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The demand for thermoplastic composites is continuously increasing because these
materials offer many advantages over their thermoset counterparts, such as high
toughness, long storage time, easy repairing and recycling, and ability to be
thermoformed and heat-welded. However, the manufacturing of thermoplastic
composite parts using liquid composite moulding techniques (e.g. resin transfer
moulding, vacuum assisted resin transfer moulding . . . ) is often tricky in the case of
melt processing where high temperature and pressure should be chosen to impregnate
the fibre reinforcement because of the high melt viscosity of thermoplastics. These issues
may be overcome by means of reactive processing where a fibrous preform is first
impregnated by a low viscosity mono- or oligomeric precursor and the polymerization of
the thermoplastic matrix then occurs in-situ. This article draws a state of the art on the
manufacturing characteristics of continuous fibre reinforced acrylic-based reactive
thermoplastics (e.g. polymethymethacrylate (PMMA) such as Elium

®
), which are

becoming more and more popular compared to other fast curing thermosets and
thermoplastics for in-situ polymerization. Techniques for the in-situ polymerization of
methymethacrylate monomers, characterization and modelling of the rheological
properties and polymerization kinetics, and some manufacturing related issues such as
polymerization shrinkage are reviewed. Particular features of the use of reactive PMMA in
different manufacturing techniques of continuous fibre reinforced composites and
potential industrial applications are also introduced. Finally, some perspectives for the
academic research and industrial development are proposed.

Keywords: thermoplastic composites, composites manufacturing, reactive processing, in-situ polymerization,
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INTRODUCTION

ThermoPlastic Composites (TPCs) provide some competitive advantages over thermoset
counterparts such as better toughness and impact resistance, recyclability, weldability and
reshapability, etc. (Mitschang, 2012; Stavrov and Bersee, 2005; Steenkamer and Sullivan, 1998;
Krawczak and Maffezzoli, 2020). Today, thermoplastic composites account for 40–50% of polymer
matrix composites and this share is steadily increasing (JEC Observer, Current trends in the global
composites industry 2021–2026). Currently, the most popular form of thermoplastic composites is
discontinuous glass fibre reinforced thermoplastics for injection moulding, whereas most of
structural composites reinforced by continuous fibres are still thermoset ones.
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In the case of continuous fibre reinforced thermoplastic
composites, the standard material is prepreg or semipreg
where fibre reinforcement has already been impregnated by
matrix material before the manufacturing of structural parts.
These semi-products such as prepreg or semipreg should be
submitted to another step of manufacturing process such as
thermoforming or automated tape layup (a.k.a. automated
fibre placement) to obtain final composite parts (Gutowski
et al., 1987; Chow, 2002). Hence, the total cost of
manufacturing process is higher than that of direct
manufacturing routes such as liquid composite moulding
processes of thermoset composites. The main reason for the
need of semi-product preparation is high viscosity of
thermoplastic melt which makes the impregnation process
difficult (Wang and Gutowski, 1991; Taketa et al., 2020). The
issue of high viscosity of thermoplastic melt poses a problem in
semi-production fabrication as well. Therefore, some special
methods are often employed to obtain prepreg sheets. The
most representative one is the use of a pre-mixed form of
reinforcing fibres and solid state matrix material such as
powder impregnated fabric, commingled yarn and film
stacking, which is consolidated under heat and pressure (van
Rijswijk and Bersee, 2007). Meanwhile, the direct impregnation of
thermoplastic melt into fibre reinforcement via hot melt method
is also employed for thermoplastic prepreg fabrication.
Nevertheless, the residue of solvent used to decrease the
viscosity of thermoplastic melt can be a technical issue. For
instance, the evaporation of N-methylpyrrolidinone (NMP)
during the melting process of polyetherimide (PEI) prepreg is
a typical problem in hot melt method for high molecular weight
polymer prepreg manufacturing (Hou et al., 1998; Mairtin et al.,
2001). Moreover, due to the high viscosity of thermoplastic
matrix, a high processing temperature is required to
manufacture complex parts without process-induced defects
such as imperfect impregnation or wrinkle formation. In
particular, for high performance polymers such as
polyphenylenesulfide (PPS) which have a high melting point,
all the steps of prepreg and final part manufacturing require high
temperature for melting, leading to an increase in the number of
cross-links, and hence resulting in a more brittle matrix (Chen
et al., 2021). This high processing temperature related to the high
viscosity and high melting point of thermoplastic melt can be
even crucial in the case of natural fibre reinforced composites
because natural fibres such as flax and hemp fibres begin to
thermally degrade at a temperature range between 170 and 200°C
(Kim and Park, 2017).

