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Machine learning and artificial intelligence (AI/ML) methods are beginning to have
significant impact in chemistry and condensed matter physics. For example, deep
learning methods have demonstrated new capabilities for high-throughput virtual
screening, and global optimization approaches for inverse design of materials.
Recently, a relatively new branch of AI/ML, deep generative models (GMs), provide
additional promise as they encode material structure and/or properties into a latent
space, and through exploration and manipulation of the latent space can generate
new materials. These approaches learn representations of a material structure and its
corresponding chemistry or physics to accelerate materials discovery, which differs from
traditional AI/ML methods that use statistical and combinatorial screening of existing
materials via distinct structure-property relationships. However, application of GMs to
inorganic materials has been notably harder than organic molecules because inorganic
structure is often more complex to encode. In this work we review recent innovations that
have enabled GMs to accelerate inorganic materials discovery. We focus on different
representations of material structure, their impact on inverse design strategies using
variational autoencoders or generative adversarial networks, and highlight the potential of
these approaches for discovering materials with targeted properties needed for
technological innovation.
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INTRODUCTION

The ability to discover new materials or manipulate matter to alter the properties of existing
materials has long driven technological innovation. However, the traditional Edisonian trial-
and-error approach to materials discovery is characteristically slow. Commercialization of blue
light-emitting diodes (LEDs) and lasers provides an illustrative example of how this sluggish
approach to materials discovery negatively impacts technological innovation (Nakamura, 1998).
Despite existing knowledge of GaN, blue LEDs and laser diodes did not have a significant
commercial impact on energy-saving lighting or data storage until nearly 30 years after the first
LED (20 years after the first blue LED) patents when Nakamura et al. discovered a route to
efficiently alloy In with GaN to form InxGa1-xN heterostructures (Nakamura, 1998). Hence, it
would greatly benefit many applications of chemistry and condensed matter physics research to
accelerate materials discovery. Examples of such applications include multiferroics (Spaldin and
Ramesh, 2019), quantum technology (e.g., superconductors) (Keimer et al., 2015; Duan et al.,
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2016; Basov et al., 2017), solar energy (Giustino and Snaith,
2016), or batteries (Zhao et al., 2020).

Recent years have seen an explosion of studies using machine
learning and artificial intelligence (AI/ML) (Jordan and Mitchell,
2015) as a methodology to better use modern computational
power to understand data and facilitate technological innovation.
Early proposals of ML use in materials science included genetic
algorithms with fuzzy logic in the loop and local neural network
experts for predicting structure-property relationships for design
of materials with desired properties (Sumpter and Noid, 1996).
Growing interest in AI/ML has influenced materials science
regarding accelerating the materials discovery process by
developing large libraries and databases and creating
algorithms to discover structure-property relationships. These
efforts include large-scale collaborative projects such as the
Materials Genome Initiative (MGI) (de Pablo et al., 2014),
Automatic Flow for Materials Discovery (AFLOWLIB)
(Curtarolo et al., 2012), Joint Automated Repository for
Various Integrated Simulations (JARVIS) (Choudhary et al.,
2020), and many individual studies and reviews (Sumpter
et al., 2015; Hill et al., 2016; Mueller et al., 2016; Vasudevan
et al., 2019). To date, most efforts to integrate AI/ML methods
with materials science research have focused on high-throughput
virtual screening (HTVS) of known materials for the discovery of
new functions, or discovering new materials through
combinatorial screening (Pilania et al., 2013; Pyzer-Knapp
et al., 2015; Ramprasad et al., 2017; Ward and Wolverton,
2017; Butler et al., 2018). The modus operandi for HTVS is
fairly similar across many of these studies: train a predictor model
that maps a composition to a property (e.g., thermodynamic
stability), combinatorial screening of different compositions, and
prediction of newmaterial candidates. For example, Jha et al. (Jha
et al., 2018) developed the EleNet framework for using a materials
elemental composition to predict its enthalpy of formation.
Models based on global optimization approaches using
genetic-algorithms or particle swarm have also become
popular (Glass et al., 2006; Wang et al., 2012; Avery et al.,
2019). The popularity of these methods can be attributed to
the significant improvement in computationally efficiency
compared to density functional theory (DFT) or other first
principles computational chemistry methods.

