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The construction and demolition waste generation is increasingly evolving with the
rapid urbanization, with more than a quarter of the produced waste being landfilled
without further treatment or recycling strategy. Hence, sustainable management and
valorization methods such as recycling in construction materials is becoming
increasingly essential to tackle the economic and environmental burdens of
landfilling waste. Construction and demolition waste recycling has been intensively
studied. However, the present study proposes a promising solution for recycling
construction and demolition wastes (CDWs) from the precast concrete waste
sludge and ashes from paper mill sludge and biomass. Artificial lightweight
aggregates were designed and produced by alkali activating a mixture of 50–90 wt
% of dried and milled CDW with 3–25 wt% of ash and 5–35 wt% of blast furnace slag.
The properties of the produced aggregates were assessed via density, water
absorption, porosity, and crushing tests, in addition to microstructural
characterizations using XRD and scanning electron microscopy SEM analysis. The
optimum NaOH concentration was 8M with the highest mechanical properties and
lowest efflorescence. The produced aggregates revealed a high crushing force of 82 N
at 28 days with 50 wt% CDW, 15 wt% biomass ash, and 25 wt% blast furnace slag
presenting a possible recycling pathway for such side-stream materials.
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1 INTRODUCTION

The construction industry is one of the substantial powers for the economy of several countries. This
sector is a complex combination of several processes, significant number of specialists, organizations,
and a large variety of raw materials and unique products (Zid et al., 2020). Therefore, it affects many
sustainability aspects, including the economic, social, and environmental attributes. In addition to
the economic and social benefits of the construction industry, its environmental drawbacks during
the entire lifecycle of buildings represent huge challenges (Ruiz et al., 2020). The employment of a
high volume of resources and the high amount of greenhouse emissions associated with Portland
cement (PC) production make the construction field one of the main sectors contributing to climate
change (Opoku, 2019; Zhou et al., 2021).
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Portland cement production results in ~8–9% of the world’s
total CO2 emissions (Kang et al., 2019; Zhao et al., 2020). The
consumption and depletion of several natural resources such as
sand and gravel and other essential components for
construction materials could be challenging for continuous
growth. Furthermore, during the construction stage and the
operations of the end of life phase of buildings, massive
construction and demolition wastes (CDWs) are generated
(Ghisellini et al., 2018; Ruiz et al., 2020). CDW is the most
generated waste worldwide, counting 30–40% of total solid
wastes (Jin et al., 2018). In 2018, about 838 million tons of
CDW was generated in the European Union which is almost
35.9% of total solid side streams (Eurostat, 2018). The increase
in the urbanization rate (54.3–55 % from 2016 to 2018) leads to
excessive generation of construction and demolition waste,
increasing the challenges of this sector in terms of
sustainability (DESA, 2018; Aslam et al., 2020).

The generation and absence of a proper management plan of
CDW represent significant environmental issues such as land
deterioration, increased pollution, and resource depletion (Ram
and Kalidindi, 2017; Zheng et al., 2017). Therefore, developing
new circular economic strategies to reduce the landfilling of CDW
while contributing to economic growth has become a priority for
sustainable development plans (Lieder and Rashid, 2016). Several
approaches have been proposed for CDW recycling worldwide.
The reuse of different types of CDW, including crushed concrete,
brick, mortars, and plaster as recycled aggregates, has been
intensively studied (Bolouri Bazaz and Khayati, 2012; Xuan
et al., 2012; Silva et al., 2014; Bravo et al., 2015; Martínez
et al., 2016; Braga et al., 2017; Omary et al., 2018; Bandara
et al., 2022; He et al., 2022). However, the crushed CDW
suffers diverse drawbacks including high water absorption, low
strength, significant quality fluctuation, and cracks compared to
natural aggregates (Tam and Tam, 2007; Shi et al., 2019). Hence,
their utilization leads to low-strength concrete, limiting their
utilization to less than 50% (Etxeberria et al., 2006). Other
investigations attempt to reuse the fine particles of ground
CDW as raw materials for cement clinker production (Kim
and Choi, 2012; Schoon, 2015). This recycling strategy is
inadequate due to the high energy consumption and the high
chemical composition variation between the different CDW
samples. Furthermore, the CDW powder has been tested as a
cement admixture for construction materials. The results show
that no more than 10% of the CDW powder could be
incorporated as cement admixture because of the high water
demand of the CDW powder (Xiao et al., 2018; Shi et al., 2019).
The production of lightweight aggregates from the construction
and demolition wastes has been explored in some studies
(Mueller et al., 2015; Liu et al., 2020; Nguyen et al., 2021).

