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In the context of parametric surrogates, several nontrivial issues arise when a whole curve
shall be predicted from given input features. For instance, different sampling or ending
points lead to non-aligned curves. This also happens when the curves exhibit a common
pattern characterized by critical points at shifted locations (e.g., in mechanics, the elastic-
plastic transition or the rupture point for a material). In such cases, classical interpolation
methods fail in giving physics-consistent results and appropriate pre-processing steps
are required. Moreover, when bifurcations occur into the parametric space, to enhance
the accuracy of the surrogate, a coupling with clustering and classification algorithms is
needed. In this work we present several methodologies to overcome these issues. We
also exploit such surrogates to quantify and propagate uncertainty, furnishing parametric
stastistical bounds for the predicted curves. The procedures are exemplified over two
problems in Computational Mechanics.

Keywords: parametric curves, data-driven modeling, uncertainty quantification and propagation, POD, PGD

1 INTRODUCTION

In a large variety of engineering applications, parametric surrogates are thoroughly powerful tools
(Simpson et al., 2001; Prud’homme et al., 2002; Audouze et al., 2013; Mainini and Willcox, 2015;
Hesthaven et al., 2016; Benner et al., 2020a). They allow a real-time monitoring and control of the
most relevant physical quantities describing a given phenomenon. Moreover, they empower smart
decision making, optimizing time and manufacturing costs. The uncertainty propagation in such
models is also fundamental to operate efficiently in diagnosis and prognosis. In a non-intrusive
framework, given an engineering problem, a Design of Experiments–DoE–based on the problem
parameters is established and the corresponding responses of the system are collected into databases,
which are used as training data to build the surrogate model via Machine Learning–ML–and
Model Order Reduction–MOR–algorithms (Wang and Shan, 2007; Benner et al., 2015;
Hesthaven and Ubbiali, 2018; Rajaram et al., 2020; Franchini et al., 2022; Khatouri et al., 2022).
Such responses are usually the ensemble of several Quantities of Interest–QoI–observed, for
instance, over time (i.e., time series) and can come both from experiments and numerical
simulations.Therefore, each QoI is usually a curve, discretized according to the number of sampling
points. This is the case when, for example, a material is tested and the force-displacement curve is
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extracted for different parameters p defining the material
itself. It is also the case when a sensor placed on a mould
records the pressure evolution during the mould filling from
a resin injected into a mould. In this paper, we propose
several strategies to build parametric curves, illustrating
the procedure over two applications in computational solid
mechanics.

The target quantities representing the system response are
univariate functions, depending on d features (parameters), that
is g(x;p) ∶ X→ℝ, where p = (p1,…,pd) ∈Ω ⊂ ℝd, while X ⊂ ℝ.
The parametric surrogate f X takes as input a new combination of
parameters p ∈Ω and returns an approximation ̃g(x;p) of g(x;p),
that is:

f X ∶Ω→ G
p↦ ̃g (x;p) ∶ X→ℝ,

where G is a given functional space (in most engineering
applications, G ⊆ L2(X)).

Our procedure mainly consists in the application of non-
intrusive nonlinear regressions based on the sparse Proper
Generalized Decomposition–sPGD– (Chinesta et al., 2011;
Borzacchiello et al., 2017; Ibáñez et al., 2018; Sancarlos et al., 2021),
these being efficient under the scarce data availability constraint.
Indeed, in real engineering applications, when dealing with
simulation-based metamodels, data availability is largely limited
by the complexity of the Finite Element–FE–computations.
From the High-Fidelity–HiFi–offline simulations, it is
often possible to define a Reduced Order Model–ROM–,
for instance, by extracting the most relevant Proper
Orthogonal Decomposition–POD–modes from the training
data (Raghavan et al., 2013; Fareed and Singler, 2019).
Consequently, since the curve can be expressed into the
extracted POD reduced basis through a set of weighting
coefficients, the nonlinear regressions can be applied to
predict such coefficients. A similar workflow is applied by
Gooijer et al. (2021), where the POD-based surrogate models
employ Radial Basis Function–RBF–interpolations. For the
sake of completeness, it shall be noticed that the use of
POD-based interpolations–PODI–has several limitations
and drawbacks, particularly when dealing with non-linear
solution manifolds. To alleviate such issues, several works
have been conducted in the framework of interpolations on
Grassmann manifolds and its tangent space, improving the
model robustness over the parametric space (Amsallem and
Farhat, 2008; Mosquera et al., 2018, 2021; Friderikos et al., 2020,
2022).

However, ad-hoc physics-based data pre-processing is a
fundamental step to be embedded in the procedure. Indeed,
when different choices of the parameters carry radically different
physical behaviours, the interpolation in the parametric space can
lead to nonphysical solutions. In such cases, separate regression
sub-models are built, requiring the coupling with some clustering
and classification algorithms, leading to the so-called multi-
regression strategy.

Another non-trivial issue comes when the curves exhibit a
common pattern characterized by some critical points resulting

from a change in the physical behaviour. Indeed, a shift
among the locations of such critical points in the different
curves would cause nonphysical results when employing a
classical interpolation. To overcome this matter, we propose a
parametrization of the curves accounting for the locations of
such critical points and allowing a curve alignment prior to the
interpolation.

The main points addressed in this work are:

1. the parametric modeling of a quantity of interest using
advanced sparse nonlinear regressions;

2. the parametric modeling of a curve where a data alignement
is needed;

3. the statistical parametric modeling based on a parametrized
physical model;

4. the statistical parametric model learned from scarce data
(measurements);

5. and, finally, the concept of data clustering to overcome
bifurcations in the parametric space.

