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Carbon nanotube (CNT) is a promising nanomaterial with excellent mechanical, electrical,
thermal, and chemical stability. It has received extensive attention due to its unique
multifunctional properties in engineering materials. Researchers have explored the
preparation and characterization of CNT reinforced cement-based materials. Studies
have shown that adding CNT will significantly improve the performance of cement-
based materials. This article introduces the techniques for the dispersion
characterization of CNT and summarizes the advantages and disadvantages of these
techniques. The functionalized applications of CNT in cement-based materials are
reviewed, including sensing performance, structural health monitoring of concrete,
electromagnetic shielding, and other applications. In addition, the application and
development prospects of CNT in 3D printing concrete have been prospected. Finally,
we discussed the existing problems and challenges in developing and applying CNT in
cement-based materials and suggested future research.
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INTRODUCTION

Concrete is a widely used building material in the construction field, with low cost and stable
performance. Concrete consists of cement, aggregate, and water. After contact with water, a
hydration reaction forms a cementitious material. The cementitious material combines the fine
aggregate and the coarse aggregate and effectively transfers the compressive load to the stronger
aggregate throughout the entire mixture. It makes concrete a durable and economical building
material (Sheikh et al., 2021). The most important properties of concrete materials include
compressive strength and flexural strength, toughness, rigidity, and ductility. However, ordinary
concrete has low mechanical performance, less toughness, easy cracking, and poor durability, which
reduces the service life of the concrete and severely limits material development. In overcoming these
shortcomings and preparing high-strength, high-toughness cement-based materials, fibers of
different scales have attracted widespread attention. Each fiber has its strengthening and
toughening mechanism. The mechanism is related to the fiber’s shape, content, size, and surface
structure (Chang et al., 2020; Cui et al., 2021; Ramezani et al., 2022). The service life of civil
engineering infrastructure can be as long as dozens or even hundreds of years. Many structural
damage problems start from minor defects. During long-term application, load fatigue effects and
natural disaster erosion will cause a considerable accumulation of structural damage, eventually
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destroying the structure. If the damage is not discovered and is
instead ignored, these defects will evolve into serious problems,
endangering the usability and safety of the structure, which can
easily lead to catastrophic emergencies and cause significant
property and personnel losses. It is essential to perceive the
service status of concrete structures in real-time to provide
early warning, repair, and control damage in critical situations.
The destruction of concrete starts with micro-nano cracks,
developed into macroscopic cracks, and finally, the concrete
fails. It is vital to prevent and delay the development of
micro-nano cracks early by implementing crack detection
techniques. Therefore, structural health monitoring (SHM) of
concrete is essential; it has attracted extensive attention
worldwide. Traditional SHM has achieved great success, but
conventional sensors have poor durability, high construction
requirements, and poor material compatibility, limiting their
wide application in concrete materials. The emergence of self-
sensing cement-based materials provides a new idea for self-
sensing sensors, which can effectively overcome the shortcomings
of traditional sensors.

In the past 2 decades, the application of smart concrete with
self-sensing ability in the infrastructure SHM system has been
extensively developed. The self-sensing ability of concrete is
achieved by a change in the conductive network of the
conductive material inside the concrete (Al-Dahawi et al.,
2016a; Al-Dahawi et al., 2016b; Al-Dahawi et al., 2017;
Yıldırım et al., 2018; Demircilioğlu et al., 2019; Yıldırım
et al., 2020). Smart concrete is developed by adding carbon
nanotube (Xing et al., 2016; Al-Dahawi et al., 2017; Gupta
et al., 2017; Yoo et al., 2017; Yıldırım et al., 2018; Lee et al.,
2020; Yıldırım et al., 2020), carbon fibers (Al-Dahawi et al.,
2017; Yıldırım et al., 2018; Yıldırım et al., 2020), steel fibers (Le
and Kim, 2017; Demircilioglu et al., 2020; Le and Kim, 2020),
graphite nanofibers (Yoo et al., 2017), graphene (Al-Dahawi
et al., 2016a; Al-Dahawi et al., 2016b; Al-Dahawi et al., 2017;
Yoo et al., 2017; Birgin et al., 2020; Wang et al., 2020), nickel or
hybrid materials (Azhari and Banthia, 2012; Konsta-Gdoutos
and Aza, 2014) and other functional fillers. The research on
CNT reinforced self-sensing cement-based materials is the
most concentrated. The Young’s modulus and tensile strength
of CNT can reach up to 1 TPa and 200 GPa. It also has an
excellent absorbing function and can be used as an
electromagnetic shielding material. It can enhance
durability and electrical conductivity. Most importantly,
CNT can be used as a self-sensing material for monitoring
concrete health.

Summarizing the research papers of the past 10 years,
researchers have explored the performance of CNT reinforced
cement-based materials. CNT achieves enhancement effects
through nucleation, improving pore structure, and controlling
nanoscale cracks. It has the potential to provide a new generation
of multifunctional cement-based materials. However, there are
several significant challenges; CNT has particular physical and
chemical properties, the issue of whether these properties can be
successfully transferred to materials depends mainly on
CNT—the state of dispersion in the matrix. Because CNT has
a strong tendency to agglomerate, obtaining a uniform carbon

nanotube dispersion is highly challenging. There is also the
scalability issue for obtaining higher well-dispersed CNTs.
There are many methods for this dispersion, including
physical and chemical methods. However, there is no unified
standard or specification for CNT dispersion, which limits the
standardized use of CNT in building materials. There is an urgent
need to summarize the shortcomings of different dispersion
technologies for CNT to provide a reference for formulating a
unified dispersion standard. The current research mainly focuses
on macroscopic performance, and the research content is mainly
concentrated at the laboratory level. Related research is still in its
infancy in terms of functional application. There is an urgent to
have further in-depth study, theoretically and practically.

