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Recent works have demonstrated the viability of convolutional neural networks (CNN) for
capturing the highly non-linear microstructure-property linkages in high contrast
composite material systems. In this work, we develop a new CNN architecture that
utilizes a drastically reduced number of trainable parameters for building these linkages,
compared to the benchmarks in current literature. This is accomplished by creating CNN
architectures that completely avoid the use of fully connected layers, while using the 2-
point spatial correlations of the microstructure as the input to the CNN. In addition to
increased robustness (because of the much smaller number of trainable parameters), the
CNN models developed in this work facilitate the construction of property closures at very
low computational cost. This is because it allows for easy exploration of the space of valid
2-point spatial correlations, which is known to be a convex hull. Consequently, one can
generate new sets of valid 2-point spatial correlations from previously available valid sets of
2-point spatial correlations, simply as convex combinations. This work demonstrates the
significant benefits of utilizing 2-point spatial correlations as the input to the CNN, in place
of the voxelated discrete microstructures used in current benchmarks.
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1 INTRODUCTION

The microstructure1 of a material has a causal relationship with its effective anisotropic properties.
Therefore, it should be theoretically possible to design the microstructure for optimal performance,
which is typically specified in terms of a set of desired effective material properties. In practice, the
microstructure-property relationships are most commonly explored using computationally
expensive physics-based simulation tools (Ghosh et al., 1995; Kalidindi and Schoenfeld, 2000;
Roters et al., 2010; Wargo et al., 2012; Brands et al., 2016). However, such computational tools allow
exploration mainly in the forward direction, i.e., going from given microstructures to the estimation
of their effective properties. Microstructure design can be achieved through iterative evaluations of
the forward model to minimize a suitably defined objective function on the targeted properties.
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1This term is generally used to refer to the salient details of the material internal structure which often includes statistical
information on the size, shape, and placement of the different material local states (e.g., thermodynamic phases).
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However, the high computational expense of the physics-based
forward models poses a major hurdle for such design efforts.

Many efforts in prior literature have aimed to reduce the
computational cost of the forward models described above, since
inverse solutions often require the execution of a very large
number of forward trials. Such efforts have explored both
analytical approaches as well as emergent data-driven
approaches. The most impactful efforts utilizing analytical
approaches have been based on Kroner’s perturbation
expansion of the solution for the effective elastic stiffness of a
composite material (Kröner, 1971). In this formalism, the
effective material property is expressed as a series whose terms
systematically utilize increasingly higher-order spatial
correlations (i.e., n-point spatial correlations) of the different
material local states in the microstructure. In most practical
applications, the series expansion is truncated to include up to
2-point spatial correlations (Torquato, 2002; Adams et al., 2013;
Kalidindi, 2015). An implicit benefit of these analytical
approaches is that they permit formal application of
optimization methods (many of which require computation of
the gradients of the specified objective function with respect to
microstructural variables) in solving microstructure design
problems. Examples of these efforts can be found in the
development and application of the Microstructure-Sensitive
Design (MSD) framework (Fullwood et al., 2007; Fullwood
et al., 2008a; Fullwood et al., 2010; Adams et al., 2013). Prior
MSD efforts have demonstrated the viability of designing simple
microstructures (e.g., composites with two isotropic phases,
single phase polycrystalline materials) to meet designer
specified target properties (Adams et al., 2001; Fast et al.,
2008; Knezevic et al., 2008; Shaffer et al., 2010; Adams et al.,
2013). The application of the MSD framework has been largely
confined to simple microstructures and simple physics due to the
difficulties encountered in computing the convolution integrals
involved in the series expansions. Some of the main hurdles
encountered arise from the need to find Green’s function
solutions for the specific governing field equations and the
reliable computation of the principal value (Fullwood et al.,
2008a; Fullwood et al., 2010; Adams et al., 2013).
Furthermore, the perturbation series expansion has also been
shown to be limited in practice to moderate contrast (refers to the
degree to which the local properties can change from one location
to another in the microstructure) material systems (Kalidindi
et al., 2006; Fullwood et al., 2010). This limitation is due to the
challenges encountered in achieving convergence in the series
expansion with the systematic inclusion of higher-order spatial
correlations (Torquato, 2002; Fullwood et al., 2008a; Fullwood
et al., 2010).

Data-driven approaches have aimed to overcome the
shortcomings of the analytical approaches described above by
producing low-computational cost surrogates trained on the
high-computational cost physics-based numerical models [e.g.,
representative volume elements modeled by finite element
models (FEM)]. If these surrogates exhibit adequate accuracy,
their low computational cost clearly justifies their use in
microstructure design efforts. A prime example of these efforts
can be seen in the Materials Knowledge System (MKS) (Kalidindi

et al., 2010; Landi et al., 2010; Kalidindi, 2015; Brough et al., 2017)
framework, which employs a novel feature engineering approach
for material microstructures by combining the formalism of the
n-point spatial correlations mentioned above with machine
learning tools such as the principal component analysis
(PCA). The MKS framework learns the salient (low-
dimensional) microstructure features in a completely
unsupervised manner. These low-dimensional features are then
used to build data-driven surrogate models for the reliable
prediction of a broad range of material properties of interest.
In typical MKS applications, these surrogate models are trained
on datasets generated by physics-based numerical tools. The
viability of the MKS approach has been demonstrated on a
broad class of material structures and applications (Cecen
et al., 2014; Brough et al., 2017; Latypov et al., 2019). In
recent extensions of the MKS framework (Cecen et al., 2018;
Yang et al., 2018; Eidel, 2021), convolutional neural network
(CNN) based surrogates have been explored, which bypass the
feature engineering steps and build structure-property
relationships directly from the input voxelated microstructure
volumes. These CNN-based surrogates have demonstrated
excellent accuracy, even for high contrast composites (Yang
et al., 2018; Eidel, 2021). Although the CNN-based models
offer a highly accurate and low-computational cost tool to
predict the effective property of a given microstructure, they
encounter certain limitations that arise from the difficulty of
incorporating known physical concepts into the CNN-based
surrogate models. For example, when one imposes periodic
boundary conditions on a representative volume element
(RVE) of a microstructure, the predicted effective property
exhibits translational invariance2. The most commonly used
CNN architectures do not exhibit this characteristic implicitly.
Most importantly, CNN-based models are prone to model over-
fit due to their large number of tunable parameters. Despite these
limitations, recent work has demonstrated the positive impact of
data-driven methods on topology optimization (Kollmann et al.,
2020; Yilin et al., 2021) and inverse design of microstructures
(Jung et al., 2020; Tan et al., 2020).