The paper is structured as follows. Section 2 ismainly a review
of some well-known techniques, excepting SubSection 2.3
which illustrates the implementation of the sPGD algorithm
for the prediction of functions defined over an interval (i.e.,
curves). Elements of novelty are introduced in Section 3
and 4, where 1) we propose a curve alignment prior to
regression; 2) we define a statistical model for uncertainty
propagation, furnishing confidence bounds for a parametric
curve; 3) we employ a multi-regression, based on clustering
and classification, to tackle bifurcations in the parametric space,
enhancing the model accuracy. We exemplify the methodologies
over two engineering applications in computational solid
mechanics. The first application concerns a reduced order
model for virtual materials characterized by a parametric
Krupkowski hardening law; the second application is related
to crack propagation analysis in parametric notched specimens
under tensile loading. Section 5 is a short conclusion, in
which possible further developments and approaches are
discussed.

2 METHODS

In this section we briefly summarize the main tools in MOR
employed in this work. For a complete description of the
most recent advances in the MOR community, we refer to
the handbooks by Benner et al. (2020c,b,a) and the plentiful
bibliography therein.

2.1 POD
We assume that a numerical approximation of the unknown field
of interest u(x, t) is known at the nodes xi of a spatial mesh for
discrete times tj = (j− 1)Δt, with i ∈ [1,…,nx] and j ∈ [1,…,nt].
We use the notation u(xi, tj) ≡ uj(xi) ≡ u

j
i and define uj as the

vector of nodal values uj
i at time tj. The main objective of the

POD is to obtain the most typical or characteristic structure ϕ(x)
among these uj(x), ∀j. For this purpose, we maximize the scalar
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quantity

λ =
∑ntj=1[∑

nx
i=1ϕ(xi)u

j (xi)]
2

∑nxi=1(ϕ(xi))
2 ,

which leads to the following eigenvalue problem Cϕ = λϕ, where

Ckl =
nt

∑
j=1

uj (xk)uj (xl) , C =
nt

∑
j=1

uj(uj)T

is the two-point correlation matrix (symmetric and positive
definite). Defining the matrix

Q = [u1 u2 ⋯ unt]

we have C =QQT .
In order to obtain a reduced-order model, we first solve the

eigenvalue problem and select the r eigenvectors ϕi associated
with the highest eigenvalues (truncated SVD at rank r), with in
practice r≪ nx. Thus r eigenvectors are placed in the columns of
a matrix B that allows reducing U into its reduced counterpart
γ, according to U = Bγ. Then, considering the full-size system
KU = F, we have KBγ = F. Premultiplying by BT one gets
BTKBγ = BTF and,with newdefinitions, the reduced counterpart
becomes kγ = f.

The main drawback related to such a procedure is the size of
the eigenproblem to be solved, the size of the correlation matrix
C, nx × nx, with nx scaling with the number of nodes considered
in the problem discretization that can reach in some applications
millions and much more. The so-called Snapshot-POD allows
alleviating the just referred issue (Hilberg et al., 1994). The basic
concept is that, when nt ≪ nx, it is muchmore convenient solving
the eigenvalue problem for ̃C =QTQ, whose size scales with nt,
then retrieve the modes related to the highest eigenvalues.

2.2 PODI
The origin of the non-intrusive POD, comes from the so-called
POD with interpolation. PODI consider different snapshots
related with different values of the model parameter p, U(pi),
i = 1,…,ns, without loss of generality assumed scalar and ordered,
i.e. p1 <… < pns .

Then, as usual in POD-based MOR, the reduced basis is
extracted, ϕ1,…,ϕr. Now, for a given parameter p, with p1 <
p < pns and p ≠ {p1,p2,…,pns}, instead of expressing the searched
solution into the reduced basis U(p) = ∑ri=1γi(p)ϕi, and then
looking for the coefficient γi(p) by Galerkin projection, i.e., by
solving (BTKB)γ = BTF (that requires assembling the matrix and
performing thematrix products before finally solving the reduced
linear system of equations), PODI proceeds as follows.

• Sampling : U(pi) ≡ Ui, i = 1,…,ns;
• Reduced basis extraction: POD is applied to extract the reduced

basis ϕ1,…,ϕr;
• Reproduction: calculation of γi. For that, we look to express

Ui = ∑
r
j=1γ

i
jϕj. Premultiplying byϕk and taking into account the

orthonormality of the reduced basis, it results

ϕT
kUi = γ

i
k.

Repeating for all i ∈ {1,…,ns} and k ∈ {1,…, r}, we obtain γi (the
reduced counterpart of Ui ).

• Interpolation: with the reduced solution representations
γi ≡ γ(p = pi), one is tempted for any other p to proceed by
interpolation, i.e.

γ (p) =
r

∑
i=1

γiFi (p) ,

with Fi(p) the approximation functions, that define an
interpolation as soon as Fi(pj) = δij, with δij the Kronecker delta.

• Reconstruction: with γ(p) obtained, the solution can be
reconstructed everywhere from the nodal valuesU(p) = Bγ(p).

2.2.1 Extension to Multi-Parametric Settings
The just discussed procedure seems very appealing, however, its
extension to highly-multidimensional settings remains difficult
because of usual approximation bases suffer from the so-called
curse of dimensionality.

