties due to plasma resonance effect. With the increase of
sintering temperature, the metal particles are oxidized, which affects
the band gap value of the system. TheMgAl2O4:M (M=Mg, Ti,Mn,
Co, and Ni) phosphors exhibits wide visible light absorption,
suggesting that they have high photocatalytic activity under
visible light. Mkhalid et al. (Mkhalid, 2022) synthesized the
Ag2O/SrAl2O4/CNT ternary photocatalyst by the sol-gel method
exhibits high visible-light-responsive for H2 production. The
construction of multiple heterojunctions is beneficial to enhance
the electron transport, transfer and separation efficiency of SrAl2O4,
and thus improving the photocatalytic activity of the system under
visible light irradiation. Sol-gel method has more advantages than
solid phase method and coprecipitation method because of its easy
composition control and simple synthesis. Hydrothermal method is
easy to synthesize the aluminate products with different
morphologies, but its application in the construction of multiple
heterojunctions is less. Therefore, the sol-gel method is commonly
used to synthesize aluminate - based multielement heterostructures.

PHOTOCATALYTIC ACTIVITY OF
MAL2O4(M = MG, SR, AND BA) BASED
PHOTOCATALYSTS
The photocatalytic activity of aluminate photocatalyst is strongly
dependent on the preparation method, ion doping and
heterostructure construction.

Photocatalytic Activity of MAl2O4(M = Mg,
Sr, and Ba) Photocatalysts
Due to the large band gap value of MAl2O4(M = Mg, Sr, and
Ba) aluminate photocatalyst, there are relatively few studies on
its use as photocatalyst alone. Except for MgAl2O4 and
BaAl2O4, single component SrAl2O4 has not been used as a
photocatalyst to degrade organic dyes. Table 2 shows the
photocatalytic activity of MgAl2O4 and BaAl2O4

photocatalyst. Nassar et al. (Nassar et al., 2014) reported
the MgAl2O4 photocatalyst prepared by the sol–gel auto
combustion method exhibits high photocatalytic activity for
the degradation of Reactive Red Me 4BL dye. Qian et al. (Qian
et al., 2017) synthesized MgAl2O4 photocatalyst by a simple
hydrothermal route exhibits high photocatalytic activity for
the degradation of Methylene bule. However, MgAl2O4

synthesized by this method is inadequate in degrading
phenol. Li et al. (2011) prepared the mixed amorphous and
crystalline MgAl2O4 nanopowders by a simple solution
combustion method using glycine and urea as fuel mixtures
exhibits high visible light-induced photocatalytic activity for
the degradation of Methylene bule. Jiang et al. (2014)
synthesized the MgAl2O4 photocatalyst by a sol-gel method
exhibits a poor photocatalytic activity for the degradation of
various dyes including methyl orange, acid red B and reactive
brilliant red K-2G. Parvarinezhad et al. (2019) synthesized the
MgAl2O4 nanopowders by one-step solid state reaction
method possessed strong light absorption properties in the
ultraviolet-visible region. Wang et al. (2019d) synthesized the
MgAl2O4 and BaAl2O4 photocatalysts by the polyacrylamide
gel method exhibits high photocatalytic activity. The results

FIGURE 2 | SEM images of MgAl2O4:Eu
3+ phosphors with different molar ratios of Mg(NO3)2• 6H2O, Al(NO3)3 •9H2O and CO(NH2)2. (A, B) 1:2:10, and (C, D) 1:2:

50 (Chen et al., 2009). Adapted from ref. (Chen et al., 2009). Copyright © 2009 Elsevier Inc.
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show that the photocatalytic activity of MAl2O4 synthesized by
different preparation methods is different.

