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INTRODUCTION

Research is continuously searching for new knowledge niches or technical developments that could
have a societal impact and game-changing fundamental findings. Since the biomedical field entangles
several disciplines, a particular problem is tackled from different approaches which helps to develop
new solutions that can crystallize in biomedical devices with applications in diagnosis, therapy or
theranostics. Certainly, the properties of the materials under study govern the scope of the
biomedical research, e.g., quantum dots (QDs) and its fluorescence properties for imaging and
detection or magnetic nanoparticles (NPs) for magnetic resonance imaging (MRI) and
hyperthermia. In this sense, elastin-like polypeptides (ELPs) are not different and their
capability to assemble into nanoparticles by themselves has naturally attracted most of the
attention for their use in biomedical devices. Therefore, less efforts have been made in their
application in NP synthetic procedures. ELPs are genetically engineered repetitive proteins derived
from tropoelastin. Their thermoresponsive properties allows the formation of supramolecular
structures by phase separation in a reversible fashion. In aqueous solvents below their transition
temperature (Tt) they are solubilized, while above Tt they acquire hydrophobic character and
collapse causing the segregation. This reversible conformational change from random coil to
primarily type-II β-turns leads to the formation of a coacervates (Löwik et al., 2010). The Tt or
lower critical solution temperature (LCST) is defined by the hydrophilic/hydrophobic balance of the
amino acid sequence (VPGXG), were X can be any residue except proline (Varanko et al., 2020). This
property has been widely used for recombinant protein solubilization and purification in which the
protein of interest is elongated with an ELP polypeptide and then subjected to an inverse transition
cycling (ITC) procedure to separate the target protein from the lysate products (Fletcher et al., 2019).
Since the building blocks of ELPs are natural amino acids, their biocompatibility, biodegradability,
and non-immunogenicity make them even more attractive for applications in tissue engineering or
nanomedicine (Jenkins et al., 2021). One of the first examples of their application in the
nanomedicine field was carried out by Chilkoti laboratory, where the introduction of a cysteine-
containing segment allowed the conjugation of a doxorubicin derivative through a pH cleavable
linker (Andrew MacKay et al., 2009). This drug-polypeptide conjugate was able to form 100 nm
nanoparticles and deliver their chemotherapeutic payload in a murine cancer model, inducing an
almost completely tumor regression after a single dose. ELPs engineering also can serve as a
straightforward way to incorporate protein-based targeting agents or encapsulate the protein of
interest with high efficiency (van Oppen et al., 2019; Pille et al., 2021).

Since inorganic nanoparticle synthetic processes are varied but needed for physiological stabilization in
biomedical applications, one may expect that ELPs have been widely applied as NP coatings. Instead, best
examples of organic-inorganic hybrid materials based on elastin-like polypeptides found in the fabrication
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of biomedical devices are minded for applications as tissue
engineering, hydrogels actuators, cardiovascular implants or
antimicrobial materials between others (Anh et al., 2013; Wang
et al., 2013; Mbundi et al., 2021). The main approach to build
hybrid NP-based biomedical devices is to perform a conjugation
of the ELP to the surface of the nanoparticle but also ligand exchange,
hydrophobic interactions or physical immobilization have been used
in a post-synthetic route (Ta et al., 2017; Zhang et al., 2018; Alvisi
et al., 2021). In the other hand, regarding the design of ELPs to
stabilize or synthesize NPs only a few examples arise. Fahmi et al.
reported the successful stabilization of CdSe NPs to form fibers in
aqueous media through the incorporation of glutamic acid as a gest
residue in the ELP to coordinate Cd (II) ions prior to their
precipitation with NaHSe Fahmi et al. (2010). In parallel Alvarez-
Rodriguez and coworkers carried out the generation of ELP-stabilized
gold nanoparticles through cysteine residues in one pot for their use
as stimuli responsive optical sensors and detectors for biological
applications Alvarez-Rodriguez et al. (2010). More complex
structures have been recently achieved by Zhou et al. by coupling
the biomineralization of iron oxide NPs with further biosilicification
triggered by lysine residues which delivers a green route to obtain
magnetic thermoresponsive nanohybrids in one pot Zhou et al.
(2021). Another example of ELPs opportunities in synthetic
procedures is the incorporation of specific protein domains other
than targeting moieties able to trigger the biomineralization of the
assemblies. Mimicking the silica formation in diatoms, the elongation
of ELPs with silaffin domains as triggers of the formation of silica
structures led to discrete sub-100 nm diameter hybrid ELP-silica
particles Han et al. (2015). This way, researchers have unveiled that
the ELP tunability is highly versatile and useful for building
biomedical devices, especially the ones with stimuli-responsive
behavior that allow to control their performance in a precise manner.