In the case of moderate dimensionality, the PODI algorithm
is easily generalizable. For that purpose we first reformulate
the PODI described above as follows: the reconstruction
U(p) = Bγ(p) can be expressed in the equivalent form:

U (p) =
r

∑
k=1

γk (p)ϕk;

with γik ≡ γk(pi) known, the interpolation can be expressed as:

U (p) =
r

∑
k=1
(

ns

∑
i=1

γikFi (p))ϕk,

that is directly generalizable to the multi-parametric setting
where the scalar p is replaced by the parameters vector p, with
the interpolation expressed now as

U (p) =
r

∑
k=1
(

ns

∑
i=1

γikFi (p))ϕk.

As previously mentioned the main difficulty associated with
the technique just described is the difficulty of interpolatingwhen
the number of parameters (the size of vector p) increases too
much. Separated representations in sparse settings, addressed
in Subsection 2.3, succeed in circumventing the just referred
difficulty.

2.3 Advanced Sparse PGD-Based
Nonlinear Regressions
Here we discuss the PGD-based regression methods to build
metamodels depending on d features. In particular, we focus on
the case where, for a given choice of the parameters.

1. a single-valued output is measured;
2. a vector-valued output is measured;
3. a single-valued output is measured over a certain interval.
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2.3.1 Single-Valued Output
In the case of a scalar output, the general problems consists of
constructing the function

f (p1,…,pd) ∶Ω ⊂ ℝd→ℝ,

that depends on d features (parameters) pk, k = 1,…,d, taking
values in the parametric space Ω, where a sparse sample of ns
points and the corresponding outputs are known.

The so-called sparse PGD (sPGD) expresses the function f
from a low-rank separated representation

f (p1,…,pd) ≈ ̃f M (p1,…,pd) =
M

∑
m=1

d

∏
k=1

ψk
m (pk) , (1)

constructed from rank-one updates within a greedy constructor.
In the previous expression ̃f M refers to the approximation,
M the number of employed modes (sums) and ψk

m are the
one-dimensional functions concerning the mode m and the
dimension k.

Functions ψk
m, m = 1,…,M and k = 1,…,d are expressed from

a standard approximation basis Nk
m, via coefficients akm:

ψk
m (p

k) =
D

∑
j=1

Nk
j,m (p

k)akj,m = (N
k
m)

Takm, (2)

where D represents the number of degrees of freedom (nodes)
of the chosen approximation and Nk

m is the vector collecting the
shape functions.

In the context of usual regression the approximation ̃f M results
from

̃f M = arg minf ∗‖f − f ∗‖22 = arg minf ∗

ns

∑
i=1

|f (pi) − f ∗ (pi)|
2, (3)

where ̃f M takes the separated form of Eq. 1, ns is the number of
sampling points to train themodel and pi the vectors that contain
the input data points of the training set. Notice that, to avoid
overfitting, the number of basis functions Dmust be D < ns.

The approximation coefficients of each one-dimensional
function are computed by employing a greedy algorithm, such
that, once the approximation up to orderM− 1 is known, theMth
order term reads

̃f M =
M−1

∑
m=1

d

∏
k=1

ψk
m (pk) +

d

∏
k=1

ψk
M (p

k) .

The computed function is expected to approximate f not only
in the training set but in any point p ∈Ω.

The main issue is how to ally rich approximations and
scarce available data, while avoiding overfitting. For that
purpose a modal adaptivity strategy–MAS–was associated to
the sPGD, however, it has been observed that the desired
accuracy is not achieved before reaching overfitting or the
algorithm stops too early when using MAS in some cases.
This last issue implies a PGD solution composed of low order
approximation functions, thus not getting an as rich as desired
function. Some papers describing the just referred techniques are
(Borzacchiello et al., 2017; Ibáñez et al., 2018).

In addition, in problems where just a few terms of the
interpolation basis are present (that is, there are just some sparse
non-zero elements in the interpolation basis to be determined),
the strategy fails in recognizing the truemodel and therefore lacks
accuracy.

To solve these difficulties, different regularizations were
proposed (Sancarlos et al., 2021), combining L2 and L1 norms
affecting the coefficients akm, in order to increase the predictive
performances beyond the sPGD capabilities, or to construct
parsimonious models while improving predictive performances.

2.3.2 Vector-Valued Output
In the case of a multidimensional output, we seek the function

f(p1,…,pd) =
[[[

[

f1 (p1,…,pd)
f2 (p1,…,pd)
⋮

fn (p1,…,pd)

]]]

]

∶Ω ⊂ ℝd→ℝn.

This is a trivial extension of the single-valued function,
where each component fi(p

1,…,pd), for i = 1,…,n, is
fitted independently using the procedures explained in
Subsection 2.3.1.

2.3.3 Single-Valued Output Over an Interval
Let us now consider the case when, d features (parameters), the
system output is a univariate function of the variable x, that
is g(x;p) ∶ X→ℝ, where p = (p1,…,pd) ∈Ω ⊂ ℝd, while X ⊂ ℝ.
The parametric surrogate f X takes as input a new combination of
parameters p ∈Ω and returns an approximation ̃g(x;p) of g(x;p),
that is:

f X ∶Ω→ G
p↦ ̃g (x;p) ∶ X→ℝ,

where G is a given functional space.
Usually, the target function g(x) is evaluated (known) in a finite

number nx of sampling points, that is the discrete ensemble X =
{xj}

nx
j=1
.

In this case, the coordinate x can be considered as an
additional parameter, and the approximation problem can be
reformulated as seeking the function

f (p,pd+1) ∶ Ξ ⊂ ℝd+1→ℝ.

