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An acoustic hologram is crucial in various acoustics applications. The reconstruction
accuracy of the acoustic field from the hologram is important for determining the
performance of the acoustic hologram system. However, challenges remain in acoustic
hologram reconstruction where the conventional reconstruction methods generally lack
accuracy, complexity, and flexibility. Although the deep learning (DL)–based method has
been used to overcome these limitations, it needs the labeled training data to optimize the
network with a supervised strategy. To address the problem, we put forward a new
unsupervised DL-based reconstruction method in this work, termed PhysNet-AH, which is
implemented by integrating a convolutional neural network with a physical model
representing the process of acoustics hologram formation. The results demonstrate
that we only need to provide PhysNet-AH with a single acoustic field recorded from
the hologram, the network parameters can be optimized automatically without the labeled
training data, and finally implement the acoustic hologram reconstruction with high
accuracy, in terms of SSIM and mean squared error indicators. Furthermore, with the
trained model, the robustness and generalization capability of PhysNet-AH have also been
well-demonstrated by reconstructing the acoustic fields from different diffraction distances
or different datasets. As a result, PhysNet-AH opens the door for fast, accurate, and
flexible acoustic hologram–based applications.

Keywords: acoustic hologram, acoustic field reconstruction, unsupervised learning, physical model network, wave
propagation

1 INTRODUCTION

Recently, the acoustic hologram has gained extensive attention in acoustics applications, for example, bio-
medicine (Sapozhnikov et al., 2015; Jiménez-Gambín et al., 2019; Baudoin et al., 2020; Ma et al., 2020),
particle manipulation (Melde et al., 2016; Baudoin et al., 2019; Baresch and Garbin 2020), 3-D display
(Kruizinga et al., 2017; Fushimi et al., 2019), acoustic metasurface/metamaterial (Fan et al., 2020; Zhu
et al., 2021), etc. Briefly, the acoustic hologram is a technique that allows recording and reconstructing
information of the desired acoustic field. The accurate reconstruction of the hologram is important for an
acoustic hologram system. Currently, various methods have been proposed for acoustic hologram
reconstruction. However, these methods generally have some limitations in computation complexity,
reconstruction accuracy, flexibility of implementation (Marzo et al., 2015; Sapozhnikov et al., 2015;Melde
et al., 2016; Marjan et al., 2018; Michael 2019; Fushimi et al., 2021), etc.

Currently, deep learning (DL) has been successfully used to solve inverse problems in imaging fields,
for example, scattered image recovery (Sinha et al., 2017; Li et al., 2018; Yang et al., 2019), phase imaging

Edited by:
Han Jia,

Institute of Acoustics (CAS), China

Reviewed by:
Yifan Zhu,

Southeast University, China
Xuecong Sun,

Key Laboratory of Noise and Vibration
Research, Institute of Acoustics,

Chinese Academy of Sciences, Beijing

*Correspondence:
Xin Liu

xinliu.c@gmail.com

†These authors have contributed
equally to this paper

Specialty section:
This article was submitted to

Metamaterials,
a section of the journal
Frontiers in Materials

Received: 09 April 2022
Accepted: 28 April 2022
Published: 02 June 2022

Citation:
Li B, Lu M, Liu C, Liu X and Ta D (2022)

Acoustic Hologram Reconstruction
With Unsupervised Neural Network.

Front. Mater. 9:916527.
doi: 10.3389/fmats.2022.916527

Frontiers in Materials | www.frontiersin.org June 2022 | Volume 9 | Article 9165271

ORIGINAL RESEARCH
published: 02 June 2022

doi: 10.3389/fmats.2022.916527

http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2022.916527&domain=pdf&date_stamp=2022-06-02
https://www.frontiersin.org/articles/10.3389/fmats.2022.916527/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.916527/full
http://creativecommons.org/licenses/by/4.0/
mailto:xinliu.c@gmail.com
https://doi.org/10.3389/fmats.2022.916527
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2022.916527


(Rivenson et al., 2018), and digital hologram reconstruction (Wang
et al., 2018;Wu et al., 2018; Ren et al., 2019; Francesc et al., 2020; Yin
et al., 2020). Especially, a DL method based on U-Net has been
introduced to generate a hologram for the desired acoustic field, as
demonstrated by Lin et al., (2021). Nevertheless, it is noteworthy that
the DL method requires large paired data (the raw data and the
labeled data) for training a good network. However, in many
conditions, it is hard or impossible to acquire enough labeled
data. In addition, the computational cost for the network training
is generally high because of the amount of the used training data.
These factors limit the practicability and flexibility of the DL-based
method in acoustic holograms.