As successful as these approaches have been, they suffer from
two key limitations. The first limitation is that their efficiency is
“data hungry,” and improvements in accuracy require not only
better algorithms, but larger datasets where scaling can become
an issue (e.g., it is more difficult to sample data in larger phase
spaces). Another limitation is that candidate generation is biased
by the screening process (e.g., screening binary materials for
specific properties will inevitably be biased against quaternary
materials that may, in reality, yield better properties for the target
application). An alternative approach, would be for AI to leverage
chemistry or physics-based knowledge of the phase space to
generate new materials from, in a non-traditional meaning of
the words, “first principles,” but on a timescale faster than would
be required with computational chemistry methods such as DFT.

One strategy to achieve these goals would be to use generative
models (GM) (Sanchez-Lengeling and Aspuru-Guzik, 2018),

which encode materials information into a continuous vector
(or latent) space, and manipulates the latent space to generate
new material data points. Growing interest in GMs for materials
discovery can be partitioned into three main categories:
autoencoder variations (e.g., variational autoencoders or
VAEs), recurrent neural networks (RNNs), and generative
adversarial networks (GANs) (Ferguson, 2017; Sanchez-
Lengeling and Aspuru-Guzik, 2018; Elton et al., 2019; Xu
et al., 2019). Early emergence of generative chemistry and
physics has been somewhat limited though to organic or “soft”
materials due to their smaller, less complicated phase-space than
inorganic materials. For example, GMs applied to molecules can
use simple molecular representations (e.g., SMILES) (Gómez-
Bombarelli et al., 2018; Kim et al., 2018) to represent material
structure. ML can therefore be trained on a simple user-defined
representation of data, generate new data points, and post-
processing can invert the new data points back into a
physically interpretable structure. On the other hand,
“fingerprinting” for inverse design is much more difficult for
“hard” inorganic materials where typical approaches (e.g., crystal
graphs) (Xie and Grossman, 2018) are difficult to decode back
into a physically interpretable structure. In this review, we
describe efforts to overcome these challenges and advance the
use of GMs for inorganic materials discovery. We focus our
discussion on VAEs and GANs (the two most commonly used
methods), efforts to circumvent the need for a detailed structure
representation (e.g., using simple compositions), efforts and
strategies to better represent inorganic structure, and efforts to
connect either approach to the discovery of materials with a
specific set of properties.

GENERATIVE ADVERSARIAL NETWORKS
AND VARIATIONAL AUTOENCODERS:
STRATEGIES FOR MATERIALS DESIGN
A reoccurring challenge for materials discovery using GMs (and
many other ML models) is the choice of structure representation,
or feature selection (often referred to as descriptors) (Jha et al.,
2018). Regardless of model type, there is usually a trade-off
between simplicity (e.g., a representation of structure that only
uses composition or possibly composition with a few physical
property labels) and specificity (e.g., near full capture of atomic
structure such as atomic coordinates and lattice constants).
Models that use simplistic structural descriptors tend to be the
most robust and capable of applying to a broad range of materials
within a database, but at the cost of limited predictive capabilities
(e.g., pure compositional predictions often cannot account well
for polymorphism). On the other hand, as structural descriptors
become more complex, models may become more descriptive,
but overfitting becomes an increasing concern, memory
requirements generally increase (limiting the size of training
data), and it becomes more difficult to make predictions
outside of a specific, small system (e.g., having to choose a
very specific compositional phase space within a database).

For the purposes of this review, we will focus on three general
representations of structure: 1) Phase-fields (defined here as
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elemental combinations that lead to distinct chemistries), 2)
composition (specific combinations of atoms), and 3)
coordinate or image-based structure (representations that
account for more complex aspects of structure than just
composition such as lattice parameters or atomic coordinates).