We have dropped the subscript X related to the variable
x since the approximation problem has been recast into a
new parametric framework defined by Ξ. The newly defined
parametric coordinate pd+1 accounts for the location inwhich g(x)
shall be approximated, that is:

f (p,pd+1) = ̃g (pd+1) ≈ g (pd+1;p) .

Such coordinate is thus much richer than the others, given
the very fine discretization in nx points available along this
direction, compared to the sparse knowledge concerning the first
d parametric coordinates belonging to Ω.
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Equation 1 now reads:

f (p1,…,pd,pd+1) ≈ ̃f M (p1,…,pd,pd+1) =
M

∑
m=1

d+1

∏
k=1

ψk
m (pk) ,

where the univariate functions of the first d parameters {ψk
m}

d
k=1,

for m = 1,…,M, are still expressed by the same polynomial
basis, as defined in Eq. 2. However, functions ψd+1

m can be
expressed through standard piecewise linear basis functions (i.e.,
Lagrangian hat functions), defined over the nx discretization
points of the coordinate x:

ψd+1
m (pd+1) =

nx

∑
j=1

Nd+1
j,m (p

d+1)ad+1j,m = (N
d+1
m )

Tad+1m

where nx is the number of discretization and

Nd+1
j,m (x) =

{{{{
{{{{
{

0, x < xj−1
(x − xj−1)/h, xj−1 ≤ x < xj
1− (x − xj)/h, xj ≤ x < xj+1
0, x ≥ xj+1,

with h denoting an uniform discretization step. In particular,

Nd+1
j,m (xi) = {

1, i = j
0, i ≠ j.

Theminimization problem (Eq. 3) can also be recast as

̃f M = arg minf ∗

nx

∑
j=1

ns

∑
i=1

|f (pi,p
d+1
j ) − f

∗ (pi,p
d+1
j )|

2.

With these definitions made, the algorithm runs as previously
explained.

2.3.3.1 PODModes Extraction
Here we reformulate the approximation problem of curves within
a POD-based MOR builder, which can be seen as a data pre-
compression and dimensionality reduction approach. Indeed,
considering the training data {gi(x)}

ns
i=1, for x ∈ X = {xj}nxj=1, the

following snapshots matrix can be built:

S = [g1 g2 … gns] ∈ ℝ
nx×ns ,

where g ∈ ℝnx×1 contains the evaluations of g(x) over the discrete
ensemble X.

A reduced factorization of the snapshots matrix is then
obtained via a standard truncated POD of rank r:

S ≈ UΣVT

where U ∈ ℝnx×r , Σ ∈ ℝr×r , V ∈ ℝns×r . From these, we can define
the matrices of POD modes and coefficients, respectively:

Φ ∶= U = [ϕ1 ϕ2 … ϕr] , Λ ∶= VΣ = [λ1 λ2 … λr]

In particular, thematrixΦ contains, by columns, the functions
of the reduced POD basis {ϕi(x)}

r
i=1 evaluated at points in X,

while Λ collects the projection coefficients into the reduced

basis. A generic curve gk(x) belonging to the training dataset, for
k = 1,…,ns and with x ∈ X, has the reduced counterpart

g (r)k (x) =
r

∑
i=1

λk,iϕi (x) , (4)

and, in particular, its discrete form reads

g(r)k = Λk,•ΦT ,

where Λk,• denotes the kth row of the matrix Λ.
Let us consider now a parametric curve depending on d

features p ∈Ω, that is g(x;p), for x ∈ X. From Eq. 4 it is clear
that, once the reduced basis matrix Φ available, such function
is projected over this basis only through the POD (parametric)
coefficients {λi(p)}ri=1:

g (r) (x;p) =
r

∑
i=1

λi (p)ϕi (x) .

The above equation suggests that a reduced-order parametric
metamodel for the curves can be built considering only the set
of coefficients {λi(p)}

r
i=1. In particular, the following parametric

function shall be constructed:

f (p) =
[[[

[

λ1 (p)
λ2 (p)
⋮

λr (p)

]]]

]

∶Ω ⊂ ℝd→ℝr ,

from the available training dataset {pk,Λk,• = (λk,1,λk,2,…,λk,r)}
ns
k=1

obtained after the POD. This problem can be solved by the
algorithm exposed in Subsection 2.3.2.

2.4 Multi-Regression
Creating a unique regression in large physical and parametric
domains is a tricky issue. Fromone side, constructing a regression
of a quantity of interest is much more accurate than creating
the parametric curve (e.g., the parametric time evolution of the
solution at a certain point), that in turn, becomes much more
accurate than creating a regression of a field. The reason is that
in general regressions are constructed by using the L2-norm, and
consequently, if a given field exhibits strong localizations, these
local behaviors are sacrificed in benefit of a quite good solution
everywhere (on average).

Thus, a valuable route for enhancing accuracy consists in
partitioning the physical space, in order to perform a regression
in each of the resulting patches. Local quasi-linear regressions
perform in general better than rich nonlinear regressions in the
whole space domain.