In this review, we summarized the research progress of CNT in
the practical application of building materials. First, the
commonly used techniques for the dispersion characterization
of CNT are introduced, and the advantages and disadvantages of
these techniques are summarized. The effects of different
influencing Factors on the functional application of CNT in
cement-based materials are then discussed. The functional
applications of CNT in cement-based materials are reviewed,
including sensing performance, SHM, and electromagnetic
shielding. In addition, the application and development
prospects of CNT in 3D printing concrete (3DPC) have been
prospected. CNT is expected to become a potential 3DPC
material. Using CNT in 3DPC can effectively reduce the
latter’s setting time and improve production efficiency. It can
also reduce the drying shrinkage of 3DPC, enhance printing
quality, and improve 3DPC’s early strength. Finally, the
challenges faced when developing and applying CNT
reinforced cement-based materials are summarized.

PRETREATMENT OF CARBON NANOTUBE

CNT can be uniformly dispersed is crucial when applying CNT in
cement-based materials (Assi et al., 2021). Due to the large
surface area, large aspect ratio, and strong van der Waals force
of CNT, it is easy to agglomerate, making it difficult to disperse
uniformly in cement-based materials. CNT dispersion is defined
as the separation of a single multi-walled carbon nanotube from
its filling body and the maintenance of the separated multi-walled
CNT to achieve uniform distribution in the cement matrix
(Vaisman et al., 2006). Researchers have proposed various
dispersion techniques; there are two main types of methods.
The first approach is physical methods such as ultrasonic,
mechanical stirring, and ball milling. Ultrasound provides
energy to overcome van der Waals interaction. Ball milling
can smash the agglomeration of carbon nanotube caused by
van der Waals force, but it will reduce the aspect ratio of CNT
and reduce its role in the matrix (Singh et al., 2013); mechanical
stirring includes manual and magnetic stirring, usually combined
with the ultrasonic method (Ubertini et al., 2014). The second
type is a chemical method to disperse CNT by improving the
wettability of its surface, usually by adding covalent bonds or
non-covalent bonds and by adding functional hydroxyl and
carboxyl groups on the surface of the CNT (Li et al., 2005).
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Figure 1 illustrates a schematic procedure for dry mixing and ball
milling.

Physical Dispersion Technology
Researchers used ultrasonic probes to disperse CNT. At present,
there is no specific specification or standard for the research of
ultrasonic dispersion of CNT. This ultrasonic dispersion depends
on the ultrasonic time, temperature, energy, type of ultrasonic
device, and CNT concentration. Ultrasonic treatment is necessary
to disperse CNT; the dispersion created by ultrasonic treatment
exhibited an inverse relationship with time (Shi et al., 2019).
Ultrasound time is significant for the dispersion of CNT. Long-
term ultrasound can cause damage and fracture to CNT, while the
CNT cannot be uniformly dispersed if the ultrasound time is too
short. The ultrasonically dispersed CNT regroups together after
extending the standing time to form agglomerates (Mendoza
et al., 2014). Therefore, it is necessary to add corresponding
surfactants to improve the dispersion effect. The surfactant is
wrapped or adsorbed on the surface of the CNT during ultrasonic
action. Therefore, this method neither destroys the structure of
the CNT nor reduces the mechanical properties. However, when
several types of surfactants were used, the surfactants were
incompatible with the hydration products of cement, resulting
in the slow hydration process of cement. Surfactants are divided
into two types: ionic and nonionic. The amphiphilic molecules of
ionic surfactants can be adsorbed on the surface of CNT and
coated. The hydrophobic chain can adsorb CNT in its structure,
and the hydrophilic group can form electrostatic repulsion in the
polar solution molecules to disperse the agglomerated fibers. The
nonionic surfactant has a strong interaction with the p-p bond of
CNT; therefore, it can encapsulate the surface of CNT, reduce the
van derWaals force between the tubes, and achieve the purpose of
dispersing CNT (Mendoza et al., 2014).

There are three types of typical surfactants, cationic
surfactants, including Cetyl trimethyl ammonium bromide
(CTAB) and dodecyl trimethylammonium bromide (DTAB);
anionic surfactants, including sodium dodecyl sulfate (SDS),
sodium dodecylbenzene sulfonate (SDBS), Gum Arabic (GA),
Poly-naphthalene sulfonate sodium salt, and dodecyl-benzene
sodium sulfonate (NaDDBS); and nonionic surfactants including