While each of these representations of structure will be discussed
in more depth in subsequent sections (in the context of specific
studies), issues surrounding them have also been summarized in
related studies (Chen et al., 2020; Keith et al., 2021; Zhao et al.,
2021). In addition to data representation, a generative model

FIGURE 1 | Generative models typically used in molecular generation: AE (A), VAE (B), and GAN (C). Reprinted with permission from Karthikeyan et al. (2021).
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must be selected. While a thorough review of all GAN and VAE
architectures is beyond the scope of our discussion, we will briefly
describe several architectures that are commonly used, and note
that more complete reviews of these architectures and their use
for molecule generation can be found elsewhere (Jørgensen et al.,
2018; Sanchez-Lengeling and Aspuru-Guzik, 2018; Vanhaelen
et al., 2020).

Deep-learning pipelines using VAEs or GANs are designed to
learn representations of a data distribution, and then through
exploration and manipulation of the latent space generate new
samples (Figure 1) (Karthikeyan and Priyakumar, 2021). This
general methodology applies to all of the VAE and GAN
approaches we describe in this review; variations in
methodology and architectures therefore only reflect
differences in the way a GM learns the representation of a
data distribution. A typical VAE architecture includes two
deep learning neural networks (Kingma and Welling, 2013).
One of these networks (the encoder) encodes high
dimensional data (here, materials structure, phase-field, or
composition) into a lower dimensional latent space. The
second of these networks (the decoder) generates new data
points (here, material structures) by inverse mapping of the
latent space. The optimization process of this approach
approximates a posterior distribution of the data to generate
new materials (Kingma and Welling, 2013). Traditional
autoencoders (AEs) follow a similar process but merely decode
the original input, and therefore can be used in materials
discovery for pre- or post-processing of structure.

GANs, on the other hand, learn data distribution for
materials implicitly. Specifically, instead of approximating
the likelihood of a data distribution, two neural networks
(generator and discriminator) simultaneously compete and
cooperate with each other in a zero-sum game, or minimax
problem (Goodfellow et al., 2014). The generator takes an
input noise vector and tries to generate fake data (e.g., an
image), which is given to the discriminator along with real
data. Throughout the process the discriminator parameters
will be updated to better distinguish between real and fake
data, and the generator parameters will be updated to better
generate fake data and attempt to “fool” the discriminator. We
say “compete and cooperate” because each neural network is
improved directly by its competition with the other: the
generator improves by trying to “fool” the discriminator,
and the discriminator improves by trying to “catch” the
generator. Much like a VAE, a GAN builds latent space
representations of material structures. However, unlike
VAEs, it does not assume a model distribution and directly
use discrepancies within the data from that model distribution
to generate new data points. Both GANs and VAEs can be
extended as conditional VAEs (CVAEs) or conditional GANs
(CGANs) by adding a condition vector input (e.g., formation
energies for predicting synthesizability) to learn multimodal
probability distributions (Mirza and Osindero, 2014;
Simonovsky and Komodakis, 2017; Bianchi et al., 2019). In
addition, these approaches can be extended for cross-domain
learning such as CycleGANs, which can learn how to translate
latent spaces (e.g., style transfer in images) (Zhu et al., 2017).

MATERIALS DISCOVERY USING
GENERATIVE MODELS
Generative Models for Phase-Fields and
Composition
The simplest representation for structure are composition (e.g.,
simple stoichiometry) or phase-fields (defined here as elemental
substitutions that lead to distinct chemistries or physics), which
makes them logical starting points for material discovery GMs. As
described earlier, simpler representations of
structure—representations that do not include the specific
arrangement of atoms (e.g., full atomic coordinates)—tend to
produce GMs that are more robust, generalizable, and often can
use clearer evaluation metrics (e.g., it is easier to determine if a
crystal composition is charge neutral than if each atom in a large-
scale structure has the correct coordinates). There are, however,
several common challenges for GMs that use either
representation. For example, it is conceptually well-known that
exploration of different elemental combinations (phase-fields)
can lead to the discovery of new chemistries or physics [e.g., even
though kesterites (Giraldo et al., 2019) and halide perovskites
(Jena et al., 2019) can both be used in solar cells, their chemistry
and physics are notably different], but doing this at scale has been
difficult. Traditional HTVS screens individual materials for
specific chemistry or physics. Generative phase-field models,
alternatively, learn the chemistry or physics of different
elemental combinations, and generates new ones to explore
experimentally via a VAE or GAN. This distinction is where
the problem of scaling occurs, because each phase-field will
inevitably include large variations of chemistry/physics within
the phase-field and finding clear generalizable parameters for
multiple phase-spaces is challenging. In addition, AI needs to
generate a human-interpretable prioritization system within
reasonable resource commitment constraints to aid materials
discovery.