Photocatalytic Activity of Metal Ion Doped
MAl2O4(M = Mg, Sr, and Ba) Photocatalysts
Metal ion doping can effectively change the band gap value of
aluminate photocatalyst so as to enhance its photocatalytic
activity. Different doping ions have different regulation on the
band gap of aluminate, so different metal ions doped aluminate
show different photocatalytic activity. Table 3 shows the

photocatalytic activity of metal ion doped MAl2O4(M = Mg,
Sr, and Ba) photocatalyst. Li et al. 2(016) synthesized the Mg1-
xZnxAl2O4 spinel nanoparticles by the chemical coprecipitation
method have a high photocatalytic activity. The photocatalytic
activity of Mg1-xZnxAl2O4 spinel nanoparticles increased with the
increasing of x value as shown in Figure 3. When Cu2+ ions were
engrafted onto MgAl2O4 nanoparticles by a highly adaptable and
energy efficient chemical process, the photocatalytic activity of
the system was greatly improved (Mukherjee et al., 2020). The
photocatalytic activity of MgAl2O4 can also be improved by
introducing Co (Wang et al., 2019c) or Ce (Chen et al., 2019)

TABLE 2 | The photocatalytic activity of MAl2O4 photocatalyst.

Samples Dye Lamp Ccatalyst (g L−1) Cdye (mg L−1) Irradiation time (min) D% (%) References

MgAl2O4 Reactive UV illumination 2 10 350 90.00 Nassar et al. (2014)
Red Me
4BL dye Sunlight 95.45

Amorphous Methylene bule 300 w Xe lamp 1 10 240 81.01 Qian et al. (2017)
Earth-abundant
MgAl2O4 Phenol 50 40.01
Mixed Methylene 350 W 0.75 10 100 99.5 Li et al. (2011)
Amorphous and crystalline bule Xe-lamp
MgAl2O4 nanopowders
MgAl2O4 Methyl orange high 5 12 120 21 Jiang et al. (2014)

Acid red B pressure 23
Reactive mercury
brilliant lamp 21
red K-2G

MgAl2O4 Malachite lamp 0.3125 100 40 100 Parvarinezhad et al. (2019)
green (300 W) 5

MgAl2O4 Methylene 150 W 1 5 180 89.6 Wang et al. (2019a)
bule Xe-lamp

BaAl2O4 Methylene 100 W 1 5 240 79 Wang et al. (2019d)
high pressure

bule mercury
lamp

TABLE 3 | The photocatalytic activity of metal ion doped MAl2O4(M = Mg, Sr, and Ba) photocatalyst.

Samples Dye Lamp Ccatalyst

(g L−1)
Cdye

(mg L−1)
Irradiation
time (min)

D% References

Mg1-xZnxAl2O4 Methylene bule A Hg lamp 2 10 240 99 Li et al. (2016)
Cu2+ engrafted
MgAl2O4

Methylene bule Sunlight 1.5 10 240 98.5 Mukherjee et al. (2020)

Mg1–x CoxAl2O4 Methylene bule 150 W Xe-lamp 1 5 120 98 Wang et al. (2019c)
MgAl2O4: Ce Rhodamine B 150-W/m2 xenon lamp 1.5 5 180 88.2 Chen et al. (2019)
Mn-codoped
MgAl2O4: Ce

Methylene blue 150-W/m2 xenon lamp 1 5 180 85 Wang et al. (2019e)

Eu2+, Dy3+-doped
SrAl2O4

H2O A high pressure Hg lamp 1 400 ml 100 0.78 mmol/
h.g

Park, (2018)

Bismuth doped
SrAl2O4

Methylene blue high pressure mercury lamp 0.428 25 120 78 García et al. (2018)
Congo red 10 100

SrAl2O4:xCu Congo red lamp (300 W) 0.6 15 120 100 Berlanga et al. (2017)
SrAl2O4: Ce: Mn Congo red 200 W/m2 xenon lamp 0.5 10 300 80 Shifa Wang et al.

(2020)
Rare earth doped
SrAl2O4

Methylene
orange

Solar 1 25 240 22.8 Deepika and Kumar,
(2020)

Nd3+ doped BaAl2O4 Methylene blue 100 mW/cm2 Newport solar
simulator

1 15 180 99% Mumanga et al. (2021)

BaAl2O4: Ce: Mn Methylene blue 150 W/m2 xenon lamp 1 5 240 79.85 Wang et al. (2020c)
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ions into MgAl2O4. Ce and Mn co-doped MgAl2O4 can further
improve the photocatalytic activity of MgAl2O4 (Wang et al.,
2019e). Metal ion doping in SrAl2O4 has also been widely used,
through Eu2+ and Dy3+ (Park, 2018), Bi (García et al., 2018), Cu
(Berlanga et al., 2017), Ce and Mn (Shifa Wang et al., 2020), and
rare earth ion (Deepika and Kumar, 2020) doping SrAl2O4, all
enhance the photocatalytic activity of SrAl2O4. Similarly, Nd3+

(Mumanga et al., 2021) and Ce and Mn (Wang et al., 2020c) ions
are also used in the doping of BaAl2O4, and their photocatalytic
activity is greatly improved compared with that of single-phase
BaAl2O4.