To overcome the limitations, here, we put forward a new DL-
based method to reconstruct acoustic holograms with an
unsupervised strategy, termed PhysNet-AH, which is achieved by
combining a convolutional neural network (CNN) with a physical
model representing the process of acoustic hologram formation. The
main superiority of the PhysNet-AH method is that it can be
achieved without the need for a training label. That is, we only
need to input a single acoustic field intensity from the hologram into
the PhysNet-AH model, and the network parameters will be
automatically optimized and eventually implement acoustic
hologram reconstructions with high accuracy. As a result, we can
eliminate the need for a great quantity of the labeled data in the
training stage of the network. To our knowledge, similar methods
have not yet been reported previously in the acoustic hologram field.

Briefly, this method uses an end-to-end network combining
the CNN and Transformer (Khan et al., 2021; Liu et al., 2021) to
learn the local and the global features of the acoustic hologram.
Together, referring to the study by Wang F et al., (2020), a
physical model is constructed and used during network training.
Here, the physical model enables the calculation of the diffracted
acoustic field from the network output by the angular spectrum
approach, which is sequentially utilized to calculate loss with
input data for optimizing the network parameters. In this work,
PhysNet-AH is evaluated with a series of acoustic structures, such
as digits, letters, and some symbols, acquired from different
public datasets (MNIST and Chars74K). The results confirm
that even though only a single unlabeled data source is
utilized to train the model, PhysNet-AH makes the possibility
of reconstructing the diffracted fields from the holographic
structure with high accuracy, robustness, and generalization.

The organization of the rest of this study is as follows. In Section
2, the unsupervised DLmethod containing network framework, loss
function, optimization strategy and angular spectral approach is
introduced. Section 3 verifies the effectiveness of the method for
acoustic holographic reconstruction in different conditions and
analyzes the results. Finally, in Section 4, the relevant results are
discussed and summarized.

2 METHODS

The framework of the proposed unsupervised PhysNet-AH
method is shown in Figure 1. Briefly, when using the proposed
method, we only need to provide PhysNet-AH a single acoustic
field intensity ℘(x, y; z � d) from the hologram, which is a

diffracted pattern of a target object ℵ(x, y; z � 0), with a
holographic recording distance z = d. The network
parameters can be automatically optimized, and finally the
acoustic hologram reconstruction can be implemented.
Especially, when training the network, the proposed
PhysNet-AH method does not require the ground truth
ℵ(x, y; z � 0). Instead, a physical model H is constructed
and then used to calculate the acoustic field intensity
~℘(x, y; z � d) from ~ℵ(x, y; z � 0) by the angular spectrum
approach. Sequentially, the error between the calculated
~℘(x, y; z � d) and the measured ℘(x, y; z � d) is calculated
to update the network parameters. Comparably, in the
conventional DL-based methods, the ground truth
ℵ(x, y; z � 0) must be known and the network is optimized
by calculating the error between ℵ(x, y; z � 0) and
~ℵ(x, y; z � 0). The angular spectral approach used for data
generation and physical model is detailed in Section 2.1. The
proposed unsupervised neural network method integrated
with the physical mode is described in Section 2.2.

2.1 Data Generation Based on the Angular
Spectral Approach
In this work, we adopt the angular spectral approach (ASA) to
synthesize the training and testing dataset. The ASA is an
effective method to calculate the diffraction propagation of
waves, which can calculate the acoustics fields parallel to the
initial plane from a holographic recording by spreading each
spatial frequency component of the diffraction wave (Zeng and
McGough 2008; Zeng and McGough 2009). In detail, the
acoustics field in an initial plane is defined as the input of
the angular spectrum approach, and the output from the
angular spectrum approach is the acoustics fields at the
hologram recording distance of d. The spatial frequency
domain propagation of acoustic waves in a linear
homogeneous medium is described as follows:

P(kx, ky, z) � P0(kx, ky, 0)ejz
������
k2−k2x−k2y

√
, (1)

where kx and ky represent the discretized transverse
wavenumbers and k2x + k2y + k2z � k2. Here, k � ω/c, ω denotes
the angular frequency, and c denotes the sound speed in the
medium. z is the diffraction distance, that is, the hologram
recording distance from the initial plane. P0(kx, ky, 0)
represents the angular spectrum of the input acoustics field
p0(x, y, 0) at the initial plane, which is the 2-D Fourier
transform of the field with regard to x and y. P(kx, ky, z) is
the angular spectrum of the acoustics field in z plane parallel to
the initial plane.