Triton X-100 (TX10), propylene glycol aliphatic ether (SR), and
polyoxyethylene lauryl ether (Brij35). Our commonly used
surfactants are GA, SDS, and PAAP, which play a definitive
role in the required duration time for attaining a homogenous
dispersion (Sobolkina et al., 2012). For example, it is reported that
when GA is used as the coating surface of CNT, a GA
concentration of 0.45 g/L has the best dispersion effect (Wang
et al., 2013a). There are also studies using a superplasticizer as a
dispersant. After adding a polycarboxylate superplasticizer, the
dispersion degree of CNT is improved, and the exothermic heat of
the hydration reaction is delayed (MacLeod et al., 2021). When
PVP is used as a dispersant, the ultrasonic step significantly
impacts CNT dispersion. There are studies on using multi-step
dispersion of CNT, including ultrasonic energy for high-energy
pre-dispersion and then unhydrated cement particles for low-
energy dispersion. The CNT, after dispersion, can bridge the
cracks, fill the pores, and refine the pore size of the C-S-H matrix
(Chen and Akono, 2020). Some researchers have quantitatively
studied the effect of different concentrations of anionic and
nonionic surfactants on the deaggregation of CNT. When the
ratio of CNT to surfactants is 1:1–1:1.5, and the ultrasonic time is
120 min, the best dispersion effect for CNT is achieved. After
combination with the surfactant Brij35, the deaggregation effect
of CNT is pronounced for nitrogen-doped CNT. The use of SDS
as a surfactant has a negative impact on strength because foam is
formed during the mixing of the cement paste. Some researchers
have compared the dispersion effects of several surfactants,
including SLSD, SDS, TX-100, GA, and CTB. After 1 hour of
ultrasound, the dispersion effects are SLSD, SDS, GA, CTB, TX-
100 (Sindu and Sasmal, 2017). Researchers have developed a
novel DDA dispersant with the similar physical and mechanical
performance of cementitious materials and enhanced electrical
properties (D’Alessandro et al., 2021). Figure 2 shows the
unzipping mechanism.

Chemical Dispersion Technology
In many studies, surfactants have been used to disperse CNT in
water to achieve efficient dispersion in cement-based materials
(Mendoza et al., 2014). However, there are some problems; for
instance, different surfactants are not compatible with water,

FIGURE 1 | Procedure of CNT dispersion: (A) dry mixing, (B) ball milling.
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which may also reduce the hydration progress of cement.
Therefore, many researchers have improved the dispersion of
CNT by changing the hydrophilicity of the CNT body; it is called
covalent functionalization (Shi et al., 2019). The chemical
functionalization method is achieved by modifying the atomic
structure of CNT. Covalent bonds are formed between the surface
of CNT and functional groups, usually in the form of three
operating groups: 1) hydrocarbon group; 2) halogen; and 3)
oxygen. The introduction of functional groups on the surface
of CNT through covalent chemical modification improves the
dispersibility of carbon nanomaterials in the cement matrix. It
reacts with C-S-H and C-H bonded firmly between the cement
matrix and fibers. Commonly used methods include acid etching
or oxidation. Usually, after strong acid etching, functional groups
will be coupled to the surface of CNT, which enhances its
hydrophilicity and improves its dispersibility (Yu et al., 2008;
Elkashef et al., 2016; Li et al., 2020).

Mixed sulfuric acid and nitric acid solutions are commonly
used to treat CNT. Many factors affect the acid etching
technology, including the concentration of CNT, amount of
acid, ultrasonic method, temperature, energy, duration, and
sequence of steps. Studies have shown that the degree of

functionalization of CNT depends on the sulfuric acid and
nitric acid ratio (Datsyuk et al., 2008). Nitric acid is used to
attach functional groups to disturbances/defects on the surface of
CNT. The sulfuric acid changes the surface morphology of the
carbon nanotube (forming surface roughness), which leads to
yields of different functional groups (i.e., different degrees of
oxidation). There has been a considerable amount of research on
the covalent functionalization of CNT. Figure 3 illustrates acid-
etching in the CNT mechanism.

SUMMARY OF CNT PRE-MIXING
PREPARATION

Summarizing the existing literature, we found that researchers
have drawn similar conclusions about CNT dispersion
technology and opposite conclusions. Some researchers believe
that sole surfactants and ultrasound are essential to disperse CNT.
Others use a mixture of multiple surfactants, considering that the
amount of surfactant is different and that the optimal ultrasound
duration varies from person to person. Some researchers believe
that CNT has hydration activity and can undergo hydration

FIGURE 2 | Unzipping mechanism under the effect of the surfactant.

FIGURE 3 | Acid-etching mechanism.

Frontiers in Materials | www.frontiersin.org March 2022 | Volume 9 | Article 8616464

Cui et al. CNT Reinforced Cement-Based Composites

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


reactions with cement. However, other researchers believe that
CNT has no hydration activity and cannot undergo hydration
reactions with hydration products. Therefore, a covalently
functionalized dispersion technology has been introduced to
promote the combination of CNT and hydration products.
Some researchers combined covalent functionalization and
ultrasound to disperse CNT, and some directly used covalent
functionalization to disperse CNT. In addition, it is necessary to
study the effect of surfactants on cement and CNT. Although the
current dispersion method has proved to be very effective for
CNT, does the use of surfactants have a negative effect on the
performance of cement and CNT? What is the specific impact?
The answer to whether it will affect the cement hydration process
and reduce the performance of cement-based materials while
improving the dispersibility is unknown, and researchers need to
conduct detailed studies. In short, there are no unified standards
for the dispersion of CNT. There is an urgent need to establish
such unified standards and specifications. The technology of CNT
reinforced cement-based materials must adapt to advanced
characterization technologies in other fields and strictly apply
the technology used in traditional cement-based materials.
Understanding these nanoscale interactions and scale
relationships will bring the benefits of nanoscale to the macro-
scale. We should unify standards for the effectiveness and
performance of carbon nanotube composites; specific test
standardization development will help develop carbon
nanotube cement technology.

