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Phase-gradient metasurfaces (PGMs) have provided unprecedented opportunities for
manipulating light. Here, we reexamine ordinary and well-studied subwavelength metallic
gratings (OMGs) from the concept of PGMs to provide more insight into their diffraction
properties. We will show that due to the existence of gauge invariance in PGMs, i.e., the
diffraction law of PGMs is independent of the choice of initial value of abrupt phase shift that
induces the phase gradient, the well-studied OMGs can be regarded as a PGM strictly,
with its diffraction properties can be fully predicted by generalized diffraction law with
phase gradient. In particular, the generalized diffraction law reveals that the phase gradient
plays a significant role in the famous effect ofWood’s anomalies and Rayleigh’s conjecture.
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1 INTRODUCTION

In recent years, Phase-gradient metasurfaces (PGMs) have been reported as a way to manipulate
electromagnetic (EM) wave propagation, leading to numerous effects or applications (Yu et al., 2011;
Kildishev et al., 2013; Xu et al., 2016; Sun et al., 2019). These include efficient focusing (Arbabi et al.,
2017), ultrathin cloaking (Ni et al., 2015), photonic spin Hall effects (Yin et al., 2013), metalenses
(Chen et al., 2012; Wang et al., 2018), wavefront control (Xie et al., 2014; Ra’di et al., 2017; Fu et al.,
2019a), and others (Sun et al., 2012; Li et al., 2015; Tymchenko et al., 2015; Khorasaninejad et al.,
2016; Hu et al., 2019). PGMs are periodic arrays of a carefully designed supercell withm unit cells (m
is an integer) that discretely introduce a covering 2π abrupt phase shift (APS) ϕ(x) along the surface
(PGM condition), yielding a phase gradient ∇ϕ(x) that is physically equivalent to the wave vector,
where the abrupt phase shift is the phase retardation when the incident light enters the groove. This
phase gradient modifies Snell’s law, one of the fundamental laws of optics, leading to a generalized
reflection/refraction law (Yu et al., 2011). Because the phase gradient of PGMs is independent of the
initial choice value of APS (Aieta et al., 2015; Wang et al., 2018), the initial value of APS is not unique
and can be arbitrary, which predicts the existence of gauge invariance in PGMs. Such gauge
invariance provides insight to revisit the ordinary metallic grating (OMG) (Born and Wolf, 1999)
that is well studied in plasmonics.

Wood anomalies are well-known effects in the optics community. They were first discovered by
Wood in 1902 in experiments on reflection-type OMG (Wood, 1902) and have been investigated and
attracted much attention from scientists for more than a century (Rayleigh, 1907; Fano, 1941; Hessel
and Oliner, 1965; Maradudin et al., 2016). They have obvious sudden and intense variations in the
reflectance/transmittance of various diffracted orders in certain narrow frequency bands or
alternatively in a certain narrow range of incident angles for a fixed operating frequency
(Maradudin et al., 2016). They are termed anomalies, as ordinary grating theory cannot explain
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themwell. Various efforts (Rayleigh, 1907; Fano, 1941; Hessel and
Oliner, 1965) have been made over the years to understand
Wood’s anomalies. For instance, Ugo Fano attributed them to
the excitations of surface plasmons in periodically corrugated
metal interfaces (Fano, 1941). Rayleigh proposed a well-known
interpretation based on his conjecture that these anomalies occur
at the wavelength at which a diffracted order appears or
disappears at a grazing angle (Rayleigh, 1907). Specifically, for
the nth diffracted order, the anomaly occurs at the wavelength
(Rayleigh, 1907; Maradudin et al., 2016),

λ � (± 1 − sinθin)p/n, (1)
where p is the period of grating, θin is the angle of incidence, and n
is an integer. The Eq. 1 is a special case of the well-known grating
equation λ � (sinθt − sinθin)p/n with sinθt � ± 1, where θt is the
diffraction angle of nth order. The Rayleigh conjecture shows that
for a given grating with period p and incident angle θin, the
diffraction efficiency changes dramatically at wavelength λ in the
scattering spectrum, and diffracted waves arise and propagate
tangentially to the surface of the grating, leading to the passing-off
of a spectrum of higher order (Rayleigh, 1907). The Rayleigh
conjecture was considered a valuable tool for the prediction of
Wood’s anomalies; therefore, these anomalies are also termed
Wood-Rayleigh (WR) anomalies. These anomalies are successful
in many cases, but the physical reason for the conjecture is still
unclear. In particular, there is a lack of reasonable explanation of
why the passing-off of the order n should occur, i.e., the term
sinθt � ± 1 in Eq. 1.