Lightweight aggregates (LWAs) are natural or synthesized
granular materials with a bulk density of less than 1,200 kg/m3

and a dry particle density below 2,000 kg/m3 (Liu et al., 2020).
LWA manufacturing comprises the granulation phase using a
pelletization or extrusion technique and the hardening step that
could be performed at high temperature via sintering or
autoclave, or at low temperature by cold bonding (Baykal and
Döven, 2000). Pelletization is an agglomeration method used to

amplify the size of the granules, which is controlled by the dosage
of solid binder and binding liquid, and the duration of the
agglomeration process (Geetha and Ramamurthy, 2010). The
sintering process based on atomic diffusion at high temperatures
from 1000 to 1200°C is commonly used to produce LWAs (Verma
et al., 1998; Mueller et al., 2008).

Several raw materials are used to produce the LWAs, mainly
clays (Juimo Tchamdjou et al., 2018; Contrafatto et al., 2020).
Research has been directed to develop LWAs from alternative
raw material sources, mainly industrial wastes such as paper
mill waste, fly ashes, and mining wastes (Dondi et al., 2016;
Ayati et al., 2019; Moreno-Maroto et al., 2019). Construction
and demolition wastes have also been investigated as raw
materials to manufacture LWAs through the sintering
method. A range of temperature of 1220–1250°C was used
to obtain LWAs with a granule density less than 1,000 kg/m3

(Nguyen et al., 2021). Also, a cold bonding technique was
tested for the CDW based aggregates using different cement
content and carbonation to enhance the mechanical properties
(Shi et al., 2019). Thus, the employment of the so-called cold
bonding pelletization technique with the optimization of the
hardening time and the early strength of the aggregates could
be a cost effective and environmentally friendly method of
aggregate manufacturing.

The present work focuses on designing and developing
artificial lightweight aggregates using construction and
demolition wastes from precast concrete waste sludge by
means of the cold bonding method and alkali activation
technique. Blast furnace slag, biomass fly ash, and paper mill
ash were used as cobinders, and a low-concentration alkaline
solution was used as a binding agent. The composition of the
cobinder was optimized first; then, the aggregates were prepared
at the laboratory level with different proportions of CDW. The
properties of LWAs, being the granule density, water absorption,
and crushing strength, were assessed, and their mineralogy was
studied via XRD analysis.

FIGURE 1 | Particle size distribution of CDW, biomass ash (FA), and
paper mill ash (PMA). The curves in black and blue correspond to the passing
volume and cumulative passing volume, respectively.
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2 MATERIALS AND METHODS

2.1 Materials
The construction and demolition waste used was a precast
concrete waste sludge produced by the sawing hollow core
slabs from Jaro Betongsystemer AS (Norway). Blast furnace
slag (BFS) was provided by Finnsementti, with a mean particle
size of 10.21 µM. Two ashes were added to the BFS to form the
cobinders: biomass ash (FA) and paper mill ash (PMA) collected
from a paper sludge and paper waste incineration process from
the Bag house filter. Blast furnace slag is one of the high reactive
precursors for alkali activated materials production, thus, it was
added to the ashes to adjust the chemical composition of the raw
materials and improve its reactivity (Fernández-Jiménez et al.,
2017; Torres-Carrasco and Puertas, 2017). NaOH pellets
(product code: 28245.460) supplied by the VWR was used to
prepare the activating solution/binder liquid.

The utilized raw materials in the present study have different
particle size distributions (Figure 1 and Table 1). The median
particle size ranges from 5.21 to 24 µM. The paper mill ash is the
finest material with approximately 90% of the particles less than
34.5 µM and a mean particle size of 13 µM. Then, the CDW and
FA have a mean particle size of 20.11 and 37.39 µM, respectively.
The grain size and distribution highly impact the reactivity of the
raw materials toward alkaline activation. A high share of fine
particles might increase the reactivity of the material. However, it
can also induce a high-water demand. The blast furnace slag,
provided by Finnsementti, has a mean particle size of 10.21 µM. A
detailed characterization of the blast furnace slag could be found
in the previous study (Perumal et al., 2021).