The acoustics field in each subsequent plane is then obtained
by applying a 2-D inverse Fourier transform to P(kx, ky, z), with
respect to kx and ky, as follows:

p(x, y, z) � 1
4π2

∫∫P(kx, ky, z)dkxdky. (2)

The resulting intensity map ℘ � ‖p(x, y, z)‖ is utilized as the
diffraction data to train the network.
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2.2 Network Architecture
To implement the unsupervised learning strategy, in this work,
PhysNet-AH is constructed by integrating a neural network with
a physical model. Considering that U-Net is an effective end-to-
end convolutional neural network used for solving various image
tasks, here, U-Net is used as the main structure of the network, as
shown in the black dotted rectangle of Figure 1. In detail, the
network consists of four downsampling blocks, three multiple
sequence alignment (MSA) Transformers (Rao et al., 2021), and
four upsampling blocks. Also,the skipped connections are applied
between every two blocks between downsampling and
upsampling layers to achieve residual learning. The input to
the network is a measured diffracted acoustic field intensity
from the holographic recording at the distance of d, and the
corresponding output is the estimate of the acoustics target object
at the initial plane. Sequentially, the output is numerically
propagated by the physical model to synthesize the acoustic
field intensity at the distance of d, which is further used to
calculate the loss for optimizing the network parameters
during training. Details about the network are described as
follows:

First, two 3 × 3 convolution layers, each followed by batch
normalization (BN) and a ReLU, are adopted to extract the
shallow feature maps of the input. In each downsampling
block, a 2 × 2 maximum pooling with a stride of 2, two 3 × 3
convolution layers followed by BN and ReLU, and a Channel
Attention (CA) layer are stacked sequentially to encode the
shallow features into the more abstract and meaningful
features. Then, three MSA Transformers are used as the
bottleneck to enrich the extracted features and achieve the
global information feature extraction. After encoding, four
upsampling blocks, where each block contains a transposed
convolution and two convolution layers with BN and ReLU,
are utilized to enlarge the feature size and decode the abstract
feature to the output. Furthermore, skip connections are adopted
between the features of the same size (see the black arrows in

Figure 1). Here, the feature of the downsampling blocks and the
corresponding upsampling feature are concatenated by these skip
connections to achieve feature reuse.

A transformer based on the self-attention mechanism is recently
proposed, which is capable of learning and extracting information
among any position of data. Inspired by the global information
extraction of the transformer, researchers gradually apply it to
computer vision tasks and have achieved remarkable performance
(Ho et al., 2019; Wang H et al., 2020; Khan et al., 2021; Liu et al.,
2021; Rao et al., 2021). So, in this work, the MSA Transformer block
is utilized at the bottleneck of the network. The MSA Transformer
block considers the features obtained by downsampling blocks as
aligned sequences, where rows of features correspond to sequences
and columns are positioned in the aligned sequences. For the core of
this block, the axial attention and multi-head self-attention are
adopted for row attention implementation and column attention
implementation, respectively, which have high computational
efficiency and enable the model to capture the full feature map
context (Ho et al., 2019; Wang H et al., 2020; Rao et al., 2021). The
structure of this block is demonstrated in Figure 2.

The design of the loss function is extremely important in the
unsupervised method. To more effectively update network
parameters (weights and bias), here, the loss function is

FIGURE 1 | Flowchart of the PhysNet-AH method for acoustic hologram reconstruction. Measured acoustic field intensity ℘(x, y; z � d) from the hologram at the
distance of d is the input of the network. The output of the network is the estimated target object ~ℵ(x, y; z � 0), which is then numerically propagated by physical model H
to synthesize the acoustic field intensity ~℘(x, y; z � d). Themean square error, l1 loss, and structure similar loss between ℘(x, y; z � d) and ~℘(x, y; z � d) are calculated as
the loss to optimize the model.