The main issue in using multiple regressions, one per patch,
is that the continuity can be lost on the patch boundaries. One
could try to enforce the continuity, for example within a Partition
of Unity–PU–framework, however, continuity is not compulsory,
and then, on the patch borders (or in its neighborhood) one
could compute the regressions from both sides and average
them. Another possibility is taking profit of those discontinuities
for refinement purposes, as usually considered within the finite
element method framework.
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In the case of parametric models the issue that we just
discussed not only affects the spatial domain, but also the
parametric one. In that case, making a partition of the multi-
parametric space is not simple. One possibility consists in
clustering the solutions related to the considered sampling, for
example by invoking the k-means. Then, a nonlinear regression
is created from the solutions in each cluster. Finally, the
trickiest issue becomes the way of associating a cluster to any
parameters choice, that is, performing an accurate classification.
The procedure can be summarized in the following steps:

1. clustering high-fidelity solutions related to a design of
experiments;

2. creating a regression model in each cluster (for instance, via
the algorithms presented in Subsection 2.3);

3. constructing a classifier able to associate a cluster to any
parameters choice and to select the most suitable regression
model.

2.5 k-Means
k-means is one of the earliest methods for non-supervised
vector quantization in artificial intelligence (MacQueen, 1967).
In essence, as the Support Vector Machines–SVMs– (Cristianini
and Shawe-Taylor, 2000) would do in the context of supervised
learning models, k-means performs cluster analysis. In other
words, this technique groups a set of objects such that every
member of the group or cluster is more similar (closer) to the
other members of the cluster than to any member of the rest of
clusters.

In the case of k-means, this partition is made on the basis that
each experimental data pertains to the cluster with the nearest
mean. As can be readily noticed, this is equivalent to computing
Voronoi cells in the data. Formally, if we have a set of observations
in the form of high-dimensional vectors (x1,x2,…,xM), we aim
at partitioning these M observations into k sets (k ≤M), S =
{S1,S2,…,Sk}, such that

S = arg minS∗

k

∑
i=1
∑
x∈S∗i

∥ x− μi∥2,

where μi is the mean of each cluster.

3 DATA ALIGNMENT AND UNCERTAINTY
PROPAGATION

In this Section we will present the curve parameterization
based on data alignment to obtain an accurate physics-informed
interpolation. We will exemplify the procedure to study the
mechanical response of parametric materials loaded in tension.

In this Section we consider a parametric study over dog bone
tensile test samples, as sketched in Figure 1. We are interested
in the influence of the 3 parameters (n,K,𝜀0) characterizing the
Krupkowski hardening law (also known as Swift hardening law),
widely used in FEM software

σ = K(ε+ ε0)
n,

FIGURE 1 | Parametric dog bone specimen loaded in tension.

linking the True Strength and the True Strain. 𝜀 denotes the
effective plastic strain, 𝜀0 the offset strain, n the strain hardening
exponent and K the material constant.

The image in Figure 2 top shows two patterns of the Force-
Displacement curve, obtained for two different choices of the
Krupkowski parameters (blue and orange lines). A classical
interpolation of these two patterns would result in the non-
physical black dashed pattern.

In what follows, we propose a procedure to overcome such
spurious effects, based on a curve alignment prior to interpolate.
The method is illustrated over the Force-Displacement curves.
However, for the sake of generality, we refer to such curves as
generic functions g(x), presenting two characteristic behaviors in
the so-called primary and secondary zones. In the specific case
of Force-Displacement, the primary zone is the elastic response
of the material, up to the yield point xE. The secondary zone is
the post yield behaviour up to the failure point xF, as illustrated
in Figure 3. We will also refer to xE as the “transition point” and
to xF as the “end point”, related to the specimen fracture.

We assume that the behaviors in the primary and secondary
zone, g1(x) and g2(x) respectively, and the transition and
end points, xE and xF respectively, depend on a series of
parameters grouped in vector p, i.e. g1(x;p) ≡ g(x ∈ [0,xE];p),
g2(x;p) ≡ g(x ∈ [xE,xF];p), xE(p) and xF(p). Indeed, when
considering different choices of the model parameter
pi = (Ki,ni,𝜀0,i), i = 1,…,ns, one obtains a set of curves, as the

FIGURE 2 | Main issue encountered when using standard interpolations on
non-aligned curves (the black dashed line represents the interpolation
between the two colored lines).
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FIGURE 3 | Behavior zones, transition and end points, for one function g(x).

ones shown in Figure 4, for instance. Such curves correspond to a
sparse DoE (Latin Hypercube) of 20 points in the 3-dimensional
parametric space Ω = IK × In × Iε0, considering the parameters
bounds specified in Table 1. Numerical simulations have been
carried out with VPS simulation software from ESI Group. The
variable x corresponds to the displacement in mm, while the
function g(x) to the force in kN.

Once the transition and end points of each curve have
been determined, the curves can be rediscretized over the
same number of points (through a standard piecewise linear
interpolation, for instance). To align them, we define a

FIGURE 4 | Curves g(x;pi) related to different choices of the model features
pi = (Ki,ni,𝜀0,i), i = 1,…,ns.

TABLE 1 | Parametric ranges.

K (MPa) n 𝜀0

(400, 700) (0.1, 0.3) (0.5, 3) ⋅ 10–3

FIGURE 5 | Functions g1i (y) ≡ g
1(y;pi) (left) and g2i (z) ≡ g

2(z;pi) (right), for
i = 1,…,ns.

dimensionless coordinate in each zone, y in the primary zone,
x ∈ [0,xE], and z in the secondary zone, x ∈ [xE,xF], both defined
through the change of variable

y = x
xE
, y ∈ [0,1] and x ∈ [0,xE] ,

and

z =
x − xE
xF − xE
, z ∈ [0,1] and x ∈ [xE,xF] ,

expressions that hold for each curve g(x;pi), i = 1,…,ns, with

y = x
xiE
, y ∈ [0,1] and x ∈ [0,xiE] ,

and

z =
x − xiE
xiF − x

i
E

, z ∈ [0,1] and x ∈ [xiE,x
i
F] .