RATIONALE

Generally, two main routes are used to build stable nanoparticles:
their surface modification/stabilization after the NP growth
(post-synthetic procedure) or the introduction of the

stabilizing agents that also take part in the NP synthesis (in
situ stabilization). Therefore, two key features of ELPs that can
actively contribute to the NP synthetic procedures: their guest
residue flexibility, and solubility in organic solvents. The control
over polypeptide sequence allows to choose the guest residues to
match the desired ELP properties besides their Tt, e.g., net charge
or metal binding capabilities. Simultaneously, their lack of
secondary structure and organic solvent solubility expand their
use to synthetic procedures that most of the proteins cannot
participate, due to poor solubility or unreversible precipitation
that hinders a proper refolding. Thus, ELPs are an excellent
platform to exploit the properties of inorganic nanoparticles into
biomedical devices.

Sequence Tunability
The introduction of specific residues in fixed locations but also
nature-inspired sequences make ELPs capable to program
organic–inorganic interactions to form hybrid structures
(Figure 1). This is especially important when only the
combination of both components can address the specific
needs of an application, besides an expansion of the synthetic
portfolio which is indeed valuable. Curiously, this concept has
been applied to a much lesser extent in ELP-templated synthesis
for the fabrication of physiologically stable hybrid nanoparticles,
employing ELPs as an active part of the synthetic procedure. As
presented before, this methodology is not only capable to address
the stabilization of the nanoparticles but also their
biocompatibility, which is a major concern in the use of some
heavy metal nanoparticles in biomedical field. Furthermore, the
control of NP size and its properties has been done already with
peptides or engineered proteins (Li et al., 2021; Uribe et al., 2021).
These strategies reveal how guest residues as tyrosine, cysteine or
tryptophan are capable to drive reduction, condensation or
coordination of species that guide the formation of 1D
nanostructures, as well as NPs stabilization.

Organic Solvent Solubility
Aside the chemical diversity of the guest residues and motifs that
can be engineered into ELPs they are essentially random coils that

FIGURE 1 | The variety of guest residues that can be tailored in the polypeptide sequence enrich the capabilities of ELPs, bringingmany opportunities for their use in
nanoparticle synthesis (left). Summative scheme to gather the background, current status and future developments in nanoparticle synthesis through ELPs.
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can be solubilized in organic solvents with different polarities.
(Verheul et al., 2018; Zhao et al., 2020) This property has been
exploited by researchers not only to perform ELPs purification
but also for the fabrication of biomedical devices through
processes as electrospinning or 3D bioprinting. (Putzu et al.,
2019; Dai et al., 2021) Specially revealing is the work carried out
by Elsharkawy and colleges where ELPs are used to control the
biomineralization of apatite nanocrystals by tuning the
disorder–order ratio. Elsharkawy et al. (2018) Despite the
aqueous green synthetic routes are preferred, solubility in
organic media can lead a good approach to build materials
that cannot be fabricated in water. (Zhang et al., 2013; Desai
et al., 2016) This solubility performance of ELPs could allow them
to act as stabilizers in organic solvents during the synthesis of the
NPs from metal salts but also as transfer agents from an
immiscible organic phase to an aqueous media in a
straightforward way, which eases the post-synthetic treatment
and therefore benefit its further industrial applications. Again,
added to the solubility, the diversity in the guest residues available
by protein engineering make ELPs useful for metal coordination
or surface stabilization in organic media. These features are
indeed key aspects in the synthesis of nanoparticles using
metal alkoxides by non-aqueous sol–gel chemistry or thermal
decomposition of organometallic precursors. New advances in
sol–gel chemistry avoiding calcination which includes alternative
heating processes and lower-temperature routes are extensively
reviewed (Niederberger, 2007; Danks et al., 2016) and have to be
adapted to allow the use of polypeptides in this synthetic
processes. The advantages of this sort of pathways are the
enhanced control over the kinetics of the reactions and
therefore the crystallization of the nanoparticles.

DISCUSSION

In summary, despite the versatility showed by ELPs as an active
part of different synthetic procedures the state or the art has been
mostly focused on the use of ELPs to assemble into NPs or in
combination with small molecules, polymers, or post-synthetic
modification nanoparticles. Only a few examples are found in the
literature were ELPs drive the formation or stabilization of NP
surface during the synthesis in aqueousmedia. Hence, there is still
room for the expansion of the methods and approaches to build
new NP-based biomedical devices. Biomineralization is an
exciting route to build many different nanoarchitectures,

especially due to the growing evidence around the role that
disordered proteins may play in building well-defined
structures in addition to ELPs sequence versatility. Moreover,
the secondary structure adopted by ELPs inside coacervate phase
lays out the question about their capability to contribute with
directionality to the nanocrystal growth, as showed for other
mineralization processes mention above. Biomimetic routes can
also be carried out in organic matrices that allow to control the
organic-inorganic interactions. In the other hand, after a
thoroughly literature review no examples of the use of ELPs as
surface stabilizers or structure-directing agents in non-aqueous
solvents were found. (Portehault et al., 2018) The rational design
of ELPs in combination with synthetic procedures in organic
solvents may lead to new synthetic approaches that can simplify
or circumvent certain processes at purification or production,
which in turn will benefit the pipelines of NP-based biomedical
devices fabrication and support their application feasibility. Since
the interests in enlarging the portfolio of inorganic
nanostructures are increasing, the exploration of novel
compositions or synthetic approaches may retrieve original
properties or discover new behaviors of the designed nano-
objects.
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