In this work, we start from the gauge invariance of PGMs,
revisit the widely studied OMG from the concept of PGMs and
present insight into Rayleigh’s conjecture. We will show that
ordinary grating theory cannot accurately describe OMG
diffractions. In contrast, only the diffraction law including the
phase gradient can be used to fully determine their diffraction
features. In this diffraction law, the diffraction order of n = 1 is the
lowest order, while the 0th order is a higher diffraction order and
is difficult to couple. This result completely contrasts with the
ordinary understanding of the diffraction law and fully explains
the conjecture of WR anomalies, as shown in Eq. 1. More
importantly, we also show that WR anomalies can be seen in
any OMG, but the physical mechanism can be understood more

deeply and clearly by the gauge invariance in a PGM system. Our
findings provide a way to study the physics in OMGs from the
concept of PGMs, bridging the gap of two fields of optical
metasurfaces and plasmonics.

2 MODEL AND THEORY

A typical reflection-type PGM withm = 2 is shown in Figure 1A,
a textured metallic grating made of a periodic repeated supercell
with a period of p. Each supercell contains two unit cells of
different grooves. The width of each unit cell isΛ � p/2, the width
of both grooves is w, and their depths are h1 and h2, respectively.
To discuss the essential mechanism, the metal is assumed to be a
perfect electric conductor (PEC). Similar results can be found if
the PEC is replaced with real metals (see Supplementary
Appendix SA). Consider a TM (i.e., only magnetic field along
the y-direction) polarized EM wave obliquely incident from the
air onto this PGM, with an incident angle of θin. When light
enters the jth (j = 1, 2) groove and travels along with it, the
reflected wave will experience phase retardation φj � 2βhj, where
β is the wave vector of an EM wave in the grooves. As mentioned
above, the concept of PGM requires a full 2π phase shift in a
supercell, which shows a phase difference of Δφ � 2π/m between
two adjacent unit cells. In this case, m = 2 leads to
Δφ � φ2 − φ1 � π, which can be achieved by adjusting the
groove depth (Ra’di and Alu ,̀ 2018; Cao et al., 2019).
Physically, the diffraction properties of the designed PGM are
governed by (Fu et al., 2019b):

k0sinθr � k0sinθin + κ + vG, (2)
where v is an integer, G = 2π/p is the reciprocal vector, and κ �
Δφ
Δx � 2π/p is the phase gradient. They share the same value but
with different physical meanings: κ is caused by the phase shifts
along the interface, and G is caused by the periodicity of grating
(Xu et al., 2015). Moreover, the diffraction of PGM can be re-
expressed as

k0sinθr,n � k0sinθin + nG, (3)
where n � 1 + v is the diffraction order. Note that Eq. 2 is very
similar in formula to ordinary grating diffraction equation but

FIGURE 1 | (A) Schematic diagram of reflection-type phase-gradient metagrating (PGM) in air, where one period is composed of two air grooves with depths h1
and h2. A TMwave incident to the PGMwith an incident angle θin, and the supercell with period p contains two unit cells with identical widthΛ. The width of groove in each
unit cell is w. (B) For h1 = 0 in (A), the PGM becomes an ordinary metallic grating (OMG).
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quite different in physics because the phase gradient makes the
lowest order corresponding to v = 0.

In fact, the initial value of APS is not unique for the design of
PGMs. If we take the following transformation,

ϕ′(x) → ϕ(x) +Φ0, (4)
where Φ0 is a constant, then ∇ϕ’(x) � ∇ϕ(x). This implies that
when the APS of all spatial positions increases by the same value,
the behaviors of PGMs and the associated diffraction law of Eq. 2
are completely unchanged. The reason behind this is the constant
phase gradient of PGMs. This is a global gauge invariance of
PGMs, which is similar to the electric potential of an electrostatic
field, requiring the choice of zero point.