The CDW and BFS consist mainly of silica and calcium oxide
with magnesium oxide in the BFS (Table 1). The biomass ash is
mainly composed of SiO2 with about 10 wt% of CaO and a high
content of K2O (9.6 wt%). In comparison, the paper mill ash
showed a high LOI indicating the high calcite content (29.4 wt%
of CaO) with the possible existence of the organic material, and a
low SiO2 of 8 wt%. The paper mill ash represents a high content of
Na2O (14 wt%) and Cl (8 wt%). The presence of high sodium

oxide in the paper mill ash could enhance the alkali activation
reaction rate by increasing the alkalinity. Furthermore, the Al2O3

content was low for all the samples and varied from 5 to 9.8 wt%.
The samples show different mineral phases (Figure 2). Calcite

and quartz phases are observed for all samples. The CDW also
contains albite and gypsum phases, while anorthite, mica, and
potassium chloride phases are observed in the biomass ash. The
high sodium and chloride in the paper mill ash are present as
sodium chloride, sodium carbonate, and calcium sodium
aluminum oxide phases. In addition, the PMA contain

TABLE 1 | Chemical composition of the utilized raw materials, CDW, BFS, FA,
and PMA.

Sample CDW BFS FA PMA

SiO2 (%) 38.90 32.30 41.38 8.07
Al2O3 (%) 7.60 9.60 9.80 5.65
CaO (%) 24.20 38.50 10.03 29.41
Fe2O3 (%) 3.70 1.20 3.14 1.013
K2O (%) 0.90 0.50 9.64 0.46
MgO (%) 1.50 10.20 2.31 1.00
Na2O (%) 1.30 0.50 1.85 14.36
P2O5 (%) 0.16 — 1.59 0.45
SO3 (%) 2.20 4.00 2.68 2.41
Cl (%) 0.06 — 2.02 8.25
LOIa 17.50 — 10.5 31.99
D-50b 10.26 10.95 24.42 5.21

aLoss on ignition.
bMedian particle size (µM).

FIGURE 2 | XRD patterns of the utilized raw materials (CoKα radiation).
Ph: phlogopite (01-070-2125), Gy: gypsum (04-009-3817), La: laumontite
(04-015-4254), Q: quartz (04-014-7568), A: anorthite (04-011-2514), Al:
albite (04-017-1022), C: calcite (04-008-0198), S: sylvite (04-007-3113),
P: portlandite (04-014-8866), G: gehlenite (01-079-2421), CSf: calcium
sulfate (04-007-4744), CCl: calcium chloride hydroxide (04-013-0465), SC:
sodium carbonate (04-011-4108), L: lime (04-011-9020), CNa: calcium
sodium aluminum oxide (04-010-2766), and NaCl: sodium chloride (04-002-
1178).

FIGURE 3 | TGA results of construction and demolition waste (CDW),
biomass ash (FA), and paper mill ash (PMA).
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gehlenite, lime, portlandite, and calcium sulfate phases. It is worth
noting that the characteristic peaks of calcite were very intense for
the PMA sample, indicating a high amount of this phase, which
justifies the LOI observed in the PMA. The FA sample is
composed mainly of calcite, quartz, anorthite, phlogopite,
laumontite, and sylvite phases.

The TGA results of the samples (Figure 3) show that the CDW
exhibited three to four main weight losses, the first one up to
200°C associated with water departure and gypsum
decomposition. Then, a continuous weight loss is observed up
to 600°C including portlandite dihydroxylation (400–450°C),
which is not clearly observed and the decomposition of C-S-H
phases (Gallucci et al., 2013) was observed. The third and main
transformation is calcite decarbonization taking place in the
temperature range of 600–700°C (Kucharczyk et al., 2019).
The ashes exhibit three to four thermal transformations. The
weight loss up to 300°C corresponds to structural water departure.
From 400 to 550°C, the portlandite decomposition occurs mainly
for the PMA samples (Vassilev et al., 2013). For FA, a
dihydroxylation reaction of the laumontite phase occurs in the
temperature range of 550–650°C. After that, the decarbonization
reaction is happens between 650 and 800°C. In addition, the NaCl
melting and evaporation induces weight loss for the PMA beyond
800°C (Fraissler et al., 2009).