Vasylenko et al. (Vasylenko et al., 2021) described a neural
network approach where they overcame this issue and explored
phase-fields found in the Inorganic Crystal Structure (ICSD)
database which provided a route to generate new phase-fields
for experimental materials discovery by training the neural
network on existing, synthesized materials. ML exploration of
ICSD phase-fields using a VAE identified distinctive sets of
chemistries via complex correlations, which would normally
be difficult for humans to process. However, they made it
processable for humans by numerically ranking the likelihood
of each phase-space to find a target material. In particular, they
focused on Li materials with multiple anions for potential Li fast-
ion conductors, a relatively unexplored but important chemistry
(Harada et al., 2019; Bates et al., 1992; Kraft et al., 2017; Kageyama
et al., 2018). In step 1 of their approach (Figure 2) they extract
2021 MxM’yAzA’t phases from ICSD (where M and M’ represent
cations, A and A’ anions, and x, y, z, t their concentrations). Then
in step 2, they associated unexplored phase-fields with known
phases to determine their similarity using 37 individual feature
descriptors (e.g., first ionization radius, number of unfilled
p-orbitals, etc.) (Glawe et al., 2016; Jha et al., 2018; Vasylenko
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et al., 2021) using a VAE. Their VAE model was trained to
minimize the Euclidean distances (described as reconstruction
errors) between the encoded and decoded 148-dimensional (37
features x 4 elements) vector feature space.

A general challenge of VAEs compared with GANs is their bias
towards predictions near the distribution of the data, which is to
be expected given that VAEs model the distribution explicitly
whereas GANs model them implicitly via adversarial training.
However, in this case, the bias of VAEs is a strength because the
training data in ICSD represents materials that have already been
synthesized (as compared with theoretical structures), which
means generated phase-spaces will be biased towards
synthesizable structures. The reconstruction error, which
captures deviation from the learned model, therefore can be
interpreted to represent deviation from trends in the data,
which are trends in synthesizable phase-fields, and the degree
of deviation can be used as a metric to prioritize different phase
spaces to explore experimentally (generated candidates versus
known phase-fields) (Amarbayasgalan et al., 2018; Gong et al.,
2019; Vasylenko et al., 2021). This is an example of a positive bias
model (searches the likelihood of positive outcomes instead of the
absence of negative outcomes), which can be advantageous for
materials discovery because negative outcomes (here, no known
material) may merely be a reflection of an undiscovered material.

In step 2, quaternary dual anion phase fields are quantified for
their likelihood to contain stable compounds based on their
similarity to known phase-fields. This of course, requires some
user-defined limitations (e.g., removing elements that are
particularly scarce, toxic, or have undesired redox properties).

After narrowing such desired chemistries, 303 unexplored phase
fields were ranked in regard to their attractiveness for
experimental exploration. The reconstruction errors for the
validation dataset were below 0.5 for ~80% of the explored
phase fields, and the VAE was able to generate experimentally
known phase-fields not included in the training data (e.g., the Li-
P-S-O field) (Suzuki et al., 2016). They eventually experimentally
explored the Li-Sn-S-Cl field (ranked 5th) leading to the
experimental discovery of a specific Li-conductor
(Li3.3SnS3.3Cl0.7).

Dan et al. (Dan et al., 2020) took a different approach, and
used generative modeling to predict a large number of distinct
compositions. They used a Wasserstein GAN (MatGAN) to
generate hypothetical compounds (instead of phase spaces for
exploration), and combined data from a broader range of data
sources (OQMD (Kirklin et al., 2015), Materials Project (Jain
et al., 2013), and ICSD (ICSD)). For data preprocessing, they used
a simple statistical calculation of materials in the OQMD dataset
(Saal et al., 2013) and found 85 reoccurring elements, and noted
that most compounds had <8 atoms. Each material could
therefore be represented as a sparse matrix of 0/1 integer
values where the column vectors represent the one-hot-
encoded matrix for each of the 85 elements. This implies that
real chemical rules such as charge neutrality and electronegativity
are indirectly captured by the one-hot-encoded matrix where
combinations of different atom numbers would be expected to
obey these rules. After applying additional filters to eliminate
compositions that do not obey charge neutrality rules or lead to
reasonable electronegativities, MatGAN generated an impressive
1.69 million compositions (Dan et al., 2020). Accuracy of