Photocatalytic Activity of MAl2O4(M = Mg,
Sr, and Ba) Based Multivariate
Heterojunction Photocatalysts
The construction of multiple heterojunction composite is
beneficial to combine the advantages of multiple
semiconductor materials and enhance the photocatalytic
activity of the system. The MAl2O4 (M = Mg, Sr, and Ba)
photocatalyst has a relatively large band gap, which makes it
difficult to respond to visible light. Therefore, the
semiconductor materials that can respond to visible light
are preferentially selected for the construction of
heterojunction. Table 4 shows the photocatalytic activity of
MAl2O4(M = Mg, Sr, and Ba) based multivariate
heterojunction photocatalysts. MgAl2O4 based photocatalyst
was constructed by combining various semiconductor
materials, and its photocatalytic activity was confirmed to
be enhanced (Abbasi Asl et al., 2019; Abbasi Asl et al.,
2020; Wang et al., 2021d). Meanwhile, MgAl2O4/CeO2/
Mn3O4 ternary heterojunction photocatalyst was
constructed by combining CeO2 and Mn3O4, showing high
photocatalytic activity for the degradation of methylene blue
dye (Li et al., 2021). Aluminate is a very good phosphor base
material, the introduction of activated ions will make
aluminate luminescence as phosphor. Recently, researchers
have found that aluminate activated by metal ions as
photocatalysts also have high photocatalytic activity. The
photocatalytic activity of SrAl2O4 was greatly enhanced by
the construction of multi-component composite SrAl2O4

photocatalysts (García et al., 20162016; Xiao et al., 2018;
Liu et al., 2019; Zargoosh and Moradi Aliabadi, 2019;
Mavengere and Kim, 2020; Aliabadi et al., 2021). The
construction of the heterojunction provides a technical

FIGURE 3 | Degradation rate curve with x value of Mg1-xZnxAl2O4 spinel
nanoparticles (Li et al., 2016). Adapted from ref. (Li et al., 2016). Copyright ©
2016 Elsevier Masson SAS.

TABLE 4 | The photocatalytic activity of MAl2O4(M = Mg, Sr, and Ba) based multivariate heterojunction photocatalysts.

Samples Dye Lamp Ccatalyst

(g L−1)
Cdye

(mg L−1)
Irradiation
time (min)

D
% (%)

References

Bi7O9I3-MgAl2O4 Methylene bule Sunlight 0.5 10 120 95.9 Abbasi Asl et al. (2019)
MgAl2O4-AC nanophotocatalys Methylene blue Solar light 1 30 140 96 Abbasi Asl et al. (2020)
CeO2/MgAl2O4 Methylene blue 150 W Xe-lamp 1 5 180 78 Wang et al. (2021d)
MgAl2O4/CeO2/Mn3O4 heterojunction
photocatalyst

Methylene blue 150 W Xe-lamp 1 5 180 94.6 Li et al. (2021)

g-C3N4–WO3–Bi2WO6/SrAl2O4:
Eu2+,Dy3+ nanocomposite

Basic blue 41 400 watt metal
halide lamp

0.1 1 60 98 Aliabadi et al. (2021)

CdS-sheathed,
SrAl2O4:Eu

2+, Dy3+ nanocomposites
Methyl orange 300 W Xenon

lamp
10 30 96.3 Xiao et al. (2018)

g-C3N4/SrAl2O4:Eu,Dy/SiO2 Methylene bule 300 W Xe lamp 1 5 60 90 Mavengere and Kim,
(2020)

(Eu,Dy)-doped strontium aluminate/
aluminosilicate

Methylene bule 75 W Xenon lamp 0.3 30 mmol 300 100 (García et al., 20162016)

g-C3N4@Au@SrAl2O4:Eu
2+,Dy3+

Composite
Rhodamine B 300 W Xe lamp 0.05 10 120 80 Liu et al. (2019)