SMART PROPERTIES

Many factors affected the smart properties during the preparation
and application of CNT reinforced functional cement-based
materials, such as curing age, relative humidity, temperature,
electrode arrangement, and resistivity measurement methods.
This section will discuss the influence mechanism and
improvement measures of the above factors in detail.

CNT Content
One of the core factors affecting the perceived performance of
cement-based materials is the CNT content, which determines
the distribution of the conductive network inside the materials. It
has been confirmed that too high a CNT content will reduce the
sensing ability of the composite material and aggregate in the
matrix, increase the cracks inside it, and affect its density. Poor
dispersion of CNT can also have a detrimental effect on
performance because it increases the resistivity of the
composite material. The results showed that the agglomeration
of CNT improved the resistivity of the material (Kim et al.,
2014a). Of course, within a reasonable dosage range, the
resistivity of the composite material decreased along with the
increase in CNT content. Studies have found that when CNT
reinforced composite materials’ volume fraction of CNT
increases from 0.5 to 1%, the decrease in resistivity becomes
themost significant. For example, compared with the resistivity of
composite material with 1 vol% CNT, composite material with
0.5 vol% CNT is reduced by about 94% at the same age (Yoo et al.,

2019). Of course, there are also contrasting experimental results.
Some studies have found that lower filler content (0.05%) shows a
minor increase in resistivity and gradually increases compared
with higher filler content (0.1 and 0.3%), which indicates that the
pores are uniform throughout the matrix distribution (Sasmal
et al., 2017).

Temperature and Curing Time
CNT can improve the high-temperature resistance of cement-
based materials. One study explored the influence of CNT
reinforced cement-based materials at high temperatures and
found that the addition of CNT improved strength more than
in ordinary concrete (Baloch et al., 2018). The influence on the
resistivity signal of CNT composites is continuous or gradual,
while the effect of dynamic load on the resistivity signal of CNT
composites is instantaneous and abrupt. Therefore, the former
can filter out interfering signals without affecting the detection
accuracy of the sensor.

The temperature has an important influence on the resistivity
of the composite material, showing positive and negative effects
(Monteiro et al., 2017). The microstructure and macroscopic
properties of cement-based materials influence each other. As the
curing age increases, the microstructure of the matrix becomes
dense, the porosity decrease, and the relative resistivity of the
matrix increases along with the hydration degree (Liu et al., 2013).
The hydration degree increases with the extension of the curing
age; more hydration products are generated, filling the pores of
the matrix, and the matrix becomes denser. The conductive path
and resistivity inside the matrix also change along with the
porosity of the matrix, which affects the perception
performance (Galao et al., 2014; Yildirim et al., 2015). The
resistivity increases along with the curing time. The matrix
becomes denser; the porosity decreases, making ion
conduction difficult, and the resistivity increases. Early on, due
to a low degree of hydration, the moisture of the matrix contains
many ions, and the composite material has a high porosity.
Therefore, ion conduction is easy to undertake and is
significant in cement-based materials (Sun et al., 2002). The
resistivity increases along with the curing time (Yildirim et al.,
2015). As the curing age increases, CNT improves the
performance of the composite material through pore filling,
bridging, and a denser C-S-H structure; this significantly
increases the conductivity of the matrix (Jung et al., 2020a;
Jung et al., 2020b).

Relative Humidity
There are three main conductive paths for self-sensing cement-
based composites. In a typical self-sensing composite material,
when the content of conductive material reaches a critical value,
the formation of the percolation network of conductive material
causes the resistivity of the composite material to drop sharply,
showing a power-law downward trend (Zhou et al., 2020). The
effect of water content in seepage pores is a critical factor that
must be considered. Among them, ionic conductivity is easily
affected by the water content of the matrix. In the case of a small
amount of conductive material, ionic conductivity plays a crucial
role in resistivity. The moisture content inside the cement-based
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material changes along with the ambient humidity, which affects
the conductive path and sensing performance. The resistivity of
the composite material changes with the change of water content,
and the changing trend is closely related to the type of conductive
material. For CNT reinforced cementitious materials, the
resistivity decreases with water content (Wen and Chung,
2006). The effect of moisture content on resistivity is also
related to the content of conductive fillers. The type and
content of conductive fillers greatly influence the water
content of self-sensing cement-based composites in terms of
their sensing properties. Some scholars have studied the effect
of moisture absorption in CNT reinforced cement-based
composite samples, using oven-dried samples with CNT
content of 0.1, 0.3, and 0.5%. The results show that the
decrease in FCER percentage is smaller than conventional
concrete in the fully saturated state, while the 0.5% CNT
reinforced cement-based materials increase the FCER by 75
and 80% in the partially saturated and dry state, respectively
(Siad et al., 2018). Therefore, it can be concluded that moisture
reduces the sensitivity of the self-perceived properties of CNT
reinforced cement-based materials.