FIGURE 2 | GM approach using phase-fields. Stage I: Phase fields are gathered for two anion quartenary materials in ICSD and represented as 148-dimension (4
elements x 37 features) vector. VAE encodes/decodes each field and optimizes by minimizing the reconstruction error (Euclidean distance between encoded and
decoded vectors). Stage II: Exploration of new phase-fields for Li fast-ion conductors using the trained VAE, and corresponding ranking based on reconstruction error.
Similarity of unexplored phase field to explored phase field dictates how ideal it is for experimental exploration. Reprinted with permission from Vasylenko et al.
(2021).
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structure predictions were tested by performing electronegativity
and charge neutrality checks using the t-SNE method (Maaten
and Hinton, 2008), and found similar distributions in both the
training and test sets. Impressively, ~84–92% of the generated
materials (depending on the dataset) obeyed charge neutrality
rules and were electronegativity balanced despite the lack of
inclusion of concrete chemistry or physics rules in the GAN,
which indicates that the adversarial process learned these rules
implicitly by modeling the latent space (Davies et al., 2016).

Generative Models for Coordinate and
Image-Based Structure
One disadvantage of GMs that use simplistic descriptions of
structure (e.g., composition or phase-fields) is their limited
predictive capabilities for individual materials or smaller phase
spaces (e.g., pure compositional predictions often cannot account
well for polymorphism). Noh et al. found a way to incorporate
structure, or computationally generated fingerprints for materials
discovery with an invertible encoding/decoding scheme coupled
with a VAE called iMatGen (Image-based Materials Generator).
(Noh et al., 2019). The encoder/decoder scheme allowed them to
use invertible 3D grid-based images as a representation of

structure (Kajita et al., 2017; Ryczko et al., 2017; Noh et al.,
2019). Specifically, they decomposed crystal structures of
inorganic materials into an image of the unit cell that
incorporates the length of cell edges, angles between cell edges,
and atomic positions (Figure 3 for a 2D slice of a 3D unit cell
shown for simplicity). The logic behind this approach is centered
on the idea that many deep learning methods (especially
generative methods) were designed for images and developing
methodologies for defining crystal structures as images (here, a
3D-voxel image grid), will have facile coupling with neural
networks for materials discovery.

After determining a proper way to represent structure,
iMatGen generates materials by first compressing the image of
the structure with an AE, and then encoding it with a VAE into
smaller intermediate vectors as “fingerprints” in the materials
generator using element information from the AE step (Figure 4).
The VAE constructed materials space can potentially be used for
materials discovery for various systems, but here they focused on
the V-O materials system due to both the large availability of
training data, and structural complexity (multiple polymorphs
and large variation in V oxidation states). Their model was able to
both reproduce known experimental structures and generate new
materials (both new compositions and new polymorphs of known

FIGURE 3 | Simplified 2D representation of 3D voxelized image representations of materials: (A)Represents a dimer, (B) a graphene-hBN heterostructure, (C) hBN
with a N vacancy, and (D) graphene with a Stone-Wales defect. Reprinted with permission from Ryczko et al. (2017).
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compositions) using the MP dataset (Jain et al., 2013). They
evaluated autoencoder and materials discovery performance
using several metrics. First, they analyzed the inverse
transformed cell information (lattice parameters and atomic
positions) focusing on the accuracy of the AE to back convert
their materials representation to human-interpretable structures.
This approach, in essence, is evaluating the accuracy of
“fingerprint” generation, and they found that they were able to
recover most structures within 0.1 Å edge lengths, 2° between
edges, and atomic positions within 0.2 Å for most known
structures and were able to generate more than 10,000 new
structures in total using this approach. Further validation with
DFT found that many of these structures were stable. Moreover,
while this study focused specifically on onematerial space (VxOy),
this 3D voxel image approach has also found success in other

studies such as by Hoffman et al. where they included a UNet
segmentation to allow for the architecture to produce multiple
material classes (Hoffmann et al., 2019).