FIGURE 2 | Architecture of the MSA Transformer block. Here, the
residual connection is used between the adjacent sub-modules. The first sub-
module is used to achieve a single attention map of all rows by using an axial
attention layer. The second sub-module is used to extract the feature for
columns of input feature maps by using a multihead self-attention layer. The
last sub-module is implemented by using a multilayer perceptron layer.
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calculated by combining mean squared error loss, l1 loss, and
structural similarity (SSIM) loss (Wang et al., 2004). The formula
is described as follows:

ℓ(℘, ~℘) � ����℘ − ~℘
����22 + λ1

����~℘����11 + λ2(1 − SSIM(℘, ~℘)), (3)
where℘ is the input of the network, ~℘ denotes the diffracted acoustic
field calculated by propagating the network output with physical
model H, and λ1 and λ2 denote the weight coefficients. Here,
referring to the study by Zhao et al., (2017), λ1 � 0.2 and λ2 � 0.8.

During the training process, Adam optimization is adopted,
and the maximum training epoch is 500. The decay strategy is
used for the learning rate in order to ensure that the training
quickly and stably converges. In detail, the attenuation is set to 0.5
for every 200 epochs, with the initial learning of 0.001. The
proposed unsupervised PhysNet-AH method is implemented by
Pytorch, and the training process is executed on equipment with a
16-GB NVidia Tesla V100 GPU, 2 Intel Xeon Gold 6130, and
192 G DDR4 REG ECC. In this work, the computational time for
the training procedure is about 10 min.

3 EXPERIMENTS AND RESULTS

In this work, the numerical simulation of the acoustic
hologram is realized by the angular spectrum approach. In
detail, the target image with the size of 256 × 256 pixels is
placed in the x–y plane at z = 0 mm (the initial plane) and is
then illuminated by a plane wave. Here, the excitation
frequency is set as 2 MHz, the sound speed is set as
1,500 m/s, and the wavelength is 750 μm. The diffracted
pattern is recorded at z = 10 mm (13.33λ), 20 mm (26.67λ)
and 30 mm (39.99λ) from the initial plane. The size of the
recorded acoustics field from the hologram is set as 38.4 ×
38.4 mm2 (51.2λ x 51.2λ), with a resolution of 256 × 256 pixels.
Here, the acoustics target images are acquired from the
Modified National Institute of Standards and Technology
(MNIST) database including the handwritten digits and the
letters (Deng 2012) and the Chars74K database containing the
symbols used in both English and Kannada (Campos et al.,
2009). These data are sequentially used to generate the
training and testing data by the ASA method.

FIGURE 3 | Acoustic hologram reconstruction results of different acoustic targets are utilized to evaluate the feasibility of the PhysNet-AH. The first row shows the
diffraction-limited acoustic field intensity from the holograms for digits 2, 5, and 6 at z = 10 mm, which are used as the input of the network. The second row shows the
holographic reconstruction of the abovementioned acoustics fields, which are obtained by PhysNet-AH. The last row shows the merged images of the target digits
(ground truth) and the corresponding reconstructed images. Red displays the ground truth, green corresponds to the reconstructed results of PhysNet-AH, and
yellow represents their overlaps.
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3.1 Evaluating the Feasibility of PhysNet-AH
in Acoustic Hologram Reconstruction
First, we verify the feasibility of PhysNet-AH in implementing
acoustic hologram reconstruction, which is demonstrated by
using unseen target images randomly selected from the test
dataset. Figure 3 shows the corresponding reconstruction
results. The 1st row of Figure 3 shows the diffraction-
limited acoustic field intensity from the holograms for
different target digits (2, 5, and 6) at the distance (z =
10 mm), which are utilized as the input of the network. The
2nd row of Figure 3 shows the holographic reconstruction of
the abovementioned acoustics fields, which are acquired by the
proposed PhysNet-AH method. The last row of Figure 3
describes the merged images of the target digits (ground
truth) and the reconstructed images. Here, the true digits
are represented in red, and the reconstructed images are
shown in green. Correspondingly, the overlapping parts of
the two images are shown in yellow.