This work aims to combine the advantages of both the
analytical and data-driven approaches described above. First,
this work employs the microstructure hull concept introduced
in the MSD framework, which represents the complete space of
physically realizable structures in a compact and convex space.
Second, this work builds CNN-based surrogates using the 2-point
spatial correlation maps as inputs, as opposed to using the
voxelated microstructures directly. The approaches described
in this work offer many advantages: 1) The use of 2-point
spatial correlations as input to the CNN models automatically
imparts translational invariance. 2) The change of the input to the
CNN, from the voxelated microstructures (RVEs) to the 2-point
spatial correlation maps, is expected to produce a more accurate
and robust surrogate model (compared to current benchmarks)

2This implies that if one extends the original RVE in all directions utilizing
periodicity and takes a new RVE of the same size but with a different starting
point, its effective property would be exactly the same as the original RVE.
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with a significantly smaller number of trained parameters (and
the associated training cost). 3) The proposed strategy allows one
to explore the complete space of possible property combinations
in a highly practical manner (by limiting the exploration to the 2-
point spatial correlations hull); this construct has been termed as
property closure in prior work (Proust and Kalidindi, 2006;
Fullwood et al., 2007; Wu et al., 2007; Knezevic et al., 2008;
Fullwood et al., 2010; Adams et al., 2013). The property closure
produced in this work represents a significant advance from the
closures produced in prior literature in terms of both
computational cost and accuracy.

2 BACKGROUND

2.1 Microstructure Quantification
Discretized representations have been used extensively in the
mathematical representation of the material microstructures
(Adams et al., 2013). In these, the microstructure is most
conveniently represented as an array, mh

s , whose values
reflect the volume fraction of the material local state, h, in
the spatial bin, s, in the RVE. In this formalism, the local states
are used to index the salient local material attributes (e.g.,
thermodynamic phase identifiers) and the spatial bins are
produced through a uniform tessellation of the RVE
(equivalent to pixels in 2-D and voxels in 3-D). Implicit in
this representation is the assumption that there exist a finite
number of distinct material local states, h � 1, 2, . . . , H, which
are allowed to occupy each spatial bin in the RVE,
s � 1, 2, . . . , S, to define the microstructure of interest. In
this study, we will employ a 3-D vector index s � (s1, s2, s3)
for indexing the spatial bins in a 3-D RVE.

Of primary interest to this paper are the 2-point spatial
correlations, which are captured in a discretized representation
as an array denoted by fhh’

r . The elements of this array reflect the
probability of finding local states h and h′ in the RVE separated by
a discretized vector indexed by an integer array r (very similar to
s). Mathematically, 2-point spatial correlations are defined as
(Kalidindi, 2015)

fhh’

r � 1
S
∑
s

mh
sm

h’

s+r (1)

Where S denotes the total number of spatial bins in the RVE. In
practice, fhh’

r are most efficiently computed by taking advantage
of the fast Fourier transform (FFT) algorithm (Niezgoda et al.,
2008; Cecen et al., 2016).

2.2 Microstructure Hulls and Property
Closures
We will restrict our attention in this work to periodic eigen
microstructures. Eigen microstructures are defined as a special
class of microstructures where each spatial bin is fully occupied by
only one material local state. In other words, mh

s are allowed to
take only the values of either zero or one. Most experimentally
observed microstructures are commonly depicted as eigen
microstructures, with the spatial bin size limited by the

resolution limits of the characterization machine (e.g.,
microscope). Moreover, most structural composites exhibit
thermodynamic phase regions separated by sharp boundaries.
Therefore, in practice, the discretization error arising from the
use of eigen microstructure representations is largely restricted to
the voxels next to the phase boundaries; this error can be
controlled through the selection of a sufficiently small spatial
bin size. The assumption of periodicity makes the microstructure
representations consistent with the typically imposed boundary
conditions in the finite element modeling of the RVEs for the
estimation of their effective (bulk) mechanical properties (e.g.,
elastic stiffness, yield strength) (Cecen et al., 2014; Brough et al.,
2017; Latypov et al., 2019).