Other Influencing Factors
Other factors that affect the sensing performance include the
geometry of the CNT, the corrosive environment, the distance
between the electrodes, the size effect of the specimen, the creep of
the material under long-term load, and freeze-thaw cycles. The
mechanism needs to be further studied. The electrodes are
arranged, and the resistivity measurement method is an
essential factor affecting measurement accuracy. In terms of the
number of electrodes, the four-electrode process can effectively
reduce the contact resistance between the electrodes and the
substrate and improve the accuracy of the results. The two-
electrode method for resistivity measurement is only
recommended when the small sensor volume. In terms of the
electrode arrangement, the resistance measured by the surface-
bonded electrode is more significant than that measured by the
embedded electrode because the implanted electrode has good
contact with the conductive filler, which reduces the contact
resistance (Han et al., 2020). The geometry of CNT affects the
distribution and conductionmechanism of the conductive network
in cement-based materials. Several studies have researched the
geometry of CNT in terms of sensing sensitivity (Malekzadeh and
Zarei, 2014; Eftekhari et al., 2020). It has been shown that the
fracture energies of specimens increase significantly with the
addition of longer CNT with similar volume fractions (Sethi
et al., 2017). In addition, the crack propagation of long CNT
reinforced concrete specimens is lower at the same loading level
(Eftekhari et al., 2014). The resistivity of CNT reinforced cement-
based materials will be significantly reduced in corrosive
environments, which will reduce the self-sensing ability of the
composite. When the distance between the electrodes changes, the
internal resistance increases along with the separation between
electrodes. Studies have shown that increasing the distance
between electrodes leads to increased resistance and decreased
output. It has also been found that the greater the distance between
electrodes, the higher the resistance (D Alessandro et al., 2015).

APPLICATIONS

Piezoresistive Sensor
Piezoresistive sensors monitor the resistance change of the sensor
under external pressure to evaluate this pressure (Kim et al.,
2017a; Chen J. et al., 2019). In some cases, when the sensor
supplies a constant current, the voltage is monitored to assess the
externally applied force. These sensors can detect traffic flow and
speed and assess the number and weight of vehicles passing along
the road. At the same time, sensors are influenced by
environmental effects such as vehicle loads of several tons,
temperature, and humidity. Therefore, the sensors must have
remarkable performance and durability (Nam et al., 2016). For
ordinary building structures, self-sensing cement-based materials
can be made into small sensor elements and embedded. CNT
reinforced cement-based materials can be applied in SHM,
including roads, railways, and buildings. Cement-based
piezoresistive sensors include carbon black, graphite, carbon
fiber, and carbon filament; these carbon-based materials often
require modification on their surface or use of dispersion agents
such as methylcellulose and silica fume. Researchers have
extensively studied the piezoresistive properties of conductive
cementitious composites (Azhari and Banthia, 2012; Galao et al.,
2014; García-Macías et al., 2017; Le and Kim, 2020). Some
researchers have fabricated a new self-sensing cement-based
composite sensor; the sensor has excellent application
prospects in structural model recognition and SHM, while the
sensing signal needs to be further optimized (Ding et al., 2020).
The sensor will affect the signal during long-term use due to
polarization effects. Determining the damage location of the
structure is conducive to timely repair. By installing multiple
new sensors, the location of the damage can be determined (Baeza
et al., 2013), and it becomes convenient to repair the structure.
One study embedded multiple sensors in concrete and
determined the damage site by analyzing the resistivity change
of each sensor (D Alessandro et al., 2017). Some researchers have
proposed that CNT reinforced cement-based materials could
replace ordinary concrete and be used on railway sleepers
(Jing et al., 2021). Others have developed a data acquisition
system for sleepers, which can measure the dynamic load of
passing trains. Some scholars have proposed a new CNT
reinforced cement-based materials technology application for
SHM. Impact hammer tests with reinforced beams have been
used to compare the results recorded by the CNT composites with
strain gauges, with the overall results showing that the CNT
composite sensor is promising for identifying natural frequencies.
Some researchers have explored cement-based sensors for
monitoring the dynamic behavior of concrete members under
loading. The results show that the input-output of the model has a
specific nonlinear relationship (Materazzi et al., 2013).

Electromagnetic Wave Shielding and
Absorbing Material
Electromagnetic (EM) shielding refers to various conductive
materials that reflect electromagnetic waves. The primary
mechanism involves the reflection of electromagnetic waves in
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the direction of penetration or transmission, absorption within
the shielding material, and dissipation as heat (Nam et al., 2011).
EM interference caused by electromagnetic wave radiation affects
the operation of electronic equipment and the human body. It can
damage foundations and security (GRAYSON, 1996; Szmigielski,
1996). Therefore, the absorption and shielding of electromagnetic
waves are becoming more and more critical in the field of
construction. CNT reinforced the performance of cement-
based materials (Konsta-Gdoutos et al., 2010; Xu et al., 2015;
Xu et al., 2019) and endowed them with innovative functions
(Kim et al., 2014b; Kim et al., 2016; Kim et al., 2017b), including
electromagnetic wave shielding/absorbing properties (Nam et al.,
2018).