While the 3D voxel image representation has already shown
significant success in GMs for materials discovery, several issues
persist. For example, while the extension by Hoffman et al. was
able to generate multiple classes of structures, they had a difficult
time producing crystal structures that were stable (Hoffmann
et al., 2019). Long training times are also required due to the
memory-intensive material representation, and the development
of user-friendly post-processing is required for inversion of the
material representation. In addition, unit-cell sizing is limited due
to cubic scaling of 3D grids. Kim et al. (2020) sought to overcome
these issues by developing a representation with lower memory
requirements (a factor of 400 compared to iMatGen) and is

FIGURE 4 | AE compression of material structure image, followed by VAE generation of new materials. Reprinted with permission from Noh et al. (2019).

FIGURE 5 | Example of point cloud approach to structure representation. Reprinted with permission from Kim et al. (2020).
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inversion-free (Figure 5). (Kim et al., 2020) They were able to do
this using a “point cloud” approach in which objects are
represented as a set of points with 3D vector coordinates
(here, crystal structures with cell parameters and a set of
atomic coordinates) (Qi et al., 2016; Zhou and Tuzel, 2017;
Lang et al., 2018; Li et al., 2018; Nouira et al., 2018; Wu et al.,
2018). This representation, unlike the Voxel image, is essentially
the material itself, which removes the requirement of inversion
entirely and does not require as much memory due to the lack of
grid data.

In this case, the generative model of choice was a CGAN
instead of a VAE. Similar to GANs described earlier for
generating compositions, they used one-hot encoding of MP
(Jain et al., 2013) data for each structure as representation of
its composition. However, unlike compositional generating
GANs, they used this one-hot encoded composition vector as
the conditional input for the GAN instead of the target structure.
In other words, the GAN generator uses input from the typical
random Gaussian noise vector and the compositional conditional
vector and generates point cloud representations of structure
paired to a specific composition using the typical CGAN
competition between generator and discriminator (here, using
the Wasserstein distance to represent the dissimilarity between
fake data and the ground truth). Much like VAEs for coordinate
or image-based generation, this work focused on a particular
material system (ternary Mg-Mn-O compositions).

This approach for capturing full inorganic structure has found
additional uses. Specifically, a similar representation of structure
was used by Nouira et al. (2018) in a CycleGAN for cross-domain
modeling (CrystalGAN). In this case, they were able to generate
complex ternary hydride structures from simpler starting binary
hydrides. This difficult task for materials discovery (generating
data of increasing complexity from simpler reference data) has
been a notable limitation for GMs that attempt to use coordinate
or image-based structure (e.g., limiting GMs to a small phase
space of materials within a larger database). CrystalGAN
impressively generates ternary structures with reasonable
interatomic distances. However, as noted directly by the
authors, further work is required to verify the stability of their
generated materials (e.g., by DFT).

GMS FOR INVERSE DESIGN OF
MATERIALS WITH TARGETED
PROPERTIES
Thus far we have focused our discussion on methodologies for
generating different types of structures with GMs. However,
many of these approaches have been employed for inverse
design schemes wherein a material with targeted properties
can be generated for a specific application. The conventional
route for inverse design has traditionally been computational
chemistry approaches such as DFT, which predict structure-
property relationships, but are compute and time-intensive.
Indeed, much of the motivation for using ML for materials
discovery is driven by the desire to circumvent cumbersome
ab initio calculations. ML methods for predicting structure-

property relationships and aiding in inverse design have
therefore been extensively reviewed (Pilania et al., 2013; Pyzer-
Knapp et al., 2015; Sumpter et al., 2015; Hill et al., 2016; Mueller
et al., 2016; Ramprasad et al., 2017; Ward and Wolverton, 2017;
Butler et al., 2018; Vasudevan et al., 2019). In this section, we
focus on how these approaches can be integrated with GMs for
inverse design of materials with specific properties.

