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Reconfigurable metasurfaces have been regarded as an emerging subfield of
metasurfaces that can manipulate electromagnetic wave information in a smart
manner. They stimulate a gradual transition in metasurface holography from passive to
active elements. To date, intelligent dynamic holographic imaging schemes typically rely on
iterative or data-driven methods to obtain holograms at a fixed imaging distance, which
significantly hinders the development of intelligent dynamic holographic imaging in
practical scenarios involving high demands for dynamic imaging distances. Herein, a
computer-generated hologram algorithm with a dynamic imaging distance and a
reconfigurable metasurface are proposed, which is referred to as a generator and
physical diffractive network. Simulation results of time—distance division for three-
dimensional imaging are provided to demonstrate the reliability and high efficiency of
the proposed algorithm.
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INTRODUCTION

Holography is one of the most promising three-dimensional (3D) imaging techniques that can
integrally reconstruct an imaging target by recording the amplitude and phase information of
electromagnetic wavefronts(Gabor, 1948) (Leith and Upatnieks, 1962). Breakthroughs in computer-
generated holograms and spatial light modulators(Xu et al.,, 2017) have enabled the creation of
holograms of virtual objects. Holography have garnered significant attention in the fields of
metrology(Kreis et al., 2001; Mundt and Kreis, 2010; Desse and Picart, 2015), data storage
(Hesselink et al., 2004) (Kim et al., 2009), and displays (Cem et al., 2020) (Shi et al, 2021).
However, several challenges remain to be overcome. Reconstruction using bulky macroscale
interference-based generation methods(Tricoles, 1987) has many physical limitations, such as
narrow bandwidths, small fields of view, and multiple diffraction orders.

The emergence of metamaterials(Huang and Chen, 2011) (Chen et al., 2004) in recent years has
provided novel perspectives for the modulation of light and electromagnetic waves. Metamaterials
have generated tremendous attention in the field of cloak(Chen et al., 2007; Xi et al., 2009; Xu et al.,
2012) etc. Metasurfaces(Allen et al., 2020; Han et al., 2021; Hu et al., 2021; Yang et al., 2016; Pfeiffer
and Grbic, 2013) are ultrathin subwavelength planar metamaterials that can control electromagnetic
wavefronts into almost arbitrary profiles. Metasurfaces have become an excellent solution for
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holograms owing to their ability to control electromagnetic
waves(Wang et al., 2016a; Devlin et al, 2016; Zhang et al.,
2016; Yan et al, 2021). Compared with conventional
holograms, metasurface-based holograms provide
unprecedented spatial resolution, high precision and low noise.
The subwavelength pixel-sized unit can contribute to excellent
holographic imaging owing to the elimination of undesired
diffraction orders and improvements in the transmission or
reflection efficiency.

Recently, reconfigurable metasurfaces(Li et al., 2020; Li et al,
2021; Wu et al., 2021; Li et al.,, 2022) have been proposed to realise
various functionalities by integrating them with phase-changing
materials. Reconfigurable metasurfaces have been used to
implement holograms for dynamic control. For instance, coding
metasurface holograms can be generated using a 1-bit Gerchberg-
Saxton algorithm(Li et al., 2017) or a dichotomous neural network
(Liu et al,, 2021) (Liu et al.,, 2022). The iterative-based GS algorithm
must satisfy the Fourier correspondence between forward and
backward diffractions, which exists only in the far field. In terms
of the dynamic imaging distance, an overly large solution space and
phase periodicity results in a network that is difficult to converge.
However, a dynamic imaging distance is required when a complex
imaging environment is involved.

In this study, a holographic imaging mathematical model
was constructed to analyse the inverse design problem, and the
phase-generation problem of the generator and physical
diffractive network (GPDN) was resolved using a two-
channel method. Specifically, the structure of the GPDN
was combined with a physical diffraction model to facilitate
the unsupervised training of the network, including the
metasurface and diffraction layers. The proposed method
can rapidly generate a hologram when the target and
distance are specified. A reconfigurable metasurface for 3D
imaging at approximately 6 GHz was designed to validate the
proposed method. Specifically, the 3D model was partitioned
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into imaging targets and distances at equal spacings, which
generated 20 x 20 supercell holograms in real time, and the
simulation results validated the efficiency and reliability of this
approach.

THEORY AND METHOD

Figure 1 shows a schematic illustration of the proposed
dynamic-distance  holographic imaging system. The
holograms are generated after inputting the image and
distance of the 3D model slice to the generator of GPDN;
subsequently, the reconfigurable metasurfaces yield the
corresponding holograms via a voltage control module.