2.2 Artificial Lightweight Aggregate
Production
2.2.1 Optimizing the Cobinder
The first step in the experiments was optimizing the cobinder
composition consisting of a mixture of blast furnace slag and
biomass ash or paper mill ash. Different BFS percentages were
employed (40, 50, and 70 wt%), and the mixtures were alkali-
activated with NaOH solution at different concentrations (8 and
12 M) (Table 2). The activator to binder ratio was constant (0.5)
for all mixtures. The pastes weremixed for 2 min and then poured
in 2 cm diameter and 2 cm height cylindrical molds. The
mechanical properties of the hardened pastes were assessed via
the compressive strength test. Then, the best mixes were chosen
as the cobinder of CDW to manufacture the artificial lightweight
aggregates.

2.2.2 Granulation of Construction and Demolition
Waste Fines
The second phase consists of producing and characterizing the
artificial lightweight aggregates made from the CDW and the
previously optimized cobinders. Only the cobinders containing
50 and 70% of slag (50 and 30% of ash) are chosen as optimum to
prepare the LWAs. Twelve different granulation batches of 200 g
each were designed by variating the BFS to ash ratio in the
cobinder and the cobinder to the CDW ratio (Table 3). The dry
powders were first homogenized, then the aggregates were
produced using a laboratory-scale high-shear granulator
(Eirich & Co., Germany). Drops of NaOH solution were
added until the desired granule size of 5–8 mm by diameter
was achieved. The NaOH solutions were prepared by dissolving
sodium hydroxide pellets in distilled water. The granulator was
equipped with a 5 L rotating drum and impeller with a diameter
of 10 cm. The rotating speed was 300 rpm, and the tilting angle
was 40°, optimized by preliminary studies. The elaborated wet
granules were cured in the oven at 60°C for 24 h. After that, each
batch was sealed in air-tight bags and stored at room temperature
before testing.

2.3 Characterization Methods
The particle size distribution of the raw materials was measured
by a laser diffraction analyzer (Beckman Coulter LS 13320)
using the Fraunhofer model and a wet procedure (isopropanol).
The chemical composition was determined using X-ray
fluorescence spectroscopy (Omnian Pananalytics Axiosmax
4 kV) for pressed pellets, and the LOI was determined by
thermogravimetric analysis (TGA). The TGA was carried out
using the Precisa PrepASH 129 thermogravimetric analyzer
with a heat rate of 10°/min, and the samples were heated
from 25°C up to 1000°C under N2 atmosphere. The
mineralogical composition of the raw materials and the
aggregates at 28 days was performed by X-ray diffraction
(XRD) using a Rigaku SmartLab 9 kW XRD diffractometer
with a Co Kα radiation (40 kv and 135 mA) Kα (Kα1 =
1.78892 Å; Kα2 = 1.79278 Å; Kα1/Kα2 = 0.5). The XRD
analysis was carried out in the range of 10–70° 2-Theta with
a scanning rate of 0.02°2θ/step. The phase identification was
obtained using the PDXL2 software associated with the PDF-4
2015 database. The microstructure of the developed aggregates
was assessed through SEM in a Zeiss Ultra Plus apparatus
(Germany). The pasted samples were platinum-coated, and
the accelerating voltage used was 5 kV.

2.3.1 Characterization of Granulated Aggregate
The crushing tests were performed after 1, 7, and 28 days with a
Zwick Z100 Roell testing machine (ZwickRoell, Germany) to
determine the aggregates’ engineering properties. The
compression speed was 0.01 mm/s, and the pre-load force was
5 N. The crushing forces of ten granules of each batch were
measured, and the mean and standard deviation were calculated.
The crushed samples after strength test were immersed in
isopropanol solution for three days in order to stop the
chemical reactions for further analysis.

TABLE 2 | Mix design of alkali-activated pastes.