SrAl2O4:Eu
2+: Dy3+/WO3/polyester

nanocomposite
Methylene blue lamp (300 W) 0.15 15 90 99 Zargoosh and Moradi

Aliabadi, (2019)
Ag/BaAl2O4 Gaseous

toluene
150 W Xe-lamp 1 5 240 88 Zhu et al. (2015)

TiO2/BaAl2O4: Eu
2+, Dy3+ Gaseous

benzene
10 W UV lamps 0.1 — 300 40 Li et al. (2009)
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reference for the subsequent study of other aluminate
photocatalysts. The photocatalytic activity of aluminate
modified by noble metal particles can be greatly improved
by plasma resonance effect. However, the modification of
Silver particles on the surface of MgAl2O4 easily leads to
the hydrolysis of MgAl2O4, which greatly affects the
application of MgAl2O4 as a photocatalyst. Zhu et al. (2015)
synthesized the Ag/BaAl2O4 photocatalyst shows high
photocatalytic activity for the degradation of Gaseous
toluene. When the silver content is low, the hydrolysis of
BaAl2O4 is inhibited and it can be used as a photocatalyst.
Li et al. (2009) constructed the TiO2/BaAl2O4: Eu

2+, Dy3+

photocatalyst exhibits high photocatalytic activity. These
successful applications provide a new idea for the use of
wide-band gap semiconductors as photocatalysts in future
research.

PHOTOCATALYTIC MECHANISM OF
MAL2O4(M = MG, SR, AND BA) BASED
PHOTOCATALYSTS
Different types of photocatalysts have slightly different
photocatalytic mechanisms. The photocatalytic mechanism of
single component aluminate photocatalyst, ion doped aluminate
photocatalyst and heterogeneous aluminate photocatalyst was
compared and analyzed.

Photocatalytic Mechanism of MAl2O4

Photocatalysts
Due to the large band gap value of a single component
aluminate, it is difficult to respond directly to visible light.
When single component aluminate is synthesized by a special
method, it is easy to introduce defects such as oxygen vacancy
into the aluminate, so that it has visible photocatalytic activity.

Figure 4 shows the photocatalytic mechanism of MgAl2O4

photocatalyst. When a beam of light hits the surface of
MgAl2O4, electrons jump from its valence band to the
conduction band, and leaving holes in the valence band. It
is difficult for electrons to jump directly to the conduction
band without the action of defect levels. Therefore, the defect
level plays an important role in the whole photocatalytic
process. Combined with the band theory analysis, it is
found that the degradation of methylene blue dye is difficult
to take place in the photosensitization process. Therefore, the
whole process is mainly photocatalytic degradation, the
valence band electrons and conduction band holes are
involved in the reaction, and the final generation of non-
toxic and harmless products. The related chemical reactions
can be described as follows (Shifa Wang et al., 2020):

(1) The creation of electron hole pairs.

MAl2O4 + h → MAl2O4 → e− + h+ (4)

(2) The production of hydroxyl radicals

h+ + OH− → [MS12O4] − •OH (5)

(3) The production of superoxide radicals

e− +O2 →•O2− (6)
•O2 + 2H+ + e− → H2O2 (7)
2e− + O2 + 2H+ → H2O2 (8)
e− +H2O2 →•OH + OH− (9)

•O2− +H2O2 →•OH +OH− + O2 (10)

(4) Dye degradation

•OH + dye → CO2 +H2O + non − toxic products (11)

Photocatalytic Mechanism ofMAl2O4 Based
Heterojunction Photocatalysts
During the construction of the multiple heterostructure, the
semiconductor material enhancing the photocatalytic activity
of visible light is regarded as the defect level, so the other half of
the aluminate heterojunction acts as the defect level. However,
multiple heterojunction photocatalysts introduce new
semiconductor materials and have great influence on the
phase purity of the whole system. Therefore, the
photocatalytic mechanism is different from that of a single
component photocatalyst. Figure 5 shows the photocatalytic
mechanism of MgAl2O4/CeO2/Mn3O4 heterojunction
photocatalyst. MgAl2O4, CeO2, and Mn3O4 form a double
p-n heterojunction structure among each other, which
facilitates the transfer and separation of electron hole pairs,
thus enhancing the photocatalytic activity of the system. The
separation of electron and hole pairs accelerates the oxidation
or reduction reactions of each, which then reacts with the dye
to produce non-toxic and harmless products.