Figure 5 depicts functions g1i (y) ≡ g
1(y;pi) and g2i (z) ≡

g2(z;pi).
Actually, this procedure amounts at performing an alignment

based on a dilatation of the curves in the first and secondary zone,
as shown in Figure 6. In such case, we can express the aligned
curves as functions of ̃x ∈ [0,2].

Once the curves have been aligned, the nonlinear regressor
presented in Subsection 2.3.3 can be invoked to build the
parametric metamodel of the curve. This can be done separately
in each zone or over the whole newly defined coordinate
̃x. However, before proceeding with the regression, we

address an ulterior parametrization via the Proper Orthogonal
Decomposition to achieve a further Model Reduction as
discussed in Paragraph 2.3.3.

3.1 POD Modes Extraction
In order to extract the most significant modes able to describe
these functions, the POD can be applied in each group of curves
in Figure 5. This amounts to build the snapshot matrix within
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FIGURE 6 | Functions ̃gi( ̃x), for i =1,…,ns, obtained after dilatation.

each group and perform a truncated SVD. In the case that
serves here to illustrate the procedure, a single mode suffices
for describing the almost linear functions in the primary zone,
that will be noted by ξ1(y), whereas in the secondary zone two
functions are needed, ϕ1(z) and ϕ2(z).

Thus, any function g1i (y) can be expressed ∀i as

g1i (y) = α
i
1ξ1 (y) ,

whereas functions g2i (z), ∀i, read

g2i (z) = β
i
1ϕ1 (z) + β

i
2ϕ2 (z) .

The α and β coefficients can be easily computed by simple
projection, i.e.

∫
1

0
g1i (y)ξ1 (y) dy = α

i
1,

where the normality of ξ1(y) was used. In the same way, and
taking into account the orthonormality of functions ϕ1(z) and
ϕ2(z),

∫
1

0
g2i (z)ϕ1 (z) dz = β

i
1,

and

∫
1

0
g2i (z)ϕ2 (z) dz = β

i
2.

Thus, for each curve gi(x) we succeeded to extract its five
main descriptors: xiE, x

i
F , α

i
1, β

i
1 and β

i
2, all of them related to the

features grouped in vector pi.
Now, each of these descriptors can be expressed

parametrically, xE(p),xF(p),α1(p),β1(p) and β2(p), by using the
regression techniques described in Subsection 2.3.1 for scalar
quantities.

3.2 Curves Reconstruction
When considering a choice of the parameters p, the
curves descriptors are extracted from the regressions

FIGURE 7 | sPGD predictions (green line for training, red for testing) versus
true curve (blue line).

xE(p),xF(p),α1(p),β1(p) and β2(p), the dimensionless coordinates
defining both zones calculated from

y = x
xE (p)
→ x = y xE (p) ,

and

z =
x − xE (p)

xF (p) − xE (p)
→ x = xE (p) + z (xF (p) − xE (p)) ,

and, finally, the curve in each zone reconstructed according to

g1 (y;p) = α1 (p)ξ1 (y) ,

and

g2 (z;p) = β1 (p)ϕ1 (z) + β2 (p)ϕ2 (z) ,

from which the curve g(x;p) can be straightforward obtained via

g (x;p) =
{{{
{{{
{

α1 (p)ξ1(
x

xE (p)
) , x ∈ [0,xE (p)]

β1 (p)ϕ1(
x − xE (p)

xF (p) − xE (p)
) + β2 (p)ϕ2(

x − xE (p)
xF (p) − xE (p)

) , x ∈ [xE (p) ,xF (p)] .

To build the parametric metamodel, 17 curves have been used
to train the sPGD regressor, while the remaining 3 for testing.
Figure 7 shows the resulting predictions over 3 training points
and test points.

3.3 Real-Time Calibration
Now, given an experimental curve g(x), its parameters are
extracted according to.

• xE from the point at which the change of behavior occurs (for
instance, computing the function derivatives bymeans of finite
differences);
• xF is the terminal point;
• α1 follows from y = x

xE
and ∫1

0 g(y)ξ1(y) dy = α1;
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FIGURE 8 | Sketch of curve envelopes.

FIGURE 9 | Confidence Interval of level 0.95 for the parametric
Force-Displacement curve and for the rupture point, for a given choice of μ
and σ.

TABLE 2 | Parametric ranges.

R (mm) S (mm) h (mm)

(3, 8) (0, 25) (0.8, 1.6)

• β1 follows from z = x−xE
xF−xE

and ∫1
0 g(z)ϕ1(z) dz = β1;

• β2 follows from z = x−xE
xF−xE

and ∫1
0 g(z)ϕ2(z) dz = β2.

Then, from the regressionmodels xE(p),xF(p),x1(p),β1(p) and
β2(p), the inverse problem is solved for extracting the associated
parameters, p.

3.4 Statistical Model Derived by
Parametric Curves
With the previously built surrogate model, the curve related to
any possible value of p can be computed in real-time, i.e. g(x;p).
In this section, this surrogate will be employed for uncertainty
quantification.

We assume that each feature pk in vector p is assumed
characterized by a Gaussian distribution defined its mean value

FIGURE 10 | Parametric notched dog bone specimen loaded in tension (top
and side views).

FIGURE 11 | Curves gi(x) = g(x;pi) related to different choices of the model
features pi = (Ri,Si,hi), i = 1,…,ns.

FIGURE 12 | Behavior zones, transition and end points, for one function g(x).