Prior work in the development of the MSD framework
(Niezgoda et al., 2008) has demonstrated that the complete
space of 2-point spatial correlations (i.e., the set of all
theoretically possible 2-point spatial correlations) can be
depicted as a convex (and compact) hull. Generally referred as
a microstructure hull, this construct delineates the complete space
of inputs (i.e., design space) that needs to be considered in
microstructure design. It should be recognized that the space
of the 2-point spatial correlations is significantly smaller than the
space of all microstructures, since microstructures related to each
other by translations and/or inversions have the exact same set of
2-point spatial correlations (implied from Eq. 1). This is indeed
one of the main advantages of using spatial correlations to
represent the microstructure in design efforts; the
microstructures that have been filtered out exhibit the exact
same effective mechanical properties as the ones retained in
the 2-point spatial correlations hull. Therefore, they effectively
remove many of the redundancies in the design space. Although
higher-order spatial correlations (i.e., 3-point spatial correlations
and higher) are known to influence the effective properties, they
are expected to have (currently unknown) non-linear
relationships with the 2-point spatial correlations, at least for
the class of eigen microstructures considered in this work. This
can be inferred from the fact that it is possible to reconstruct
exactly the eigen microstructures from their 2-point spatial
correlations (Fullwood et al., 2008b). One of the important
practical consequences of the concepts presented above is that
one can construct a new set of valid 2-point spatial correlations as
a convex combination of the 2-point spatial correlations of
known microstructures. This realization offers an attractive
avenue for exploring efficiently the space of microstructures
without having to instantiate them directly. In other words, we
can explore the space of fhh’

r much more easily than the space of
mh

s . This is because it is not possible to span the space of eigen
microstructures simply as convex combinations of previously
known eigen microstructures.

Another advance from the MSD framework related to the
present work is the concept of a property closure (Proust and
Kalidindi, 2006; Wu et al., 2007; Fullwood et al., 2007; Knezevic
et al., 2008; Fullwood et al., 2010; Adams et al., 2013). The
property closure delineates the complete set of effective (bulk)
property combinations in a selected material system, which are
theoretically realizable through the modulation of its
microstructure. Property closures are extremely valuable in
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engineering design because they represent the complete set of
property combinations that can be leveraged for the optimization
of the part performance. This is particularly important for
heterogeneous design where the microstructures are
intentionally varied throughout the part to optimize the
overall part performance. Prior work in the MSD framework
focused on computationally efficient algorithms for mapping the
microstructure hulls into property closures. As already
mentioned, the case studies reported to date in the MSD
framework have relied on Green’s function-based analytical
models for microstructure-property relationships, which were
themselves restricted to relatively simple material physics
(i.e., constitutive models) and low to moderate contrast
composites (Kalidindi et al., 2006; Proust and Kalidindi, 2006;
Adams et al., 2013).

2.3 Convolutional Neural Networks
Neural networks (Schmidhuber, 2015) have shown to be powerful
tools for learning highly complex non-linear mappings between
selected inputs and the targets (i.e., outputs) in a wide range of
application domains. Indeed, under certain conditions, neural
networks can be shown to be universal function approximators
(Cybenko, 1989; Pinkus, 1999). Convolutional neural networks
(CNNs) are a special class of neural networks that perform
exceptionally well for problems involving spatial fields as
inputs. CNNs have been successfully deployed in a variety of
image analyses and machine vision applications (Lecun et al.,
1998; He et al., 2016; Krizhevsky et al., 2017). Since
microstructures are spatial fields, CNNs are ideally suited to
explore microstructure-property relationships (Yang et al.,
2018; Rao and Liu, 2020; Eidel, 2021). The central advantage
of CNNs is that they circumvent the need for explicit feature
engineering of the complex input spatial fields. In other words,
the feature engineering occurs implicitly in the CNN during the
model training process.

The primary components of a typical CNN are the
convolutional layers, the pooling layers, and the fully
connected layers, all of which are used to transform
systematically the input into the desired target. Figure 1
depicts schematically a typical CNN architecture, where
each block represents the transformed input (i.e., feature
map) and the mathematical operations between the blocks
are performed using one of the types of layers described above.
The number of transformation layers and their characteristics
(e.g., number of channels in each layer, type of non-linear
activation employed, kernel size) are considered as
hyperparameters of the CNN architecture, and are generally
optimized for a specific application through multiple trials. As
the size of the network is increased, the model accuracy and the
computational cost of the training generally increases.
However, increases in network size are often accompanied
by increases in the number of learned (i.e., model-fit)
parameters. Consequently, larger networks are prone to be
model over-fits, especially when using a limited training
dataset. Model over-fit is generally assessed through some
form of cross-validation (Bishop, 2006; Hastie et al., 2009).
Therefore, one aims to build a robust CNNmodel that provides
high model accuracy, while avoiding over-fit.

The reader is referred to various excellent texts (e.g., LeCun
et al., 2015; Emmert-Streib et al., 2020; Zhang et al., 2021) for an
introduction to the basics of machine learning. Here, we briefly
present the primary components of the CNNs discussed in this
work. A convolutional layer applies a linear transformation
(performed as a convolution of a learned kernel on the input)
followed by a non-linear activation applied pointwise on the
feature map. The PReLU activation function defined below has
been used in this work:

PReLU(x) � { x, if x≥ 0
ax, otherwise

(2)

FIGURE 1 | Schematic of a typical CNN architecture consisting of convolutional layers, pooling layers, and fully connected layers.
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A stride (Goodfellow et al., 2016; Zhang et al., 2021) can be
implemented in the convolution operation to effectively coarsen
the input, which helps reduce the size of the transformed feature
map (this is needed as most CNNs start with high-dimensional
spatial maps as input and produce low dimensional targets; see
Figure 1. Pooling (Goodfellow et al., 2016; Zhang et al., 2021) is
another dimensionality reduction technique that is used
extensively in CNN architectures. Specifically, this work
employs global average pooling where a feature map produced
in an output channel is simply replaced by its average. Most CNN
architectures implement fully connected layers in the last few
transformation layers. Unlike the convolution layers, fully
connected layers treat each input feature independently in the
linear transformation. Consequently, fully connected layers
dramatically increase the expressivity of the CNN models
along with a concomitant increase in the number of model-fit
parameters. Consequently, the fully connected layers also make
the CNN models prone to over-fit.