The results demonstrate that there is a high overlap (see the
yellow color in the last row of Figure 3) between the ground truth
and the result reconstructed by PhysNet-AH, indicating that high
reconstruction accuracy can be acquired by the proposedmethod.
Furthermore, to quantitatively evaluate the acoustics field
reconstruction quality of PhysNet-AH, two quantitative
indicators, that is, mean squared error (MSE) and structural
similarity index (SSIM) are calculated. In this case, the
normalized MSEs between the reconstruction images and the
true target images (ground truth) of the digits 2, 5, and 6 are
0.013, 0.013, and 0.019, respectively. The corresponding SSIMs of
digits 2, 5, and 6 are all above 0.8. These quantitative results
further confirm that the proposed unsupervised PhysNet-AH
method enables effectively implementing holographic

reconstruction by the network model trained only with a
single unlabeled sample.

3.2 Evaluating the Robustness of
PhysNet-AH in Acoustic Hologram
Reconstruction
To evaluate the robustness of the PhysNet-AH in acoustic
hologram reconstruction, the rotated acoustic fields are
incorporated into the trained model and the corresponding
results are shown in Figure 4. The 1st row of Figure 4 depicts
the diffracted acoustic field from the hologram of the rotated digit
4 at z = 10 mm. The 2nd row of Figure 4 depicts the
corresponding reconstruction results from the abovementioned
diffracted acoustic fields. The true target images are described in
the 3rd row of Figure 4.

The results show that as expected, PhysNet-AH can effectively
reconstruct the diffracted acoustic field from the holographic
structure, even if the test image is the transformation of the
original target image. Furthermore, to quantitatively evaluate the
robustness of the model, SSIM and MSE indicators are calculated
for each case. Here, a high average SSIM of 0.83 with a standard
deviation of 0.005 and a low averageMSE of 0.015 with a standard
deviation of 0.0007 are obtained, indicating that good stability
and anti-disturbance capability can be obtained by PhysNet-AH.

Moreover, we also demonstrate the reconstruction capability
of PhysNet-AH at different diffraction distances, which is used to
further evaluate the robustness of PhysNet-AH. Figure 5 depicts
the corresponding reconstruction results. The 1st row of Figure 5
depicts the diffracted acoustic fields from the holograms of digits
3 at different distances (z = 10, 20, and 30 mm). We can observe
that the diffracted images have more self-interference–related

FIGURE 4 | Acoustic hologram reconstructed results for the rotated target images of digit 4 which are used to evaluate the robustness of PhysNet-AH. The first row
shows the diffracted acoustic field intensity from the hologram of the rotated images of 4 at z = 10 mm. The second row shows the corresponding reconstruction results.
The last row shows the target images (ground truth).
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spatial patterns with the increase in distance, which results in a
blur and is hard to distinguish the true structure. The 2nd row of
Figure 5 depicts the reconstruction images obtained by PhysNet-
AH. Comparably, the last row of Figure 5 depicts the merged
images with the true target digit and the reconstructed image,
where red corresponds to the ground truth, green corresponds to
the reconstructed results, and yellow represents their
convergence.

The results show that even though only single unlabeled data is
utilized to train the network model, and the proposed PhysNet-
AH method can also effectively reconstruct the acoustic field at
different diffraction distances. In addition, we also quantitatively

evaluate the reconstruction quality of PhysNet-AH at z = 10, z =
20, and z = 30 mm, in terms of SSIM andMSE indicators. Table 1
summarizes the corresponding quantitative results calculated
from 100 independent trials at each distance. These
quantitative results further confirm the reconstruction
robustness of PhysNet-AH. In addition, we can also observe
that although PhysNet-AH can effectively implement acoustic
hologram reconstruction for different diffraction distances, the
reconstruction performance decreases slightly with the increase
in the distance.

3.3 Evaluating the Generalization of
PhysNet-AH in Acoustic Hologram
Reconstruction
To further validate the generalization of PhysNet-AH, we test the
trained model with the MNIST and the Chars74K datasets, which
are different from the training data. The 1st row of Figure 6
depicts the diffracted acoustic field intensities of different letters
and symbols from different datasets. The 2nd row of Figure 6
depicts the reconstructed acoustic field. Comparably, the last row
of Figure 6 depicts the ground truth in different datasets.

FIGURE 5 | Acoustic hologram reconstruction results of digit 3 at different holographic recording distances (z = 10, 20, and 30 mm) are used to evaluate the
robustness of PhysNet-AH. The first row shows the diffracted acoustic field intensity from the holograms of digit 3 at z = 10, 20, and 30 mm. The second row shows the
corresponding reconstruction results from the abovementioned acoustics fields. The last row shows the merged images of the target digits (ground truth) and the
reconstructed images. Red represents the ground truth, green represents the reconstructed results of PhysNet-AH, and yellow represents their overlaps.