The Rayleigh-Sommerfeld diffraction formula (Wang et al.,
2016Db). is acknowledged as a forward propagation function from
the phase distribution of metasurfaces to the near-field EM
distribution.

exp (—ikrw)ds

T10

U(r) = jj U(ro)_lcos<n,r10> (1)
y lA

where U (1) and U (r;) represent the electric fields at point Ry on

the metasurface and at point R; on the imaging plane,

respectively; A is the wavelength in air; rq; is the distance

between Ry and R;; cos<mn,rg; > is the inclination factor. In

the near field, it can be expressed in a simpler form as follows:

exp (—ikryg)
————ds 2)

10

Ur) = %ijU(ro)

In a two-dimensional (2D) imaging system, this expression
can be decomposed into a mathematical convolution, as follows:
exp (—ikry)

T2

U(r) = %U(ro)* ro =7 3)

FIGURE 1 | Schematic illustration of holographic imaging system.
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FIGURE 2 | (A) Structure of supercell (B) phase responses of supercell at 0, 8,

and 20 V (C) amplitude responses of supercell at O, 8, and 20 V.
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This formula can be calculated via the Fourier transform to
reduce the computational complexity, as follows:

Ur) = %F'l(P(U(m))*F(%f"“))VO —

0

The effect of each pixel on the imaging is the same at a
fixed imaging distance; however, the phase periodicity of
each pixel causes multi-solution uncertainty. In other words,
the imaging result is the same for a phase hologram and the
initial phase. Furthermore, the addition of a dynamic
imaging distance directly results in network convergence
failure.

To suppress the corner-related scattering effect (Li et al.,
2017). of reconfigurable metasurface units, 2 x 2
reconfigurable metasurface units were arranged in a
supercell. In each reconfigurable metasurface unit, two
planar symmetrical metallic sheets were printed on the top
surface of the substrate, and two varactor diodes were loaded
between them; the substrate had a dielectric constant of 3.5.
For each planar structure, two metallic via holes were drilled
through the substrate to connect the top structure, and they
were independent of the ground to provide a direct current
(DC) bias voltage. Hence, each supercell can independently
realise the required phase by controlling the voltage bias. The
total size of the supercell is pxp*h ( p = 30mm, h = 3mm ).
Four identical sub-cells together make up the supercell. On the
top surface of sub-cell, two planar metal structures of length
n=10mm are printed out g=0.6mm apart. They are

connected by two varactor diodes(SMV-2019 (Zhang et al,,
2013)). Two metallic via holes are drilled to input the biased
direct current (DC) voltages. The 1 nH inductors connect to
the vias to reduce the influence of the feed line on the
electromagnetic response of the unit cell (Figure 2A). At
x-polarization incident wave and DC bias of 0-20V, the
supercell can provide phase variations from -180° to 100°
(Figure 2B) and a reflectivity minimum of 0.85at 6 GHz
(Figure 2C).

Figure 3 shows the structure of the proposed GPDN. It
comprises two main modules: a generator and a physical
diffraction model. The generator uses a special multi-layer
perceptron (MLP) model. In particular, the 40*40 image is
stretched and stiches with the distance to form the 1601*1
vector for input of the MLP. The input layer generates dual
channel vector in the first hidden layer via two parallel
independent weights and biases. The second hidden layer
and output layer work similarly to the above. Finally, the
400*2 feature vector characterizing the real and imaginary
parts is captured and then synthesizes the phase parameters
ranging from —m to 7 via Atan2 function. This approach
allows the generator of GPDN to uniquely output any phase,
which can avoid network oscillation owing to the periodicity
of the phase. The physical diffractive model comprises two
layers: a metasurface layer and a diffractive layer. The
metasurface layer synthesises phase parameters based on
the phase response with the ground performance of the
supercell, which is further compressed to -180° to 100°, and
the amplitude varies with phase. This network structure of
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FIGURE 3 | Structure of GPDN, which comprises two modules: generator and physical diffractive model. Physical diffraction model includes metasurface and
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GPDN solves the physical limitations of reconfigurable
metasurface units. Our GPDN can be used by re-measuring
the phase compression relationship and amplitude-phase
change curve for any new reconfigurable metasurface unit.
Subsequently, the metasurface layer generates a 40 x 40
metasurface hologram via reshaping and unsampling
functions, and every four adjacent pixels share the same
phase value corresponding to a supercell. Subsequently,
holographic imaging results are generated by the diffractive
layer and divided by its maximum value to maintain its value
in the range [0,1] to facilitate comparison with the imaging
target. It is noteworthy that each diffractive matrix is
determined by the imaging distance, and to ensure the
rigor of the diffraction computation, other parameters in

the diffraction matrix are not updated in the backward
propagation. The diffraction layer renders it to avoid
construct a label for supervised training and directly
obtains the imaging results at the corresponding imaging
distance; the diffraction layer also allows the special
solution channels at each imaging distance to be retained
to alleviate the severe multi-solution problem caused by the
large solution space.