CNNs have been successfully employed to model the
microstructure-property relationships in heterogeneous
(composite) material systems (Yang et al., 2018; Rao and Liu,
2020; Eidel, 2021). However, the CNN architectures designed for
predicting the effective property of a microstructure have not
differed significantly from the CNNs designed for machine vision
problems (Lecun et al., 1998). For example, Yang et al. (2018)
employed a CNN to predict the C1111 component of the effective
elastic stiffness tensor of a composite using a voxelated
representation of its RVE as the input. Their CNN model
contained approximately 3.2 million trainable parameters, the
majority of which reside in the fully connected layers. More
recently, Eidel (2021) improved the CNN model from Yang et al.
(2018) by significantly reducing the number of neurons in the
fully connected layers, which correspondingly reduces the
number of trainable parameters. However, the CNN
architecture still has approximately 2.9 million trainable
parameters, of which approximately 1.8 million parameters are
in the fully connected layers. Because the models are trained using
relatively small datasets, typically containing only about 104

(Yang et al., 2018; Eidel, 2021) training datapoints, the
chances of the CNN model being an over-fit are significant.
As already discussed, the CNN architectures used in the prior
microstructure-property modeling efforts exhibit the following
additional limitations: 1) the use of discrete microstructures as
input makes it difficult to employ them in exploring inverse
microstructure-design solutions (because of the difficulty in
delineating the unimaginably large input domain), and 2) they
do not automatically reflect the desired translation invariance.

3 NEW PROTOCOL FOR BUILDING
PROPERTY CLOSURES

This work proposes a new protocol for constructing property
closures that leverages the prior advances made in both the MSD
and MKS frameworks. More specifically, the proposed protocol
combines the concepts of 2-point spatial correlations and their
hulls developed in the MSD framework (Adams et al., 2013) with

a new CNN architecture that avoids the use of fully connected
layers. The proposed protocol involves two main steps: 1)
building a robust surrogate model that captures the 2-point
spatial correlations-property linkage of interest using the new
CNN architecture, which employs a much lower number of
model fit-parameters compared to current benchmarks (Yang
et al., 2018; Eidel, 2021), and 2) constructing the property closure
by systematically exploring the 2-point spatial correlations hull
with the new CNN model. This new protocol is developed and
demonstrated in this paper for constructing the property closure
for selected components of the effective elastic stiffness tensor in a
high-contrast composite material system.

3.1 Convolutional Neural Network Model for
Microstructure-Property Linkages
The first step of the proposed protocol for building property
closures is to establish a robust surrogate model that takes 2-point
spatial correlations as the input and predicts the effective
properties of interest. The many benefits that could come
from the use of 2-point spatial correlations as the input
instead of the discrete microstructure have already been
discussed earlier. It is emphasized here that the features
identified by the 2-point spatial correlations are expected to
serve as universal features for all effective anisotropic material
properties of interest (Garmestani et al., 1998; Cecen et al., 2014;
Gupta et al., 2015; Kalidindi, 2015; Paulson et al., 2017; Yabansu
et al., 2020; Generale and Kalidindi, 2021). Therefore, it should be
possible to create microstructure-property surrogates capable of
concurrently predicting multiple effective anisotropic material
properties. It is further emphasized that the relationships of
interest have to be necessarily formulated in the direction of
microstructure → property (and not in the inverse direction) as
these are expected to be many-to-one relationships. In other
words, microstructures exhibiting different 2-point spatial
correlations can produce the exact same effective property,
because the effective property reflects a suitably averaged bulk
response of the material3.

A few example RVEs and their 2-point spatial correlation
maps are presented in Figure 2. It should be noted that 2-point
spatial correlation maps are continuous spatial fields with a
natural origin corresponding to the zero vector (i.e., r � 0 in
Eq. 1). Note that the 2-point spatial correlation maps exhibit a
sharp peak at r � 0 and generally decrease with increasing |r|.
More specifically, the peak value is equal to the phase volume
fraction, while the asymptotic value at large |r| is equal to the
square of the phase volume fraction. Additionally, the 2-point
spatial correlations capture a number of other important details
of the microstructure, including size and shape distributions
(Fullwood et al., 2010; Kalidindi, 2015). Indeed, it is seen from
Figure 2 that the shape of the central peak in the 2-point spatial
correlations mimics the average shape of the features in the

3The reader is pointed to prior work on iso-property surfaces in microstructure
hulls (Knezevic and Kalidindi, 2007; Fullwood et al., 2010) to visualize the many-
to-one microstructure-property linkages.
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microstructure. The presence of the natural origin at r � 0
imparts the desired translational invariance of the effective
properties described earlier. The 2-point spatial correlations
maps used as inputs to the CNNs developed in this work include
vectors with x, y, and z components in the integer range
{−15, . . . , 0, . . . , 15}. Although the vectors defining spatial
correlations have physical units of length, they are used here
with arbitrary units (these default to voxels of unit size in this
work), as is typically done in FEM of composite RVEs. This is
because the material constitutive law (i.e., Hooke’s law for
elasticity) employed in these models does not contain any
characteristic length scales. Consequently, the values of the
effective stiffness of the RVE are completely independent of the
physical length of each voxel in the RVE. However, one must
pay attention to the voxelization itself in creating the RVEs. The
use of coarser voxels will lead to inaccurate representation of
the smallest features (i.e., phase regions) in the RVE, while the
use of finer voxels will increase the computational cost. Prior
work (Latypov et al., 2019; Marshall and Kalidindi, 2021) has
utilized successfully RVEs of resolution 27X 27X 27 in
modelling the homogenized plastic response of composite
microstructures. The resolution of the RVEs in this work
was increased to 31X 31X 31 to allow for a slightly
improved representation of the RVEs used to capture the
salient microstructure-property linkages for the present
application. Further increase in the RVE resolutions was not
possible for the present study because of the high computational
cost involved. As a result of the considerations described above,
the 2-point spatial correlation map used as input to the CNN
was standardized as a 3-D array of size 31X 31X 31 (with r � 0
corresponding to the element (16, 16, 16) of this array). Note
that the elements of this array take continuous values only in
the range [0, 1].