μk and its variance σ
2
k , that is p

k∼N (μk,σ2
k ). Assuming all pk being

independent, we get

p∼N (μ,Σ) , μ = (μk)
d
k=1, Σ = diag (σ) , σ = (σ

2
k )

d
k=1,

where diag(•) is the diagonal matrix of diagonal •.
The aim is linking the sensitivity over the input features with

the one over the output curve. This means computing some
estimators of the average M and the variance Σ of the curve
descriptors for different choices of μ and σ , and from them, by
using the regressions presented in Subsection 2.3, build the set
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FIGURE 13 | Functions g1i (x) ≡ g
1(x;pi) (left) and g1i (x) ≡ g

2(x;pi) (right), with
pi = (Ri,Si,hi), for i = 1,…,ns.

FIGURE 14 | Two different parameters configurations. Top: R = 7.59,
S = 18.23, h = 0.84; bottom: R = 3.75, S = 5.58, h = 1.51 (all dimensions are
provided in mm). The red zone is the part subject to rigid body constraints.

of statistical surrogates:

{
Sg(x;p) ∶ (μ,σ) → (Mg(x;p),Σg(x;p)) ,
SO(p) ∶ (μ,σ) → (MO(p),ΣO(p)) .

(5)

where O(p) denotes any QoI involved in the curves
parametrization (i.e., an output depending on the input
parameters; e.g., xE,xF,α1, β1 and β2 in the example presented
before) andM and Σ the corresponding estimators for mean and
variance, respectively. This allows calculating the envelopes, for a
given confidence, of the curves, as sketched in Figure 8.

To build the surrogate (5), for instance for the curve descriptor
O(p), a training dataset of Ns points shall be generated:

{(μj,σj) ,(MO(pj),ΣO(pj))}
Ns

j=1
.

This can be achieved by means of a Monte Carlo sampling,
which gives the estimators of mean and variance for the curves
g(x;pj(μj,σ j)), and of any descriptorO(pj), for j = 1,…,Ns.

The whole procedure is summarized in Algorithm 1.

:
Figure 9 shows the parametric curve and its statistical sensing,

for a given choice of the input features distribution parameters.
Confidence Intervals have been computed usingAlgorithm 1, for
the curve and the rupture point.

3.5 Statistical Model Derived From
Measures
In this Section we consider that for different choices of
the problem features pi, the measure gm(x;pi) is collected.
We assume that measures contain a significant uncertainty,
modeled again, without loss of generality, by a Gaussian
distribution of null average and variance σ, that is,
N (0,σ2), with the variance assumed independent of the
features p.

In these circumstances applying a regression to fit those values
gm(x;pi), that is f

X,m(pi) = g
m(x;pi), according to the techniques

described in Subsection 2.3 is not a valuable route. The most
valuable solution consists of looking for the baseline regression
f X(p) such that the deviation Di = f X,m(pi) − f X(p) follows the
distribution N (0,σ2), where both the regression parameters
involved in f X(p) and the variance (if not known a priori) are
calculated. In some cases the sensor calibration allows identifying
σ2.

The just described procedure is very close to standardBayesian
inference.

3.6 Model Enrichment
When two regressionmodels are known, for the sake of simplicity
assumed scalar, one related to a physics based model f X,model(p)
and the second one to the measures f X,measure(p), both associated
with the average values in case of uncertainty in the model
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FIGURE 15 | Bifurcation in the parametric space causing completely different crack propagation dynamics.

and the measures, one could define the gap model Δf X(p) from
f X,measure(p) − f X,model(p) ≡ Δf X(p).

Thus, the enriched model reads

f X,enrich (p) = f X,model (p) +Δf X (p) .

As in general the nonlinear character of f X,measure(p) is expected
being much higher than the one of the gap, Δf X(p), a more
valuable route consists in calculating the discrete gap D(pi) =

f X,m(pi) − f model(pi) and then calculate the regression Δ̃f X(p)
fitting the discrete deviations, and the associated enriched model
̃f X,enrich(p)

̃f X,enrich (p) = f X,model (p) + Δ̃f X (p) .

4 DATA ALIGNMENT AND DATA
CLUSTERING

Here we focus on the study of crack propagation in notched
specimens loaded in tension, whose geometry is sketched in
Figure 10. The test piece has a V-shaped notch defect which
is always at the same location (almost bottom-middle). On the
other side of the test piece there is a half-circle groove. The goal
is to predict the crack propagation from the defect based off
of different locations (S) and radii (R) of the groove, as well as
different test piece thicknesses (h). Depending on the location of
the groove, the crack will propagate differently from the defect to
the groove.

We have considered a sparse DoE (Latin Hypercube) of 50
points in the 3-dimensional parametric space Ω = IR × IS × Ih,
with the parameters bounds specified in Table 2. Numerical
simulations (carried out in VPS software from ESI Group)
employ an Explicit Analysis and the EWK rupture model
(Kamoulakos, 2005), using a mesh of 1096218 solid elements.

We focus on the prediction of the Force-Displacement curves
plotted in Figure 11, which are considered as the generic
functions g(x), following the same notation of Section 3.

It can be observed that all the curves present a similar
pattern in the first zone, monotonically increasing, while
the response appears much different in the secondary zone.
A first pre-processing step consists in splitting the zones
as illustrated in Figure 12, where xM denotes the point
where the curve reaches its maximum value, while xF its
endpoint.