There are two key general approaches that have been explored
for inverse design using GMs. The first approach uses a GM
purely for structure or composition discovery, and then applies
an additional ML model to search GM discovered materials for
ideal structures, or materials that have a specific set of properties
for a targeted application. The alternative, or second approach is
to use a CVAE or CGAN that directly incorporates properties in
the GMs—CVAEs and CGANs are described inmore detail in the
section titled “GANs and VAEs: Strategies for Materials Design.”
An important distinction from our earlier examples of CVAEs
and CGANs is that the conditional vector must be correlated to a
property and not to structure (e.g., a conditional vector of band
gaps could be understood as a property conditional input versus a
conditional vector based on composition would be understood as
a structure conditional input). Properties in this case could be
distinct physical properties (e.g., band gap), or synthesizability
(e.g., formation energy), and the GM can still use any of the
structure representations we described earlier (e.g., composition,
point cloud, or voxel image).

Song et al.(Song et al., 2021) demonstrated that a composition
generating GAN can be combined with additional ML for
predicting synthesizability. They used MatGAN (Dan et al.,
2020) (see section “Generative Models for Phase-Fields and
Composition” for more details) to generate 2.65 million
hypothetical 2D compositions, trained a composition-
processing materials classifier on known structures, and then
applied the trained classifier on the GAN produced compositions
to predict 2D materials that are synthesizable (e.g., have favorable
formation energies, Figure 6). In this case, the classifier was a
random forest model trained on verified 2D and non-2D
materials, which enabled them to make it a simple binary
classification problem using the Magpie feature set (calculates
several important statistical measures such as the mean, range,
etc., for different elemental properties such as atomic radii)
calculated by the matminer library (Liaw and Wiener, 2002;
Ward et al., 2016; Ward et al., 2018). They compared the
Magpie features on their training and test data of known 2D
materials, non-2D materials, and materials generated by
MatGAN (where known 2D and non-2D materials are used as
positive and negative samples for the classifier, respectively).
After probability scores are determined for each material,
further validation is achieved via DFT to calculate the
formation energies, phonon thermostability, and exfoliation
energies. They generated an impressive 1,485 2D materials
with probability scores that surpassed 95%, and further
verified that 92 materials had negative DFT calculated
formation energies. They proposed 31 possible monolayer
materials (structures that also had exfoliation energies
<200 meV, which could lead to stable exfoliated nanosheets
from thin-layered materials).
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This general strategy has found success in other studies using a
coordinate or image representation instead of composition (e.g.,
Kim et al. (Kim et al., 2020) where HTVS screening of GAN
generated materials using the point cloud structure
representation found stable Mg-Mn-O materials). As can be
expected though, design or training of multiple models in an
AI pipeline can be complicated and it may be desirable to find a
single model that can achieve similar results. Pathak et al.
developed a CVAE approach to generate new material
compositions named the Deep Inorganic material Generator
(DING, Figure 7). (Pathak et al., 2020) Here, they use a
condition vector of material properties related to
synthesizability (formation enthalpy, energy per atom, volume
per atom) in the OQMD (Saal et al., 2013; Kirklin et al., 2015),
and the generator network of the CVAE generates materials with
properties close to those desired by the user (e.g., formation
energy). A second predictor network is further used to assess
whether the generated materials match those desired properties,
and in this case is used to filter/evaluate discovered materials.
This is markedly different than the earlier described AI pipelines

where physical properties are not used in the generative step and
are only later applied in non-generative AI to screen generated
materials. Their approach generated material compositions with
small errors in the enthalpy of formation (~50 meV), energy per
atom (~70 meV), and volume per atom (~0.4 Å3). Similarly,
iMatGen has also been extended to include a conditional vector
and has been proven capable of distinguishing between stable and
unstable (or, synthesizable versus not synthesizable) structures
using a CVAE (Noh et al., 2019).

Each of the methods outlined here have shown tremendous
progress in the use of GMs for materials discovery. However,
many still have the limitation of requiring user-provided a priori
information (e.g., iMatGen needs a user to choose a specific
composition space such as V-O within a broader database).
Moreover, the only set of properties we have described thus
far have been focused on synthesizability and stability. While
generally it is accepted that other properties could be substituted,
an explicit demonstration would be valuable. To this end, Cole
et al. (Court et al., 2020) presented a VAE-driven AI pipeline that
used the 3D image voxel approach to generate materials while also

FIGURE 6 | Four components of 2D material generation using MatGAN. The green box represents MatGAN generation of new materials, and the blue box
represents the random forest classifier. The orange box (template-based element substitution) and yellow box (DFT) are validation steps. Reprinted with permission from
Song et al. (2021).