Prior work (Garmestani et al., 1998; Cecen et al., 2014; Gupta
et al., 2015; Kalidindi, 2015; Paulson et al., 2017) has also shown
that the 2-point spatial correlations can serve as universal features
for correlating the microstructure to its many different effective
(bulk) properties. The theoretical justification for this claim is
most clearly seen in the statistical continuum theories formulated
by Kröner (1971). Consequently, the use of 2-point spatial
correlations as input can offer attractive avenues for creating
high-fidelity multi-output CNN models, where each output
corresponds to a different effective property of interest. In
other words, one can aim to build CNN architectures that
learn the common salient microstructure features that are
capable of making sufficiently accurate predictions for the
different effective properties of interest. Such multi-output
CNNs would implicitly account for cross-correlations between
the different effective properties of the RVE, making the
predictions more reliable and robust. In this work, we will
specifically explore multi-output CNNs for the predictions of
C1111 and C1212 components of the effective elastic stiffness tensor
for high contrast composites.

The use of 2-point spatial correlations, instead of the voxelated
microstructures, as input to the CNN essentially constitutes
feature engineering. It should be recognized that most
applications of CNNs do not apply any feature engineering
steps. In fact, CNNs are generally touted as model building
approaches that do not require feature-engineering. However,
for our application, the established physics (i.e., statistical
continuum mechanics theories (Kröner, 1971; Torquato,
2002)) has already proven that the 2-point spatial correlations
can serve as versatile microstructural features with a number
of desired characteristics described earlier. CNN models are ill-
equipped to learn the 2-point spatial correlations from
the discrete microstructures by themselves, because the

FIGURE 2 | Example 3-D RVEs with the corresponding Y-Z mid-sections of their 2-point spatial correlations. It is seen that the 2-point autocorrelations capture
various salient measures of the microstructures (for example, the center peak in these plots reflects the phase volume fraction and the shape of the central peak region
reflects the average shape of the phase regions).
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auto-correlations and cross-correlations are not easily
approximated by the various transformation layers used in the
CNNs. Thus, it is likely to be much more beneficial to first
compute the 2-point spatial correlations as a feature engineering
step, and subsequently use them as inputs into a CNN model for
predicting the effective properties. One of the main benefits
anticipated would be a dramatic reduction in the number of
model fit parameters. A critical evaluation of this hypothesis is
one of the main goals of this work.

Towards the goals described above, we primarily focused on
designing CNN architectures for our study that do not have any
fully connected layers. After a few trials, we arrived at Model A
(see Table 1) that showed better accuracy than the benchmarks
with far fewer number of trainable parameters (discussed in more
detail in the next section).We believe that this dramatic reduction
of model complexity is attributable to the fact that we are using
the 2-point spatial correlations as input to the CNN, in place of
the voxelated microstructure. In order to validate this hypothesis,
we created Model B (see Table 1), with the only difference from
Model A coming from the use of the voxelated microstructure as
the input to the CNN. It was also generally observed that the CNN
models produced in this work needed far few layers compared to
the benchmarks. This is because of the already feature-engineered
inputs (i.e., 2-point spatial correlations). Furthermore, the
architectures explored in this work achieved the needed
dimensionality reduction in the feature maps by using stride
in the first convolutional layer. A final dimensionality reduction is
accomplished using global average pooling in the final layer,
effectively transforming the feature maps into scalar outputs
(i.e., targets). Note that the CNN architectures explored in our
work are drastically simplified compared to the current
benchmarks (see Table 1).

The architectures of Models A and B follow the current
benchmarks in that they start with a relatively small number
of channels in the first layer and systematically increase the

number of channels in the subsequent layers. Consequently,
these conventional architectures aim to initially identify a
smaller number of macroscale features and then further
transform them in the subsequent layers into the salient
features that strongly correlate with the output. We also
explored the possible benefits of inverting this architecture,
i.e., starting with a large number of channels in the first layer
and systematically reducing the number of channels in
subsequent layers. The general idea of these inverted
architectures is that they allow the initial capture of a large
number of potential features, and subsequently transform
them to a smaller number of salient features. Another
advantage is that these inverted architectures are more
naturally aligned with the dimensionality reduction needed in
our application - from the higher-dimensional input to the low-
dimensional output. Model C (see Table 1) shows an example of
this architecture. It was also observed that the global average
pooling in the last layer was essential for producing high-
fidelity CNN models for our application. In an effort to
critically validate this concept, we created several CNN
architectures that avoided the use of the average pooling
layer and accomplished the necessary dimensionality
reduction exclusively through the use of convolutional
layers. Model D (see Table 1) shows one such architecture,
which is very similar to Model A. Note also that the change
from Model A architecture to Model D architecture actually
increases the number of trainable parameters and allows for
richer non-linear transformations (i.e., increases model
expressivity). It will be shown in the next section that this
increase in model expressivity dies not necessarily result in an
improvement in model fidelity. The performance of Models A
through D will be discussed extensively in the next section.

The dataset employed in this work to train the CNN networks
consisted of 20,480 two-phase microstructures and their
corresponding FEM-estimated C1111 andC1212 components of

TABLE 1 | Examples of different CNN architectures explored in this work along with the relevant benchmarks from literature. The notation a@b/c indicates a axaxa kernel,
applied with a stride of c, and b channels. The default value of stride, when not mentioned, is one.