Various studies on the CNT enhanced Electromagnetic
interference and shielding effectiveness (EMI SE) of cement-
based composites have been carried out (Micheli et al., 2014).
Therefore, researchers have conducted a series of studies on the
EMI SE of cement composites mixed with CNT and found that
improving the electrical conductivity of cement composites is a
crucial factor in enhancing the EMI SE of cement composites
(Yoon et al., 2021). Due to its extremely high electrical
conductivity, CNT is increasingly used in many composite
materials for SE. The results for most of the composites
containing multi-walled CNT suggest that these composites
have promising applications in electromagnetic interference
shielding. Therefore, improving the volume fraction of CNT
increases the overall SE of the composite. However, one of the
crucial limiting factors of CNT as filler material for composites is
its highly high fabrication cost (Wanasinghe et al., 2020). The
researchers have explored various factors on the absorbing

properties of CNT. They studied the dielectric parameters
through waveguide measurements in the 0.75–1.12 GHz
frequency band, currently used in mobile phone radio access
networks. The obtained results can calculate the electromagnetic
shielding effectiveness of large-scale wall-shaped concrete
structures. When the CNT inclusions were increased to 3wt.%,
the shielding effect of the 15 cm thick wall reached 50 dB. The
researchers studied the wave-absorbing properties of CNT
cement composites. The effects of CNT content and sample
thickness on electromagnetic wave reflectivity were discussed
in the frequency range of 2–8 GHz and 8–18 GHz. When the
CNT content is 0.6 wt.%, a cement mortar sample with a
thickness of 25 mm has a remarkable ability to absorb
electromagnetic waves close to the absorption peak in the
frequency range of 2–8 GHz (Wang et al., 2013b). Figure 4
shows the application of CNT reinforced cement-based materials.

3D Printing Concrete
With the development of urbanization and industrialization, the
shortage of labor resources in current society, low production
efficiency, and safety problems have restricted the development of
the construction industry (Noorvand et al., 2013; Hosseini et al.,
2014; Ye et al., 2017). The development of 3D printing concrete
(3DPC) technology has provided an efficient construction
method for the entire construction industry. 3D printing
(3DP), also known as additive manufacturing, uses a computer
to draw 3D data models and then print out components of
various shapes. The process involves printing layer after layer
to build the intended product. In 1981, Kodama invented the
prototype of 3DP. Since then, 3DP has developed rapidly and has

FIGURE 4 | Application of CNT reinforced cement-based materials.
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been widely used in many industrial fields, including the
fabrication of complex structures and objects, medical items
(Seol et al., 2014), and food manufacturing (Sun et al., 2015).
3DPC is a type that can be deposited layer by layer by a 3D printer
without any formwork support and vibration process. With
further development and application, 3DP could revolutionize
manufacturing in the future; it has already expanded into
architecture and construction. Previous studies have shown
that 3DPC technology construction can reduce construction
waste by 30–60%, labor costs by 50–80%, and production time
by 50–70%. Compared with traditional construction technology,
3DPC has the advantages of high construction efficiency, high
degree of mechanization, high degree of automation, low labor
cost, freedom of 3D printing construction, and less construction
waste (Ma et al., 2018a; Asprone et al., 2018; Buswell et al., 2018;
Ngo et al., 2018).

Therefore, the research and application of 3DPC are of great
significance in civil engineering. 3DPC has been developed along
with the development of 3DP technology. 3DP technology has
high requirements for the performance of 3DP materials,
including good workability, excellent performance, and
adjustable setting time. The printing parameters and different
materials can adjust for these. Researchers have investigated the
workability (Le et al., 2012a; Perrot et al., 2016; Hambach and
Volkmer, 2017; Ma and Wang, 2018; Soltan and Li, 2018) and
performance (Gibbons et al., 2010; Le et al., 2012b; Feng et al.,
2015; Gosselin et al., 2016; Panda et al., 2017a; Panda et al., 2017b;
Al-Qutaifi et al., 2018; Panda et al., 2018; Tay et al., 2019) of 3DPC
and explored the relationship between the two (Kazemian et al.,
2017; Ma et al., 2018b).

3DPC differs from conventional concrete in rheology,
printability, and mechanical properties. Although the
advantages of 3DP include the freedom to customize printing
and design, some disadvantages also limit the development of
3DP. These disadvantages include high cost, few practical
engineering applications, lack of engineering experience, poor
mechanical properties and anisotropy, materials, and defects.
One of the main disadvantages of 3DP is the formation of
voids between subsequent layers of material. Poor adhesion
between different printed layers of 3DPC leads to high
porosity, which reduces its performance. The degree of
porosity formation is highly dependent on the 3DP method
and printing material. The construction of voids is widespread
and is considered one of the primary defects leading to poor
mechanical properties and anisotropy. We can add different
fibers to reduce the porosity of cement-based materials.

It has been reported that researchers typically use nanofillers
and viscosity modifiers to provide the rheological requirements
required for 3DPC (Panda et al., 2019). It is well known that in
3DPCmixes (Khan, 2020), the printability is improved by using a
large amount of cement, which results in higher heat for its
hydration of cement (Snelson et al., 2008), leading to drying
shrinkage and blocked nozzles. When the amount of cement is
lower, the setting time of 3DPC is longer, the early strength is low,
and the printability is low. Therefore, the researchers recommend
the addition of mineral additives in 3DPC mixes. The use of
coarse aggregate due to the small diameter of the nozzle is

considered to be another reason for the increased risk of
drying shrinkage. In 3DPC blends, researchers suggest adding
fibers to the mix to reduce this shrinkage (Ye et al., 2021; Yu et al.,
2021). Considering these effects, it can be seen that material type
and quantity are critical for 3DPC.