Samples BFS (%) FA (%) PMA (%) NaOH solution (M)

FA-S70-8M 70 30 — 8
FA-S50-8M 50 50 — 8
FA-S40-8M 40 60 — 8
FA-S70-12M 70 30 — 12
FA-S50-12M 50 50 — 12
FA-S40-12M 40 60 — 12
PMA-S70-8M 70 — 30 8
PMA-S50-8M 50 — 50 8
PMA-S40-8M 40 — 60 8
PMA-S70-12M 70 — 30 12
PMA-S50-12M 50 — 50 12
PMA-S40-12M 40 — 60 12
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The loose bulk density and water absorption capacity were
measured according to the SFS-EN-1097-3 (1998). At first, the
samples were dried in the oven at 60°C until constant mass. Then,
the density was calculated.

The measured values of dry mass and saturated surface-dry
mass after 24 h water immersion were used to calculate the water
absorption (WAC). The water absorption was determined using
the following equation:

Water absorption � Wet weight −Dry weight

Dry weight
· 100, (1)

where wet weight is the mass of the granules after the 24 h water
immersion and dry weight is the initial mass of the granules.

The particle density of the aggregate was measured using a gas
pycnometer Accupyc II [Micromeritics Instruments Corporation
(United States)]. Before the test, the granules were milled in a
vibratory disc mill for 30 s at 700 rpm. The porosity of the
granules was determined according to the bulk and particle
density results using the following equation:

Porosity � (1 − Bulk density

Particle density
) · 100, (2)

where bulk density is the value determined by Eq. 1 and particle
density is the density of the powdered material measured by using
a gas pycnometer.

The mechanical and physical test results were correlated to the
granules’ mineralogy and microstructure obtained by the
scanning electron microscopy (SEM) and X-ray diffraction
(XRD) analyses. The microstructure of the produced
aggregates was characterized by using an equipped Zeiss
Sigma microscope.

3 RESULTS AND DISCUSSION

3.1 Optimization of the Cobinder
The blends of BFS-ash were first tested as a cobinder for the
lightweight aggregates. The results of the mechanical properties
(Figure 4) show that low concentration sodium hydroxide

TABLE 3 | Mix design of the lightweight aggregates.

System CDW (%) Cobinder (%) Cobinder composition (NaOH) (mol/L)

BFS (%) FA (%) PMA (%)

10-30FA 90 10 70 30 0 8
10-50FA 90 10 50 50 0 8
10-30PMA 90 10 70 0 30 8
10-50PMA 90 10 50 0 50 8
30-30FA 70 30 70 30 0 8
30-50FA 70 30 50 50 0 8
30-30PMA 70 30 70 0 30 8
30-50PMA 70 30 50 0 50 8
50-30FA 50 50 70 30 0 8
50-50FA 50 50 50 50 0 8
50-30PMA 50 50 70 0 30 8
50-50PMA 50 50 50 0 50 8

FIGURE 4 | Compressive strength of the alkali-activated cobinder at
7 days (A) and 28 days (B).
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solution revealed higher mechanical properties for both the
blends with biomass ash and paper mill ash. The increase of
alkali concentration up to 12 M NaOH induced a drop in the

sample’s strength. Generally, increasing the alkali concentration
promotes the destruction of the BFS bonds Ca–O, Mg–O,
Si–O–Si, Al–O–Al, and Al–O–Si and the formation of more
C-(A)-S-H gel (Pacheco-Torgal et al., 2008; Thunuguntla and
Gunneswara Rao, 2018). However, an excess of alkali has
detrimental effects hindering the formation of the alkali
activation reaction products (Pacheco-Torgal et al., 2008;
Hashim et al., 2015).

In addition, increasing the BFS content of the blends up to
50 wt% leads to strengthening the hardened pastes for both the
kinds of ash blends. Similar results have been found for alkali-
activated BFS-fly ash blends with NaOH solution (Puertas
et al., 2000). BFS is more reactive under mild alkaline
conditions than fly ash. Moreover, fly ash requires the
presence of soluble silicates to initiate the polycondensation
reaction and promote the aluminosilicate gel formation that
strengthens the structure (Yang et al., 2013). Further increase
of the BFS content up to 70 wt% has a slight positive effect on
the mechanical properties of the pastes. The effect of the curing
time on the compressive strength of the samples was not
significant for the biomass-based blends. At the same time,
the paper mill ashes developed strength with time showing
the continuous alkali activation reaction with time. It is
worth noting that the biomass ashes-based pastes revealed
higher mechanical properties compared to the paper mill ash-
based ones due to the higher aluminosilicates content in the
biomass ash. Also, the high-water absorption character of the
paper mill ash could be one of the factors reducing its
reaction rate.