Model Yang et al.
(2018)

Eidel (2021) A B C D

Input 51 × 51 ×
51 Microstructure

51 × 51 ×
51 Microstructure

31 × 31 ×
31 Spatial

Correlations

31 × 31 ×
31 Microstructure

31 × 31 ×
31 Spatial

Correlations

31 × 31 ×
31 Spatial

Correlations

L1 3@16 3@16 5@8/2 5@8/2 5@64/2 5@8/2
L2 MaxPool MaxPool 3@16 3@16 3@32 3@16
L3 3@32 3@32 3@32 3@32 3@16 3@32
L4 MaxPool MaxPool 3@64 3@64 3@8 3@64
L5 3@64 3@64 1@2 1@2 1@2 3@4
L6 MaxPool MaxPool AvgPool AvgPool AvgPool 6@2
L7 3@128 3@128 — — — —

L8 MaxPool MaxPool — — — —

L9 3@256 3@256 — — — —

L10 MaxPool MaxPool — — — —

L11 FC-2048 FC-256 — — — —

L12 FC-1024 FC-128 — — — —

Number of Outputs 1 27 2 2 2 2
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the effective elastic stiffness tensor. The details of the generation
of the microstructures and the finite element models used in the
estimation of the effective elastic properties have been described
in prior work (Kelly and Kalidindi, 2021). The microstructures
exhibited volume fractions ranging from 0 to 100%. For the two-
phase microstructures studied in this work, only the f11

r are
independent (Niezgoda et al., 2008). Consequently, only these are
used as input to the CNNs. The finite element models used for the
estimation of the effective properties used periodic boundary
conditions (Landi et al., 2010). Specifically, the C1111 component
of the elastic stiffness tensor was estimated by imposing an
average uniaxial strain of �ε11 � 0.001 on the RVE, computing
the average stress �σ11 from the FE simulation, and dividing it by
the imposed strain (0.001). The C1212 component of the
effective elastic stiffness tensor was similarly evaluated by
imposing an average shear strain. The elastic properties of the
two isotropic phases used in this study were assigned using
Poisson ratios (ν1, ν2) and Young’s Moduli (E1, E2). The
following specific values were used: ν1 � ν2 � 0.3, E1 � 120
and E2 � 6, 000 (as already noted, in the FEM simulations,
these are associated with arbitrary but consistent units). These
selections correspond to a high contrast ratio of 50 (defined by
the ratio E2

E1
) for the composite material system studied here.

Because of the linearity of the elasticity problem, the CNN
model generated here can be applied to any composite
material system with the same contrast value and the same
values of the Poisson ratios, simply by applying a suitable
scaling factor. It should be noted that although the level of
contrast explored in this work is relatively high, it is still far
less than the infinite contrast experienced in porous solids (for
example, commonly encountered in additively manufactured
components). We do believe that the microstructure design
strategy proposed here is extendable to such extremely high
contrast composites.

3.2 Property Closure Construction
In principle, the property closure should be constructed by
mapping the complete 2-point spatial correlations space to the
property space of interest. As already mentioned earlier, the
protocol developed and implemented in this study aims to
take full advantage of the fact that the complete space of the
2-point spatial correlations delineates a convex hull. Themapping
between the 2-point spatial correlations and the effective
properties of interest will be approximated by a suitable multi-
output CNN model. Although the 2-point spatial correlations
space is continuous and convex, it is still too large to explore using
brute-force approaches. A clever strategy is therefore needed to
successfully explore the complete space of 2-point spatial
correlations and map it into the property space of interest.
The following protocol (see Figure 3) is designed and
implemented in this work:

Step 1: Create a large initial set of voxelated eigen
microstructures and compute their 2-point spatial
correlations. Additionally, estimate their corresponding
effective properties using suitable finite element models
(i.e., applying periodic boundary conditions). Build an
initial estimate of the property closure using this initial
dataset.

Step 2: Using a suitable algorithm (such as a convex hull
algorithm), identify the boundary points of the current
estimate of the property closure. This work employed the
Quickhull algorithm (Barber et al., 1996), which
efficiently identifies the boundary points of a convex
hull defined by a set of points. These boundary points
reflect extreme combinations of the properties of interest
(within the current estimate of the property closure). The
boundary points are updated after each iteration of the
proposed protocol until the area enclosed by the

FIGURE 3 | A flow chart of the proposed protocol.
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boundary points does not change significantly. The
microstructures corresponding to these boundary
points are identified as seeds for the generation of new
microstructures of interest in the next step.

Step 3: Let af11
r and bf11

r represent the 2-point spatial
correlations of two selected seeds identified in Step 2.
Generate new microstructures by taking convex
combinations of the 2-point spatial correlations of any
selected pair of seeds from Step 2. In other words, create
newmicrostructures as pf11

r � αaf11
r + (1 − α)bf11

r with
0< α< 1. Create as many new microstructures as needed
by selecting different seeds and varying the weights of the
convex combination. Ideally, one may want to focus their
expansion efforts on regions of the property closure that
are currently lightly populated. In other words, take
convex combinations of the 2-point spatial correlations
that correspond to effective property points that reside in
the sparse regions of the property closure. One can also
use more than two seeds at a time. As long as the weights
are positive and sum to one, the generated microstructure
represents convex combination of the seeds. As an
example, Figure 4A depicts generation of new
microstructures using three seeds, labelled as A, B, and
C. All of the convex combinations are represented by
points inside the triangle ABC. Microstructure D
represents an example of such an interpolation. Using
the CNN surrogate model, estimate the effective
properties of interest for all of the new microstructures
generated in this step. Add these new estimated properties
to the set of points that currently approximates the
property closure. Note the mapping between the
microstructure space and the property space is
expected to be highly non-linear, as illustrated in
Figure 4B. Since a CNN provides a smooth mapping
between the input and the output (Hastie et al., 2009), the
triangular region ABC in the microstructure space would
map to a (non-linearly) distorted but continuous
triangular region with curvilinear sides in the
property space.