FIGURE 7 | DING architecture. CVAE is used to generate materials with specific properties (formation enthalpy, energy per atom, and volume per atom). Reprinted
with permission from Pathak et al. (2020).
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predicting eight properties for discovered materials: formation
energy, energy per atom, bandgap, bulk modulus, shear
modulus, Poisson ratio, polycrystalline dielectric constant
(electronic contribution), and refractive index (Figure 8).

They achieved these impressive results via a three step AI
pipeline. First, they use a voxelized electron density map
representation of cubic binary alloys, perovskites, and Heusler
materials from MP (Jain et al., 2013) to train the CVAE to encode/
decode known materials and create a material structure-property
latent space. The latent space can then be sampled for generation of
new materials with a specific property. In this case, they used
formation energy per atom as the conditional to insure that
generated materials are stable. Considering this is an invertible
process, they used a combination of morphological
transformations and UNet semantic segmentation to convert
generated materials back into a normal atomic site
representation. Lastly, a crystal-graph convolutional neural
network (CGNN) was used to predict the 8 associated properties
of new materials (e.g., band gap or refractive index).

OUTLOOK

Generative models have been explored more extensively in
organic systems than inorganic, but the approaches described
in this review show their potential to accelerate inorganic
materials discovery. Representation of structure remains a key
issue due to the complexity of inorganic material structures. The
simplest depiction described here are phase spaces, which merely
reflect elemental combinations that are expected to yield desirable
chemistry or physics. This approach shows the power of
simplicity by making large phase spaces easily interpretable for
researchers (e.g., capturing nearly 40 different physical features of
known systems, and generating new ones ranked by their

desirability for experimental exploration), and has already lead
to the experimental discovery of new materials (Giraldo et al.,
2019).

Generation of specific compositions adds complexity to the
representation of structure, but it is still simpler than other
methods. A virtue of this approach that is similar to phase
space generation is the facile application across broad sets of
chemistry and physics (e.g., a GAN can learn chemical rules such
as charge neutrality across a broad range of different material
classes at the same time) (Gong et al., 2019). Inclusion of full
atomic coordinates (e.g., by voxel image or point cloud) is the
highest level of complexity, and yields predictions of the most
specific, realistic descriptions of structure. The greatest virtue of
this approach for inverse design is that coordinate or image-based
structures are best suited for further work with other traditional
computational chemistry approaches, or other methods to search
structure-property relationships with ML (e.g., graph neural
networks) (Fung et al., 2021).

There is a trade-off though in adding complexity to structural
representations. Phase space generation is easily interpretable by
experimental researchers, but the recommendations (e.g., “search
the Li-Sn-S-Cl field for the chemistry or physics you desire”) are
incredibly broad. On the other hand, while it is impressive that GANs
can generate millions of specific compositions that may find many
uses, it is not always apparent to an experimental researcher what do
with such a large set of information. Representations that include
atomic coordinates are best suited for coupling with additional AI or
computational chemistry because they yield the most detailed
structures. However, overfitting can become more of a problem,
and most methods still require a priori information provided by the
user and training on smaller more specific datasets than other
approaches. In addition, as recommendations become more
specific experiments can arguably become more complicated
because it is difficult for synthetic chemists to develop “recipes”

FIGURE 8 | Latent space for CVAE generated materials where colors represent the formation energy per atom of each structure (high intensity indicates high
formation energy and low intensity indicates low formation energy). Reprinted with permission from Cole et al. (Court et al., 2020).
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for very specific structures. Challenges aside, each approach exhibits
good potential for materials discover. GMs are still relatively new to
materials discovery in general, and specifically for inorganic systems.
With many practical tutorials available (Doersch, 2016; Goodfellow,
2016), use of GMs are expected to grow. Ongoing work indicates that
a bright future is likely ahead for generative models to accelerate
materials discovery and innovation for a broad range of technical
applications.
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