For successful 3D printing of concrete, it has dual rheological
properties. On the one hand, the material should be sufficiently
fluid to be pumped and extruded, mainly influenced by mix ratio
and material selection. On the other hand, the material should be
solid and rigid enough to maintain its shape and withstand its
own and above-layer weight. The higher the concrete viscosity,
the lower the yield stress, the more excellent the plasticity, and the
better the workability. For 3DPC, we need to solve the problems
from the following aspects: 1) reducing the heat of hydration and
setting time of 3DPC, 2) improving the early strength, 3) reducing
the shrinkage deformation of 3DPC. Studies have shown that the
addition of admixtures improves the workability of the 3DPC
mixture, which reduces the extrusion process and improves print
quality. The study found that viscosity modifiers can improve the
shape stability after extrusion and improve the cohesion and
viscosity after extrusion. In addition, studies have shown that
nanomaterials can accelerate the hydration process of 3DPC,
improve early strength, and shorten the setting time of 3DPC
(Chen Y. et al., 2019; Mendoza Reales et al., 2019; Chen et al.,
2020). The fluidity and shape stability of 3DPC can be tuned by
adding mineral additives and nanomaterials to 3DPC
(Kawashima et al., 2012; Reiter et al., 2018; Qian et al., 2019).

Studies have shown that SWCNT can accelerate the hydration
reaction of C3S and strongly impact the morphology of hydration
products (Makar and Chan, 2009). The classical reinforcement
behaviors observed in their study, such as crack bridging and fiber
drawing, and the strong adhesion between C-S-H and CNT,
suggest that CNT has a high potential for developing high-
strength cementitious composites. SWCNT reinforced
cementitious materials exhibit significant enhancements,
including 35% tensile strength, toughness, and significantly
improved composite ductility (Mendoza Reales and Dias
Toledo Filho, 2017; Rashad, 2017).

MWCNT reinforced cement has higher strength properties
(Musso et al., 2009; de Souza et al., 2020). Cement-based
nanocomposites were prepared using 0.038 wt%, and 0.08 wt%
of 9.5 nm functionalized multi-walled carbon nanotube. They
found that MWCNT significantly improved Young’s modulus,
flexural strength, and fracture energy of cement-based materials
(Zou et al., 2015). The influence of different lengths of MWCNT
on the performance of cement-based materials was investigated.
Similarly, the improved flexural strength and elastic modulus of
MWCNTmodified cement after curing for 3, 7, and 28 days were
also investigated. At present, CNT reinforced cement-based
materials mainly include: CNTs filling the pores of the matrix
(Chaipanich et al., 2010), CNT bridge microcracks in the matrix,
and CNTs promoting the growth of C-S-H through nucleation
(Alizadeh et al., 2009; Cui et al., 2015; Petrunin et al., 2015; Sikora
et al., 2019). These mechanisms could improve the durability of
cementitious materials.

CNT is expected to become a potential 3DPC material. Using
CNT in 3DPC can effectively reduce the setting time of 3DPC and
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improve production efficiency. It can reduce drying shrinkage of
3DPC, improve printing quality, and improve the early strength
of 3DPC. Finally, it can fill the pores of 3DPC, enhance the
toughness of 3DPC, and then improve the shape stability after
extrusion. However, there is no related research on CNT
reinforced 3DPC yet. The main reason is that the domestic
3DP technology is still in the initial stage, and there is no
precise specification for the 3DP process. The production cost
of carbon materials is high, and the production process is
complicated. These are the factors that restrict the use of CNT
to enhance concrete in 3DPC. However, because 3DP can make
some detailed designs according to the model, CNT
strengthening the 3DPC becomes possible when designing
small models.

CHALLENGES AND FUTURE WORK

CNT reinforced cement-basedmaterials needmature preparation
processes, including dispersion process, molding process, and
uniform specifications and standards need to be formulated.
Mechanical properties and sensory properties of CNT
reinforced cement-based materials cannot be considered
simultaneously. When the dosage of CNT is low, the
conductive network cannot be formed in the matrix, and the
electrical and self-sensing properties are easily affected by
polarization. CNT is easy to agglomerate in the matrix when
the addition of high CNT content and it is not easy to disperse,
which increases the porosity and reduces the mechanical
properties of the matrix. The matrix and the external
environment easily affect the conductive internal network. The
mechanism of the external environment affecting the sensing
performance is still unclear. Especially for structures used for a
long time, durability is also an important factor affecting their
sensing performance. The application technology of cement-
based materials in structural health monitoring is immature.
At present, most of the research on sensing performance and
sensing materials in structural health monitoring is still in the
laboratory stage. It is urgent to establish a complete evaluation
system, including regulating sensor size, preparation process, test
method, evaluation method. It is necessary to improve the
interaction relationship between perceptual and mechanical
properties and establish a complete integrated standard and
specification for structural ontology preparation, application,
and evaluation.

CNT is expected to become a potential 3DPC material.
However, there is no related research on CNT reinforced
3DPC yet. The main reason is that the domestic 3DP
technology is still in the initial stage, and there is no precise
specification for the 3DP process. The production cost of carbon
materials is high, and the production process is complicated.
These are the factors that restrict the use of CNT to enhance
concrete in 3DPC. Using traditional experimental methods, it is
impossible to accurately monitor and characterize the impact
mechanism, and durability of various factors on the sensing
performance of CNT reinforced cement-based materials, as
CNT ranges in size from nanometers to sub-micrometer.