Based on the abovementioned compressive strength results,
the blends containing 50 wt% and 30 wt% of each ash were
chosen to be used as the cobinder with construction and
demolition waste for lightweight aggregate manufacturing, and
8M NaOH solution was chosen to be utilized as the activating
solution.

3.2 Lightweight Aggregate Characterization
3.3.1 Lightweight Aggregate Strength
The mechanical properties of the produced lightweight artificial
aggregates have been assessed via the crushing test. The crushing
force of the aggregates showed a positive correlation to the
percentage of the cobinder used (Figure 5). The samples with
10 wt% of the cobinder showed a very mediocre crushing strength
variating in the range of 4–15 N and 24–39 N at one and 28 days,
respectively. This low strength indicates the low reactivity of the
CDW that acts as a filler rather than a binder. Generally, the
strength of the binders increases with the binder to filler ratio and
is negatively proportional to the filler content (Thomas and
Harilal, 2015; Tang and Brouwers, 2017), which is evidenced
by the increase in the aggregates crushing strength (28 days)
ranging from 32 to 178 % when the cobinder percentage
increased from 10 to 50 wt%.

It can be noticed that the strength development of the
aggregates follows an evolutive trend with time opposing to
the cobinder behavior discussed in the section previously due
to the presence of CDW as a filler that delays the complete alkali
activation reaction of the BFS-ash binder. An increase of strength

FIGURE 5 | The crushing force of the aggregates at 1 (A), 7 (B), and
28 days (C).

Frontiers in Materials | www.frontiersin.org April 2022 | Volume 9 | Article 8771606

Moukannaa et al. Precast Concrete Waste-Based Lightweight Aggregate

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


up to 400% was observed from 1 to 28 days of curing. Moreover,
the aggregates containing the biomass ash revealed a higher
strength than those with the paper mill ash, which is in good
agreement with the cobinder strength results. All the samples
with 50 wt% cobinder (50-30FA, 50-50FA, 50-30PMA, and 50-
50PMA) and the samples with biomass ash and 30 wt% cobinder
(30-30PMA and 30-50PMA) exhibited a similar or higher 28 days
crushing force than the commercial sintered Leca© aggregates
(54 N). Overall, the elaborated aggregates revealed a high strength
of up to 82 N of crushing force at 28th day, indicating the
efficiency of the cold bonding palletization method.

3.3.2 Physical Properties of the Lightweight
Aggregates
The bulk densities of the aggregates are below the upper limit for
the lightweight aggregates according to the SFS-EN 13055 (2016)
standard (1200 kg/m3) and vary in the range of 618–829 kg/m3

(Figure 6A). The density results show that increasing the
cobinder addition rate leads to higher densities and
corresponds to the higher strength measured. The increase of
the cobinder percentage promotes the formation of more binding
products and induces denser structures which positively affects
the mechanical properties (Manikandan and Ramamurthy, 2008;

Thomas and Harilal, 2015). Furthermore, a linear correlation
between the granule density and water absorption is observed for
most of the studied blends except for the mixtures with 50 wt%
biomass ash, for which the R2 of its linear trendline was less than
seven. However, increasing the cobinder addition percentage
results in lower water absorption for most blends. Overall, the
water absorption values of the prepared aggregates (13–19%) are
comparable with the commercial ones (19.7%) and similar to the
values found by previous studies involving aggregates from
powdered materials (Cioffi et al., 2011; Ferone et al., 2013;
Colangelo et al., 2015). Moreover, a linear correlation between
the porosity and mechanical properties of the aggregates is noted
(Figure 6B). The porosity of the aggregates varies between 18.9
and 25.6%. The porosity results are consistent with the
mechanical properties. The samples containing high amount
of construction and demolition waste (10 wt% cobinder)
revealed the lowest crushing force and highest porosity.