With this global gauge invariance in PGMs, we choose φ1 � 0
in PGM, as shown in Figure 1A, where h1 = 0. Then, the PGM
becomes an OMG, as seen from Figure 1B, and both cases should
share the same diffraction law of Eq. 2. It should be emphasized
that OMG is generally considered to be a simple periodic grating
with no phase gradient. However, based on this global canonical
invariance, it can be equivalent to a PGM ofm = 2, whose two unit
cells are grooves and metal blocks. In this way, the generalized
diffraction law in the designed PGM can give more profound
physics to the diffraction properties of OMG than that from
ordinary diffraction theory. Ordinary diffraction theory describes
the lowest diffraction order of n = 0, and it is preferred to be
coupled and diffracted in the process of grating diffraction. From
the view of PGMs, however, the lowest diffraction order of the
OMG is not n = 0, but n = 1 corresponding to v = 0 in Eq. 2, which
is preferred to be diffracted. More importantly, Eq. 2 indicates
that n = 0 is a higher diffraction order and more difficult to couple
than n = 1 (Fu et al., 2019b).

To further reveal the diffraction features, theoretical analyses
were performed for the designed PGM and OMG. The total
magnetic field in the air region (z≤ 0) can be expressed as the sum
of the incident and reflected fields
Hy,1 � ∑

n
[δn,0 exp(ikz,nz) + rnexp(−ikz,nz)]exp(iαnx), where

δn,0 is the Kronecker delta function, kz,n �
������
k20 − α2n

√
is the

z-component of the wave vector of the nth-order diffracted
wave, αn � k0sinθin + nG is the wave vector along the
x-direction, and rn is the reflection coefficient of the nth
diffraction order. In this work, for illustrations, we take three
cases of κ � k0, κ � 1.5k0 and κ � 2k0 for discussion,
corresponding to groove widths of λ0/2, λ0/3, and λ0/4,
respectively. These grooves have a cutoff wavelength λcutoff �
2w for the higher-order waveguide modes. Due to the
subwavelength grooves and λ0 ≥ λcutoff, we simply assume that
only a fundamental mode exists inside the grooves with
propagating wave vector β � k0. In this way, the magnetic field
inside the jth groove (0≤ z≤ hj) is given by
Hy,2,j � αj exp(ik0z) + bj exp(−ik0z), where αj and bj are the
amplitude coefficients of the forward and backward waves. In
addition, the corresponding electric fields of each region can be
analytically obtained by solving Maxwell’s equations. By applying
the continuous boundary conditions of electric and magnetic
fields at z = 0 and z = hj, we obtain the following equations:

∑
n
gn(δn,0 + rn) exp(iαnxj) � aj + bj, (5)����������

1 − (αn/k0)2
√ [δn,0 − rn] � ∑

j
(aj − bj)fgnexp(−iαnxj), (6)

where bj � ajexp(2ik0hj) and xj are coordinates of the jth
groove, f = w/p is the filling factor, and gn � sinc(αnw/2). By
solving Eqs 5, 6, we can obtain all order reflection coefficients rn,
where reflectivity is Rn � |rn|2.

3 RESULTS AND DISCUSSIONS

To clearly illustrate our idea, we first consider a PGMwith p � λ0
that corresponds to κ � k0. The geometric parameters are h1 � 0,
Δh � h2 � λ0