TABLE 1 | Quantitative results of acoustic hologram reconstruction at different
diffraction distances (z = 10 mm, z = 20 mm, and z = 30 mm). For each
distance, 100 independent trials are used and calculated.

Distance SSIM MSE

Z = 10 mm 0.84 ± 0.03 0.016 ± 0.006
Z = 20 mm 0.79 ± 0.02 0.031 ± 0.010
Z = 30 mm 0.76 ± 0.03 0.047 ± 0.018
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The results show that although the model is trained only with a
single digit from the MNIST dataset, PhysNet-AH can also
effectively reconstruct the acoustic fields from a different
database, for example, the MNIST letters and the symbols used
in both English and Kannada with an overall satisfactory
reconstruction quality. However, there are still some divergences
between the reconstruction results and ground truth, especially for
the complex structure (see the 4th and 5th columns in Figure 6). The
main reason maybe the lack of enough information for unseen data
because the network model of PhysNet-AH is trained only by single
unlabeled data without the training label.

4 DISCUSSION

Challenges remain in acoustic hologram reconstruction. The
conventional reconstruction methods generally lack computation
complexity, reconstruction accuracy, and flexibility of
implementation. Although the DL-based method has been used
to overcome these limitations, it needs large labeled data to optimize
the network with a supervised strategy. This work puts forward a
new unsupervised DL-based reconstruction method (PhysNet-AH),
which is realized by integrating a convolutional neural network with
a physical model. Different from the conventional DL-based
methods, the proposed unsupervised method is trained to learn
the underlying relations between the acoustic field domain and target
domain only from a single unlabeled sample. Then, the trained
model can be used to effectively reconstruct the acoustic field from
the hologram without human intervention.

The results demonstrate that PhysNet-AH can effectively
reconstruct the diffracted acoustics fields from a holographic
recording, even though only single unlabeled data is adopted to
train the network (see Figures 3–6). Furthermore, the diffracted
acoustic field generated from different transformations/distances
(see Figure 4 and Figure 5) or the diffracted acoustic field
generated from different datasets (see Figure 6) can also be
effectively reconstructed by the trained model, indicating good
robustness and generalization capability of PhysNet-AH in
practical applications. Moreover, the quantitative results from
SSIM and MSE indicators further confirm the reconstruction
capability of PhysNet-AH, where a high SSIM and low MSE are
obtained, respectively. Based on the previous results, we believe
that the proposed PhysNet-AH method can effectively
implement acoustic field reconstruction only using one sample
without the need for the labeled data and make it possible to
implement acoustic hologram reconstruction in an unsupervised
way, without reducing the reconstruction performance, which
greatly extends the practicability of PhysNet-AH in applications.

However, it should be noted that in this work, the reconstruction
capability of PhysNet-AH is validated based on the simulated data.
As a data-driven method, the performance of PhysNet-AH might
have limitations in practical applications. In addition, in this work,
U-Net is selected and used as the main framework of the network.
Considering that the network architecture may affect the hologram
reconstruction quality, the reconstruction accuracy may be further
improved by using more effective networks. Furthermore, as a proof
of concept, here, the angular spectral approach is used to construct
the acoustic hologram physical model. For simplification, the

FIGURE 6 | Generalization evaluation of the proposed unsupervised PhysNet-AH method with different datasets. The first row shows the diffracted acoustic field
intensities from different datasets at z = 10 mm. The second row shows the corresponding reconstruction results from the abovementioned acoustic fields. The last row
shows the target images (ground truth) of the two English letters “m” and “Q” in the MNIST dataset, one English letter B, and two symbols of Kannada in the Chars74K
dataset.
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reconstruction results from the more complex physical model (e.g.,
including scattering, attenuation, etc.) are not demonstrated.
Moreover, our current work mainly focuses on implementing
single acoustics field reconstruction, and the reconstruction of
multiple acoustics fields from one hologram has not been
investigated. The systemic study will be performed in future work.

In conclusion, PhysNet-AH as an unsupervised learning method
paves the way for implementing acoustic hologram reconstruction
with high accuracy, robustness, and generalization, which extends
the flexibility in various acoustic hologram–based applications.
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