FIGURE 4 | Photocatalytic mechanism of MgAl2O4 photocatalyst (Qian
et al., 2017). Adapted from ref. (Qian et al., 2017). Copyright © 2017 Royal
Society of Chemistry.
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Photocatalytic Mechanism of Metal Ion
Doped MAl2O4 Based Heterojunction
Photocatalysts
Activated ions induce aluminate luminescence, which is its
advantage when used as a photocatalyst. Figure 6 shows the
photocatalytic mechanism of CdS-sheathed SrAl2O4: Eu

2+, Dy3+

heterojunction photocatalysts. When SrAl2O4: Eu
2+, Dy3+ is used

as phosphors, the recombination of electron and hole pairs in the
system is accelerated. However, when it combines with other
semiconductor materials to form heterojunction photocatalyst,
the energy absorbed by it can promote the electron transition in
the whole system, thus accelerating the separation of electron and

hole pairs in the system. The non-meeting of electrons and holes
on CdS causes each to react with the dye to form CO2, H2O and
other small molecular organics.

CONCLUSION AND OUTLOOK

Aluminate based photocatalyst is a kind of photocatalyst
developed rapidly in recent years. Despite it have a very large
band gap, researchers have always found ways to promote the
transfer and separation of electrons and hole pairs, and thereby
improving their photocatalytic activity. For the single-component
aluminate photocatalysts, defects are introduced to provide defect
levels to promote electron transition to aluminate conduction
band under extreme conditions such as high temperature and
high pressure, so as to enhance the photocatalytic activity of
visible light. Similarly, impurity ions can be introduced into the
lattice of aluminate by ion doping to improve the migration and
separation efficiency of electron hole pairs and improve the
photocatalytic activity of aluminate. The construction of
special heterojunction structure is a simple method with
relatively mature technology. By introducing other
semiconductor materials with excellent performance, the
construction of multiple heterojunction aluminate based
photocatalyst has become a hot research field.

There are seven development trends of aluminate based
photocatalysts in the future 1) The hydrolysis of aluminate is
still one of the key problems to be solved. When silver particles
are used to modify aluminate photocatalyst, aluminate will
produce different degree of hydrolysis, which has been a
difficult problem for researchers. The development of new
synthetic pathways may solve this problem. 2) New
application of aluminate based heterojunction phosphors in
photocatalysis. When aluminate phosphor is combined with
other semiconductor photocatalysts, the photocatalytic activity
of the whole system will be greatly improved. However, the
research of aluminate based phosphor in the field of
photocatalysis is still in its infancy, and further research is

FIGURE 5 | Photocatalytic mechanism of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst (Li et al., 2021). Adapted from ref. (Li et al., 2021). Copyright © 2020
Elsevier Ltd.

FIGURE 6 | Photocatalytic mechanism of CdS-sheathed SrAl2O4: Eu
2+,

Dy3+ heterojunction photocatalysts (Xiao et al., 2018). Adapted from ref. (Xiao
et al., 2018). Copyright © 2018 Royal Society of Chemistry.
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needed. 3) The photocatalytic mechanism needs further study.
The newly developed aluminate photocatalyst will face the
problem that the existing mechanism cannot explain, so it is
necessary to develop a new explanation mechanism. 4) The
effect of different morphologies of aluminate photocatalysts on
photocatalytic activity needs further study. The specific surface
area of aluminate photocatalysts with different morphologies
was different, and their degradation activity to dyes was
obviously different. 5) The photocatalytic activity of
aluminate photocatalyst modified by lanthanide metal
particles is worth further study. There is no evidence that
the modification of aluminate photocatalyst by lanthanide
metal particles will lead to hydrolysis, so it is also worth
studying. 6) Modification of aluminate photocatalyst by
organic macromolecular network. The modification of
aluminate photocatalyst by organic macromolecular
network is beneficial to provide electron transport carrier
for aluminate, thus enhancing the photocatalytic activity of
aluminate. 7) New applications of photocatalysts are worth

exploring. Novel photocatalysts may induce new
interpretation mechanisms, thus promoting the application
of these photocatalysts in new fields.
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