4 and w � p
2. The designed PGM is an OMG with a

filling ratio of f � 0.5, where WR anomalies can be observed in
the spectra (see Supplementary Appendix SB). Because they are
equivalent, the diffractions in OMG can be governed by Eq. 2, i.e.,

sin θr, n � sin θin + 1 + v. (7)
In Eq. 7, the order v � 0 is the lowest diffraction order, which

corresponds to n = 1 and defines a critical incident angle of θin � 0
for the emergence of higher-order diffractions. For θin < 0, v � 0,
then sin θr,1 � sin θin + 1. When θin > 0, higher-order diffraction
with v ≠ 0 occurs. Therefore, according to Eqs 2, 7), the wave
vector of the nth reflected wave in x and z direction are kx =
k0sinθin + nG and kz = k0cosθin, respectively. The iso-frequency
contours of both incident light and the diffracted light of all
possible channels are shown in Figure 2A. When θin > 0, higher
orders such as v � −1 and −2 are obtained that correspond to n =
0 and n = −1, respectively. Considering the case of these two high
diffraction orders, ordinary diffraction theory describes that v �
−1 (n = 0) can be preferably coupled to v � −2 (n = −1). However,
this is not possible due to phase gradient. In fact, the higher order
of diffraction follows a rule of L = m + n (Fu et al., 2019b), which
indicates that the higher the diffraction order is, the higher the
coupling and diffraction. This statement strongly contrasts with
ordinary diffraction theory, which reveals that the lower the
diffraction order is, the higher the coupling priority.
Therefore, in the current case, the -1st order is preferred to be
coupled compared to the 0th order. These results are further
validated and confirmed by the diffraction efficiency of each
order. Figure 2B displays the relationship between the reflectivity
of the 0th, 1st, and -1st diffraction orders and the incident angle.
In this plot, solid lines represent the analytical results, while the
circles depict the simulated results obtained from COMSOL
Multiphysics. The analytical results agree well with the
simulated results. In particular, when θin � 30+, the reflection
is mainly dominated by the -1st order rather than the 0th order.
The field pattern of incidence θin � 30+ is shown in Figure 2C,
which clearly describes the retroreflection (Fu et al., 2019a) at
θr � −30+ corresponding to n = −1.

Similar results are obtained for other phase gradients,
i.e., κ � 1.5k0. Figure 3A shows the corresponding iso-
frequency contours, where the two lowest diffraction orders
n = 1 (blue circle) and n = −1 (red circle) are separated. In
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this case, the period is p � 2λ0
3 , which indicates the abrupt change

in diffraction efficiency (i.e., WR anomaly) occurring at θin � 30°,
predicted by Eq. 1. This transition angle can be clearly seen from
the calculated diffraction efficiency of each order, as shown in
Figure 3B. As the incident angle increases from zero and when it
crosses θin � 30° (or θin � −30°), the dominant diffraction order
instantaneously changes from the 0th order to the -1st order (or

the 1st order), although the 0th order channel is still open. Nearly
perfect retroreflection occurs when θin � 48.6+ (see Figure 3C),
where the efficiencies of the n = 1 and 0 orders are 92% and 8%,
respectively. Moreover, when κ≥ 2k0 (p≤ λ0

2 ), only the 0th
diffraction order channel is open for the incident wave, with
the 1st and -1st orders that go out of the range of (−k0, k0). In
this case, the PGM is similar to a perfect mirror, with R0 � 1 for

FIGURE 2 | The case of κ � k0. The relevant parameters are p � λ0, Δh � λ0
4 , andw � p

2. (A) The iso-frequency contours for wave diffraction in PGM. The gray circle
is for the incident wave, with the black arrows indicating the incident direction. The blue circle, gray dashed circle, and red circle represent reflected waves of diffraction
orders of n = 1, 0, and -1, respectively. The directions of the 1st- and -1st-order reflected waves are denoted by blue and red arrows, respectively. (B) The relationship
between reflectivity and incident angle of all diffraction orders. Solid lines and hollow circles represent analytical and simulated results, respectively. (C) Magnetic
field distribution for a nearly perfect retroreflection. The incident angle is 30°, and the reflection angle is −30°.

FIGURE 3 | The case of κ � 1.5k0. The relevant parameters are p � 2λ0
3 , Δh � λ0

4 , and w � p
2. (A) The iso-frequency contours for wave diffraction in PGM. (B) The

relationship between reflectivity of orders of n = -1, 0, 1, and the incident angle. (C)Magnetic field distribution for nearly perfect retroreflection. The incident angle is 48.6°.
The -1st order is dominant in the reflected wave.