Step 4: In this step, we will focus on extrapolations (Step 3 only
used interpolations) by essentially following the same
process as in Step 3, while relaxing the requirement
that all weights are positive. Extrapolations are usually
produced by using at least one negative weight, while
requiring the weights add to one. However, we will
only allow acceptable new microstructures by
requiring that all values of pf11

r lie between zero
and one (this condition is automatically satisfied in
the interpolations in Step 3). Microstructure E in
Figure 4A represents an example of the generation
of a new microstructure through an extrapolation.
Once again, it might be prudent to focus the
generation of new microstructures in this step to
the sparsely populated regions in the current
estimate of the property closure.

Step 5: Validate the newmicrostructures added in Step 3 and 4 as
needed. In particular, we note that our confidence is much
higher in the 2-point spatial correlations generated as
interpolations in Step 3, compared to those generated in
Step 4 as extrapolations. In this work, we only validated
selected new points on the expanded boundaries of the
property closure. For the validation, one would have to
generate a discrete microstructure corresponding to the
known 2-point spatial correlations using one of the
established approaches in literature (Fullwood et al.,
2008b; Robertson and Kalidindi, 2021), and estimate its
effective property using a suitable FEM simulation.

Step 6: Iterate Steps 2–5 as needed, while continuously adding the
validated new points collected in each iteration into the
current estimate of the property closure. This might
necessitate re-training of the CNN model after each
iteration.

The central hypotheses behind the protocol described above is
that the interpolations and extrapolations of the 2-point spatial
correlations can effectively explore the complete microstructure
space. Moreover, since the interpolations and extrapolations are
conducted using promising seeds, the protocol naturally allows

FIGURE 4 | (A) Schematic illustration of the generation of new microstructures (defined in terms of 2-point spatial correlations) as interpolations or extrapolations.
(B) Schematic depiction of the non-linear mapping of microstructures to the property space using a CNN model developed in this work.
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targeted exploration of promising regions of the property closure.
As will be shown in the next section, the CNN model facilitates a
sufficiently accurate non-linear mapping of the 2-point spatial
correlations into the property space.

4 RESULTS AND DISCUSSION

The CNN architectures described in Section 3.1 were
implemented in PyTorch (Paszke et al., 2019), and the
property closure construction protocol described in Section
3.2 was implemented in a Python code. The set of 20, 480
data points described above was split into independent train
(60%), validation (15%), and test (25%) groups. Training was
conducted on a single NVIDIA V100 GPU with 16GB of
memory, utilizing the Adam optimizer (Kingma and Ba, 2017)
with a cosine annealing learning rate (Loshchilov and Hutter,
2017) and a training batch size of 32. The Mean Absolute Error
(MAE) loss function was utilized in this work for training the
CNN model. The Mean Squared Error (MSE) loss function was
also explored. However, it was found that the models trained
utilizing MAE produced improved learning characteristics
compared to the models trained with MSE for the present
application. The CNN architectures were trained for multiple
epochs until the MAE loss function converged to a minimum
value. Based on multiple trials, the number of epochs was fixed at
480 epochs. Using a fixed number of epochs allows for a critical
comparison of the performances of the different CNN
architectures explored in this work.

4.1 Development of the Convolutional
Neural Network Model for Microstructure-
Stiffness Linkages
As previously described, the development of a robust CNNmodel
requires multiple trials in which the hyperparameters of the CNN
architecture are systematically varied to evaluate their influence
on the model fidelity. The main types of architectures explored
were summarized in Table 1. The accuracy of the different CNN
models produced were evaluated using the Normalized MAE
(NMAE) percentage defined as

NMAE � 1
N

∑N
i�1

∣∣∣∣∣∣∣∣∣
Si − Ŝi
Saverage

∣∣∣∣∣∣∣∣∣ × 100 (3)

Where Si represents the ground-truth value (established here
using FEM) for the output, Ŝi represents the CNN prediction, and
Saverage denotes the ensemble average of the ground-truth values
from a set of N observations.

Table 2 summarizes the NMAE percentages for some of the
best models produced in this work, along with the corresponding
values from the benchmarks reported in literature (Eidel., 2021,
Yang et al., 2018). The table also summarizes the number of
trainable parameters in each model as well as the sizes of the
training/validation/test sizes employed in building and validating
each model. As the table shows, the number of trainable
parameters for each of the CNN models developed in this
work is significantly smaller than those used in the current
benchmarks. This is primarily because we have built our CNN
models without using any fully connected layers. It is also worth
noting that Eidel (2021) drastically reduced the number of
neurons in the fully connected layers, when compared to Yang
et al. (2018). However, even relatively smaller fully connected
layers produce a very large number of trainable parameters. This
is mainly because the feature maps produced at the end of the
convolutional layers in the benchmark models are high-
dimensional, and their reduction to a small number of features
that are correlated to the outputs using the fully connected layers
introduces a large number of trainable parameters. Although the
Eidel (2021) model demonstrated higher accuracy than the Yang
et al. (2018) model, it should be recognized that the former used
significantly more training data and a much smaller test data set.
As a result of these important differences between them, it is not
possible to conclude conclusively that the Eidel (2021) model
performance is demonstrably better than that of the Yang et al.
(2018) model. However, it is clear from Table 2 that the
performances of Models A, C, and D (all of which used 2-
point spatial correlations as the input) are significantly better
than the benchmarks, both in terms of the prediction accuracy as
well the number of trainable parameters.