Cutting the curves, we obtain the two groups of functions
plotted in Figure 13, which are of course not aligned. However,
they can be expressed as functions of normalized coordinates y
and z, respectively, and aligned following the dilatation procedure
discussed in Section 3.

Once the alignment has been performed, using the usual
nonlinear regression techniques of Subsection 2.3 and same
notations of Section 3, two regression models, one for each
group, can be established:

{ g1 (x;p) ∶= g (x ∈ [0,xM (p)]) = f X1 (p)
g2 (x;p) ∶= g (x ∈ [xM (p) ,xF (p)]) = f X2 (p) .

(6)

In Eq. 6, for the sake of clarity, we have specified xM and
xF since these points are involved into the parametrization of
the functions g1(x) and g2(x), respectively, and thus expressed
parametrically.

As we have previously pointed out, the second group of
functions g2i (x), for i = 1,…,ns, presents really different shapes
depending on the features pi. When bifurcations occur in the
parametric space, the system responses related to two choices
of the model parameters can be completely different. In such
cases, a standard nonlinear regression over the full space can
lead to inaccurate and nonphysical solutions. To enhance the
accuracy of the model f X2 (p), a more valuable route consists in
exploring the parametric space prior to interpolation.This can be
done via a clustering of the system responses. Once the clusters
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FIGURE 16 | Force-Displacement curves corresponding to the two
parameters configurations in Figure 14.

FIGURE 17 | Functions g2i (x) of Figure 13 (right) after clustering, for
i = 1,…,ns.

have been established, several regression sub-models can be built,
minimizing the risk ofmixing spurious effects coming fromother
clusters.

4.1 Clustering
To exemplify the bifurcation problem in the parametric space, we
consider two different configurations of the model parameters,
resulting into the specimens shown in Figure 14.

Figure 15 shows four snapshots of the displacement field
related to the specimens in Figure 14, under axial tensile loading.
The crack propagation follows two completely different patterns,
drastically influencing the Force-Displacement curve, as shown
in Figure 16.

The clustering step can be performed automatically by using
a hierarchical clustering based on the curves shape or on the
location of damaged elements into the finite element mesh. Once
the clusters C1 and C2 have been established, two regression

FIGURE 18 | Confusion Matrices for the SVM classifier (left: training data,
right: test data).

FIGURE 19 | Parametric space and classified points (marker + is used for
test points). The red plane is the separation surface.

FIGURE 20 | sPGD predictions (green line) versus true curve (blue line) for
training data.
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FIGURE 21 | sPGD predictions (red line) versus true curve (blue line) for test
data.

submodels can be trained, one for each cluster, andEq. 6 becomes

{
{
{

g1 (x;p) = f X1 (p)

g2 (x;p) = { f X2,1 (p) for C1
f X2,2 (p) for C2.

(7)

Figure 17 shows the functions in the secondary zone after the
clustering.

In particular, one can remark that fracture occurs early on for
tests belonging to cluster C1 and the final part of the curve is
characterized by a steep slope. On the contrary, tests belonging
to cluster C2 have an endpoint displacement around 15 mm and
present a shallow slope. The clustering allows to avoid averaging
such different dynamics, clearly enhancing the quality of the
regressor.

4.2 Curves Reconstruction and
Classification
For a newly defined choice of model features p∗, the curve
g(x;p∗) is obtained via

g (x;p∗) = { g1 (x;p∗) , 0 ≤ x ≤ xM (p∗)
g2 (x;p∗) , xM (p∗) < x ≤ xF (p∗) ,

where g1 and g2 are obtained through Eq. 7.
The training of the regression models has been performed

using 40 points of the DoE, remaining 10 have been used for
testing.Moreover, a SupportVectorMachine classifier (a Random
Forest classifier could also be used, for instance) has been trained
to select the best regression submodel to predict g2(x;p∗). Such
classifier has shown perfect accuracy, as shown by the Confusion
Matrices in Figure 18. Moreover, Figure 19 shows the separating
surface and classified points in the 3-dimensional parametric
space.

Figures 20, 21 represent the plots of predictions for train and
test, respectively, for 4 data points.

5 CONCLUSION

In this paper we have focused on several nontrivial issues
encountered when a whole curve shall be predicted from
a given number of features. A major argument is the data
alignment to achieve physics-consistent interpolations among
curves and the data clustering to detect bifurcations in the
parametric space. The proposed methodologies rely on adopting
specific parametrizations of the curve and a physics-based pre-
processing prior to the application of any regression technique.
We have also suggested a reduced order parametrization of
the curve via POD coefficients, requiring the prediction of
a few scalar quantities (i.e., the POD coefficients) instead of
the whole curve. Here, without loss of generality, we have
preferred sPGD-based nonlinear regressions, these being efficient
in high-dimensional parametric spaces under the scarce data
limit constraint. Indeed, since our data come from numerical
simulations of complex engineering problems, due to the
high computational complexity of the offline simulations, not
much data are usually available. Moreover, one important
achievement of the work is the definition of a statistical
sensing for uncertainty propagation based on the parametric
model.

We have focused on two applications in computational
mechanics: 1) plastic materials with parametric hardening law,
2) crack propagation in parametric notched specimens. However,
these methodologies can be applied to any time series or generic
curve stem from any context. For instance, in our current
research, we are successfully applying these techniques to solve
many other problems (to cite some, the study of a two-phase flow
dynamics in a heated channel, the composite forming processes
involving a reactive resin injection molding). Moreover, we are
focusing on other physics-based curves interpolation strategies
based on Optimal Transport–OT–(Torregrosa et al., 2022) and
other mappings.
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