The mean square error (MSE) is calculated as an index to
measure the similarity between the reconstructed and target
images; it facilitates the GPDN in completing gradient
backward propagation.
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FIGURE 4 | Imaging results of hologram obtained via numerical simulation based on generator inputs of d = 200, 300, and 400 mm.
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FIGURE 5 | (A) Three-dimensional airplane model segregated into two-dimensional Images at five different distances (B) Holograms yielded by generator based on
images and distances (C) Diffraction imaging results obtained via numerical simulation at corresponding distance (D) Full-wave simulation results based on supercell
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MSE = % Z[(Eout - Etarget)z] (5_1)
OMSE 2
55 = Nl (B~ Bone)] (5-2)

RESULTS AND DISCUSSIONS

Approximately 60,000 data points including imaging distances of
200-400 mm and random imaging targets were generated, and
they supported the unsupervised training of the GPDN. The
Adam optimiser was set at a learning rate of le-3, and the batch
size was 64. A program was developed using a PyTorch deep-
learning platform on a GPU (1050T1). After approximately 1000
epochs, the MSE loss stabilised. We selected imaging distances of
200, 300, and 400 mm, as well as random handwritten digit
targets from the MNIST dataset as inputs to generate 64
holograms for each distance. To ensure the rigor of the
reconstruction results, holographic imaging corresponding to
imaging distances was numerically generated using the
diffraction formula. Figure 4 shows the imaging results, which
indirectly illustrate the effectiveness of the hologram and the
interpretability of the GPDN’s physical diffraction model.

For 3D holographic imaging, an increase in the spatial
dimension implies more meta units required to restore the
information. Currently, partitioning a 3D target into a 2D
target and the distance to reduce the complexity of the
imaging system is a smart scheme. An airplane model can be
segmented into slices every 5 cm along the Z-axis. The slices and
corresponding imaging distances are shown in Figure 5A, which
can be used to generate the target holograms by the generator, as
shown in Figure 5B. Figure 5C shows the imaging numerical
simulation results generated using the exact diffraction formula.
To verify the effectiveness of the proposed GPDN model based on
physics, we used the commercial software CST STUDIO SUITE
to perform a full-wave simulation (Figure 5D), and the supercell
structure was as described above. In particular, the results of the
full-wave and numerical simulations were highly consistent,
which is attributable to two reason. First, the metasurface and
diffractive layers provide many physical constraints to the
hologram, which renders the holographic imaging system
similar to the practical scenario. Second, the phase holograms
generated by any network are considered messy, which may
destroy the periodicity of the metasurfaces and result in unit
coupling. Therefore, a supercell was used in this system.
Moreover, excellent performance was no longer required in
the optical response of the metasurface unit, such as 2n phase
coverage or amplitude uniformity. Consequently, the
abovementioned GPDN structure is applicable to other
imaging problems and hence can reduce difficulties in
complex imaging systems.

The holographic display of the 3D model can be realised using
time-distance division technology. However, the cost is expressed
in the time domain. Nonetheless, the reconfigurable metasurface
unit can expand the time dimension. Each subholographic image
can be completed by a one-time adjustment of the phase

Metasurface Hologram

distribution, ie. holographic imaging is not completely
generated until metasurfaces traverse the phase distributions
corresponding to all imaging distance points. Based on the
datasheet of the varactor diode (SMV-2019), its response
speed is 10ns. The DAC (AD5535) requires 32
communication instructions to control the output voltage, and
the baud rate is 115200, which corresponds to 270us. Thirteen
DACs were used in this study. Therefore, approximately 3.6ms
was required to change the phase distribution of the metasurfaces
at a time. The metasurfaces achieved a stable electric field
distribution with 3.6ms. Regarding the time of five-phase
reconstruction as a period T, which was 18ms, the same sub-
image appeared once every 18ms, as shown in Figure 6. In a
continuous and stable periodic cycle, it appears as a complete
holographic 3D image and has been fully implemented for high-
quality imaging.

CONCLUSION

In this study, a reconfigurable metasurface holographic imaging
system with adjustable distance was designed. In particular, we
innovatively added a metasurface layer to the system, which
allows the output of the hologram to be adjusted according to
the optical response of the unit, thereby rendering the entire
physical diffractive model more accurate. Consequently, the
imaging system can rapidly regulate the state of the
reconfigurable metasurface elements to control the distribution
of near-field electromagnetic waves and display 3D holographic
images. In addition, the proposed method can be easily extended
to dynamic frequencies. We believe that a more comprehensive
imaging system will be developed in the near future.
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