Molecular dynamics (MD) simulations provide an efficient
solution to this problem (Lau et al., 2016; Lau et al., 2018; Jian
and Lau, 2019). MD can describe the various effects of
nanomaterials on mechanical properties, relating macroscopic
mechanical properties to microstructure and intermolecular
interactions (Yu and Lau, 2015; Jian et al., 2020; Jian et al.,
2020; Jian and Lau, 2020; Jian et al., 2021; Nie et al., 2021; Chen
et al., 2022). MD simulation can study mechanical phenomena at
the molecular level that experiments cannot directly obtain, and
explore the interaction between carbon nanotube and cement
hydration products from the atomic scale, to obtain the law of
how CNT enhances cement-based materials during long-term
use (Qin et al., 2019; Wang et al., 2019; Qin et al., 2021; Wang
et al., 2021).

Additionally, one of the issues that need to be addressed in
3DPC is the lack of stability and eccentricity (Liu et al., 2022). To
improve the interlayer bond strength and solve the problems of
stability and eccentricity, CNT reinforced cement-based
materials are ideal for printing between two consecutive layers
of concrete. The enhanced shape stability of CNT nanomaterial-
enhanced cement pastes is mainly due to the strong interfacial
interaction between CNT and cement pastes. The interfacial
interaction restricts the migration of cement particles to the
low shear zone under shearing action, which increases
viscosity and elastic shear modulus of the cement paste at the
macroscopic scale. However, since the detailed characteristics of
the interfacial interaction between CNT and cement pastes
cannot be obtained only from the macroscopic point of view,
the basic understanding of their enhancement mechanism is still
unclear. It is hoped that the enhancement mechanism of CNT
with higher stability and durability in cement pastes can be
revealed from the atomic scale (Liu et al., 2022).

MD simulation can simulate the interaction between various
factors and the sensing property of CNT enhanced cement-based
materials by establishing a correct force field model (Chen et al.,
2022). This molecular-scale information help understand the
sensing mechanism and the mechanism of the durability of
CNT. The success of MD simulations depends mainly on two
aspects: the model chosen to represent the material system under
study and the force field that simulates atomic interactions (Jian
et al., 2021). In terms of force field selection, there is currently no
suitable and proven force field to describe the interaction between
various factors and CNT reinforced cement-based materials. It is
hoped that an accurate force field can be developed.

CONCLUSION

Compared with ordinary concrete, CNT reinforced cement-based
materials have the advantages of excellent mechanical properties,
high sensing sensitivity, good durability, and good compatibility
with thematrix. CNT has a broad application prospect in cement-
based composites. In this study, we summarize the research
progress of CNT in the functional application of building
materials. First, the commonly used techniques for the
dispersion characterization of CNT are introduced, and the
advantages and disadvantages of these techniques are
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summarized. Then, the effects of different influencing factors on
the functional application of CNT in cement-based materials
were discussed. The functional applications of CNT in cement-
based materials were reviewed, including sensing performance,
intelligent monitoring of concrete health, and electromagnetic
shielding. In addition, the application and development prospects
of CNT in 3D printing concrete have also prospected. CNT is
expected to become a potential 3DPC material. Using CNT in
3DPC can effectively reduce the setting time of 3DPC and
improve production efficiency; it can reduce drying shrinkage
of 3DPC, improve printing quality, and improve the early
strength of 3DPC. Finally, the challenges faced in developing
and applying CNT reinforced cementitious composites are
summarized. Although much research has been done in this
field over the past few decades, many questions still need to be
addressed. CNT reinforced cement-based materials have good
self-sensing properties; it can develop functional materials in
related fields. It can be used in national defense, military,
earthquake prevention, and disaster reduction. However, at
present, related research is in its infancy worldwide, and
further research is needed in both theory and practice.

Although we have done lots of research about the CNT
reinforced cement-based materials, the research is focused on
mechanical properties, the research about durability and
intelligent performance is limited, and it is challenging to infer
specific laws. In addition, the environmental and health effects of
CNT reinforced cement-based materials have also been limitedly
investigated. Existing studies on CNT reinforced cement-based
materials’ performance, deformation, and durability mainly focus
on macroscopic properties. There is little research on the micro-
nano structure of CNT reinforced cement-based materials, such
as the micro-nano mechanical properties and interface studies.
With the development of modern testing technology,
nanoindentation, atomic force microscopy, molecular
dynamics, and other methods have gradually matured, and
new characterization methods have emerged, providing

support for the in-depth study of CNT reinforced cement-
based materials. MD simulations help to reveal microscopic
physical and chemical processes underlying macroscopic
material phenomena. A better understanding of micro-and
nanoscale interactions between carbon nanotubes and cement-
based materials could help develop better-performing
composites. Combining nanoscale MD simulations with
macroscale finite element methods is beneficial to study its
properties comprehensively. It can bring the advantages of the
nanoscale to the macroscale. By establishing unified standards
and specifications for CNT reinforced cement-based materials,
improving the structure’s safety, availability, reliability, and
durability, developing cementitious composites with high
performance, versatility, and intelligence. As a new generation
of building materials, CNT will promote the sustainable
development of concrete materials and structures.
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