3.3.3 Mineralogy and Morphology of the Lightweight
Aggregates
The XRD patterns of the aggregates at 28 days (Figure 7) show
that the mineralogical composition of the mixtures has been
altered by alkali activation due to the dissolution of some initial
phases and the formation of other new crystalline phases. Quartz,
albite, phlogopite, and calcite phases persisted to the alkali
activation. At the same time, the characteristic peaks of
gypsum, sylvite, gehlenite, lime, and sodium calcium chloride
have disappeared, indicating their dissolution during the alkaline
activation reaction. In addition, the formation of sodium calcium
aluminum silicate phase has been observed for all the samples as a
secondary reaction product of the alkali activation of the blends

FIGURE 6 | Correlation between the hardened properties of the
aggregates (A) between the water absorption and density; (B) between the
crushing strength and porosity.

FIGURE 7 | XRD patterns of the elaborated aggregates compared to the
raw CDW (CoKα radiation). As: sodium calcium aluminum silicate (00-019-
1183), Ph: phlogopite (01-070-2125), Gy: gypsum (04-009-3817), Q: quartz
(04-014-7568), Al: albite (04-017-1022), C: calcite (04-008-0198), P:
portlandite (04-014-8866), G: gehlenite (01-079-2421), T: thermonatrite
(sodium carbonate hydrate) (00-008-0448), L: lime (04-011-9020), and NaCl:
sodium chloride (04-002-1178).
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(Fayed et al., 2021). The formation of thermonatrite (sodium
carbonate hydrate) and portlandite phases has been detected for
all the samples with a higher intensity for the samples with high
ashes content. The portlandite phase is formed by the hydration
of free lime from the ashes, whereas the sodium carbonate
hydrate phase is formed due to the reaction of excess sodium
with the CO2 from air, indicating a lower sodium consumption
with high ash content and, hence, a lower alkali activation
reaction rate. The obtained results are in good agreement with
the strength test results, demonstrating an increase in the
sample’s strength with a decrease in ash content. The
characteristic hump of the amorphous alkali activation
reaction products is observed at 25–40° 2 theta range.
However, no variation of its position or intensity has been
detected with the CDW or ash content variation.

The microstructure of the cross-section of the aggregates
has been visualized by the mean of SEM (Figure 8). The effect
of the cobinder can be detected from Figures 8A–D.
Increasing the cobinder and decreasing the CDW content

leads to more dense and less porous aggregates. The
microstructure of the aggregates is characterized by the
pores covering the visualized surface. The increase of the
ash content induces an increase in the number of pores and
holes and a less dense structure (Figures 8C,E). In addition,
the samples containing the paper mill ash show more
interconnected pores, indicating a weak structure
compared to the samples with the biomass ash (Figures
8E,F), which is consistent with the mechanical properties
results of the aggregates.

4 CONCLUSION

The feasibility of lightweight aggregate production by cold
pelletization of alkali-activated construction and demolition
waste blended with BFS and ash has been investigated. The
effects of the CDW content and the composition of the
cobinder used on the properties of the aggregates have

FIGURE 8 | SEM images of the cross section of the elaborated aggregates. (A) 10-30FA, (B) 30-30FA, (C,D) 50-30FA, (E) 50-50-FA, and (F) 50-50PMA.

Frontiers in Materials | www.frontiersin.org April 2022 | Volume 9 | Article 8771608

Moukannaa et al. Precast Concrete Waste-Based Lightweight Aggregate

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


been studied. The results indicate that the BFS content of the
cobinder and the type of ash have a high impact on the
strength development of the aggregates. Increasing the
cobinder content as well as the BFS ratio and using
biomass ash leads to a dense structure and increased
crushing force of the elaborated aggregates. In addition, an
approximatively linear correlation between the aggregate’s
strength and porosity and between the density and water
absorption has been detected. The mineralogical and
microstructural analyses of the samples were in agreement
with the physical properties indicating a higher alkali
activation reaction when the biomass ash is used and with
an increase in BFS content. Overall, the lightweight
aggregates with a higher crushing force than the
commercial sintered aggregates have been successfully
produced. The optimum mixture revealing the highest
strength (82 N) comprises of 50 wt% CDW, 35 wt% BFS,
and 15 wt% biomass ash alkali-activated with 8M NaOH
solution.
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