FIGURE 4 | Analytical reflectivity as a function of θin and h for κ � 1.5k0. (A)Reflectivity of the -1st order. And the grooves depth at Δh � 0.25λ0 and Δh � 0.75λ0 (the
dashed lines) conform to the phase gradient of ideal value Δφ = π, diffraction of the -1st order is dominant for θin ∈ [30°, 70°]. The abrupt change in diffraction efficiency at
θin � 30° corresponds to WR anomalies. (B) Reflectivity of the 0th order. When Δh � 0.5λ0 (the dashed line), the diffraction efficiency of the 0th order is almost unity.
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all incidences (see Supplementary Appendix SC). Therefore, no
WR anomalies are observed. These results are also consistent with
the prediction of Eq. 1.

It is believed thatWR anomalies can be predicted for any groove
depth, but their intensities are closely related to the depth of the
grooves. Here, we find that when the APS along the interface covers
full 2π, i.e., it satisfies the condition of PGMs, the intensity of WR
anomalies becomes strongest. To illustrate this point, Figure 4
shows the diffraction efficiency (i.e., reflection) of the -1st
(Figure 4A) and 0th (Figure 4B) orders as a function of the
incident angle and the groove depth for κ � 1.5k0. Here, only R−1
and R0 are shown, as the diffraction efficiencies of other orders are
zero for Δh ∈ [0, λ0] and θin ∈ [0, 90°]. By observing the groove
depth with expected phase gradient, whoseΔh � 0.25λ0 and 0.75λ0
(see dashed lines in Figure 4A), we can find the diffraction
efficiency of n = −1 is strongest due to phase gradient Δφ is
equal to the expected value of π. For other depths that deviate from
these ideal values, Δφ differs from the ideal value of π, leading to
imperfect APS along the interface. However, due to the tolerance in
designing PGM (Cao et al., 2021), Eq. 2 still holds when the depth
deviation is not very large. In contrast, the 0th-order efficiency is
constant for all incident angles when Δh � 0.5λ0 (see the dashed
line in Figure 4B). No WR anomalies can be observed even if the
condition of Eq. 1 is satisfied. Therefore, we conclude that the WR
anomalies are related to the phase gradient.

This physics provides us with guidance to design a high-efficiency
retroflector (i.e., θr � −θin) using OMG through the -lst diffraction
channel by adjusting the depth of the groove. The retroflection angle
is determined by the period of p for a working wavelength, which is
given by θrtreo � arcsin(λ0/2p) based on Eq. 3. For κ � k0 and
κ � 1.5k0, retroflection occurs at θrtreo � 30° and θrtreo � 48.6°,
respectively. Figure 5 shows the retroreflected efficiency as a
function of the depth of grooves in both cases, where Figure 5A
is for κ � k0 with other parameters that are the same as those in
Figure 2, and Figure 5B is for κ � 1.5k0 with other parameters that
are the same as those in Figure 3. As shown in Figure 5, the
retroflection efficiency (i.e., the -1st diffraction efficiency) changes
periodically with Δh. When Δh � 0.25λ0 or Δh � 0.75λ0, the
retroflection efficiency is maximum and almost reaches 100%.
Obviously, this outcome is due to the phase gradient. At Δh �

0.25λ0 or Δh � 0.75λ0, the APS is perfectly introduced, leading to
a well-defined phase gradient, which makes the -1st diffraction the
lowest order. This result is consistent with above discussions.

4 CONCLUSION

In summary, we have demonstrated that the well-studied
reflected-type OMGs can be regarded as a PGM with m = 2
due to the existence of gauge invariance in PGMs, with their
diffraction properties that can be explained more deeply by the
generalized grating diffraction equation derived from PGMs than
the ordinary grating diffraction equation. In particular, such a
generalized diffraction equation provides insight into Wood-
Rayleigh (WR) anomalies, revealing that the phase gradient
contributes to the physics of the Rayleigh conjecture. The
gauge invariance and our results build a bridge between the
fields of metasurfaces and plasmonics, enabling many potential
applications of retroreflection, sensors, and wavefront control.
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