Comparing Models A and B, it becomes clear that changing
the input to the CNN from the discrete microstructure to its 2-
point spatial correlations produced a marked improvement in the
model accuracy. This confirms the central hypotheses we laid out
earlier. Since Model B exhibited comparable or better
performance than the benchmarks (keeping in mind the larger
and more diverse test sets used in this study) with a significantly
smaller number of trainable parameters, it is argued that the CNN
architectures without fully connected layers produce more robust
models for our applications.

TABLE 2 | Summary of the performance of selected CNN models produced in this work and their comparison with benchmarks form literature.

Model No.
of Trainable Parameters

Dataset (train/valid/test) NMAE (%)

C1111 C1212

Yang et al. (2018) 3,272 K 3,819/1,881/2,850 3.10 —

Eidel (2021) 2,981 K 7,000/2,000/1,000 1.11 1.15
A 73.9 K 12,288/3,072/5,210 0.72 0.66
B 73.9 K 12,288/3,072/5,210 1.73 1.66
C 80.8 K 12,288/3,072/5,210 0.90 0.80
D 82.5 K 12,288/3,072/5,210 0.96 0.86
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The improved performance of Model A over Model D
underscores the need and benefits of using global average
pooling as the final transformation layer for the
microstructure-property CNNs. This is counter-intuitive,
especially since Model D actually exhibits a higher model
expressivity (i.e., it is capable of capturing more non-linear
mappings). We believe the main reason for the improved

performance of Model A over Model D is that the global
average pooling in the last layer essentially serves as a
model tree, where predictions from multiple models are
averaged to produce the final prediction. Model tree
strategies have been shown to improve the robustness of
the surrogate models in other applications (Ho, 1995;
Breiman, 2001).

FIGURE 5 | Parity plot showing the accuracy of Model A. The test points (red) are superimposed on the train points (blue). It is seen that both the train and test sets
exhibit high levels of accuracy consistent with each other.

FIGURE 6 | (A) Original estimate of the property closure produced using the dataset generated to initially train the CNN surrogate model. (B) Updated property
closure using the protocol presented in Section 3.2. The red points represent the new points generated in the process of building the property closure.
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Overall, it is seen that Model A outperforms all the CNN
models developed to date. Most impressively, it used only
73.9 K model parameters. This is 1-2 orders of magnitude
lower than the number of trainable parameters used in the
current benchmarks for the same problem. As such, this model
represents a significant advance in the proper use of CNNs in
capturing the highly non-linear and elusive microstructure-
property linkages of interest to materials design efforts. The
high accuracy and robustness of the multi-output Model A can
also be confirmed in the parity plots shown in Figure 5. The
fact that the architecture of Model A is able to make
simultaneous accurate predictions for multiple effective
properties opens new research avenues for future materials
design efforts.

4.2 Elastic Property Closure Using
Convolutional Neural Network Model
The protocol established in Section 3.2 for building property
closures was implemented here using Model A. Figure 6A
shows the initial estimate of the property closure using all
20,480 data points generated for training and validating the
CNN model in Section 4.1. It is clear that the property closure
space is not well sampled by the initial dataset. This is to be
expected because the protocols used to generate the
microstructures only aimed to cover as many diverse
microstructures as possible. They were not in any way
informed by the effective properties associated with the
microstructures. Also, generating the microstructures that
produce a uniform sampling of the property space are
especially difficult in our application, because the input is
essentially a discretized 3-D eigen microstructure.

As already described, the central advantage of the protocol
described in Section 3.2 is that it allows us to generate new
datapoints in selected regions of the property space. This is
evident in Figure 6B, where 26,825 new datapoints (shown in
red) were generated using interpolations and extrapolations in
the convex hull of the 2-point spatial correlations. Note that these
new datapoints were targeted to lie in specific regions of the
property closure. This ability to generate new microstructures
corresponding to selected regions of the property space at low
computational cost is unprecedented, and is only possible because
the CNNmodel was established using 2-point spatial correlations
as the input. The central consequence of the property closure
shown in Figure 6B is that it is now possible to trivially produce a
large number of microstructures that correspond to any designer-
specified combination of properties within the property closure.

It is emphasized here that the property closure presented in
Figure 6B is the first of its kind. All previously reported property
closures either used grossly simplified descriptions of the
microstructure (e.g., one-point statistics) or substantially
degraded models (e.g., truncated expansions, primitive
bounds). As such, the property closure presented in Figure 6B
represents the most accurate depiction to date of the property
closure for the selected problem. Although we restricted our
attention in this work to a two-phase composite with a high-
contrast in the elastic properties of its constituent phases, the

framework presented here is extensible to much more
complicated class of composite (i.e., heterogeneous)
microstructures and their different properties of interest (e.g.,
yield strength, conductivity, permeability).

5 CONCLUSION

In this work, a new CNN architecture is proposed that takes as
input the 2-point spatial correlations of a voxelated eigen
microstructure and predicts its effective properties of interest.
Although CNNs are generally viewed as a model building
technique that bypasses explicit feature engineering, it was
observed that transforming the voxelated microstructure into
its 2-point spatial correlations before inputting them into the
CNN model dramatically improved the model accuracy and
robustness. Specifically, it was shown that it is possible to
build CNN models exhibiting ~0.7% test NMAE for
simultaneous predictions of two different elastic stiffness
components for a high-contrast (=50) 3-D composite
microstructure. This unprecedented model accuracy and
robustness was made possible by avoiding the use of fully
connected layers, using a global average pooling in the final
layer, and using 2-point spatial correlations as input to the
CNN. It was also demonstrated that the CNN model produced
in this work is capable of producing the most accurate elastic
property closure available today for the selected high-contrast
composite material system.
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