All the aforementioned problems related with melt processing
can be substantially addressed by the reactive processing of TPCs
(van Rijswijk and Bersee, 2007). During the impregnation
process, a low viscosity mono or oligomeric precursor flows
into the pores between fibres and the precursor is
subsequently polymerized in-situ in the mould. Therefore, this
kind of reactive processing methods are analogous to Liquid
Composite Moulding (LCM) processes such as Resin Transfer
Moulding (RTM) and Vacuum Infusion (VI) or VacuumAssisted
Resin Transfer Moulding (VARTM) of thermoset composites
where fibre reinforcement is impregnated by low viscosity

monomer and the resin is cured inside the mould (Bodaghi
et al., 2020; Matadi Boumbimba et al., 2017; Obande and
Bradaigh, 2021). In general, this reactive processing requires a
high process temperature for in-situ polymerization, however and
is not adapted for large part manufacturing (e.g. wind turbine
blade, boat hull, etc.) where mould heating is relatively tricky, and
for natural fibre reinforced composites manufacturing where the
process temperature cannot exceed the temperature of thermal
degradation of fibres.

Recently, acrylic resin for reactive processing such as Elium®
(Arkema) is attracting great attention by virtue of its low process
temperature (even room temperature) and recyclablility. It has
great potentiality for the manufacturing of large structures such
as wind turbine blade and yacht which are generally produced at
room temperature. Moreover, the recycling of those structures at
the end of life cycle is a big issue nowadays. Hence, recyclable
thermoplastic composites can be an excellent alternative to the
conventional thermoset composites.

During the last few years, many research papers have been
published about the characterization of Elium® and its
composites (Obande and Bradaigh, 2021). Conversely, the
research on the processing science is still in its infancy even if
some industrial developments are on-going. In this mini-review,
we make a critical review on some important topics related to the
processing of reactive acrylic composites, such as rheology,
polymerization kinetics and manufacturing issues (shrinkage,
volatile generation, etc.). Even if the main focus of this mini-
review is made on LCM processes, other manufacturing routes,
such as filament winding (e.g. high pressure vessel
manufacturing) and pultrusion, are also considered. In the
end, we propose some perspectives about the future research.

PROGRESS IN IN-SITU POLYMERIZATION
AND ACRYLIC RESINS (ELIUM

®
)

During the last two decades, a number of precursors for reactive
thermoplastics have been developed. In the beginning, some
precursors of reactive thermoplastic materials have been developed
to obtain thermoplastic polymers via in-situ polymerization such as
cyclic butylene terephthalate (Bank et al., 2004; Parton and Verpoest,
2005), caprolactam (van Rijswijk et al., 2009), and laurolactam
(Mairtin et al., 2001; Zingraff et al., 2005), and more recently
L-lactide (Louisy et al., 2019; Miranda Campos et al., 2022).
Representative polymers for reactive processing are
Polybutyleneteraphthalate (PBT), thermoplastic polyurethanes
(TPU), polyamides including Polyamide-6 (PA-6) and Polyamide-
12 (PA-12) (van Rijswijk and Bersee, 2007). A crucial disadvantage of
such thermoplastic systems is the requirement of high processing
temperature, for example above 150°C for PA-6 and PA-12, 180°C for
PBT and 270°C for TPU to achieve a viscosity of a fewPa.s (Figure 1).
Qin et al. made a review of the processing temperature and the
corresponding viscosity of commercially available thermoplastic
monomers for in-situ polymerization, including several bio-based
monomers suitable for reactive processing of polymers such as PA-6
and polylactide (PLA), and reported a similar conclusion (Qin et al.,
2020).
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The only material for in situ polymerization at room temperature
which is available in themarket is Elium® (Gardiner, 2015) (Qin et al.,
2020) (Miranda Campos et al., 2022). Elium® acrylic resin is a
mixture of 2-Propenoic acid, 2-methyl-, methyl ester or
methylmethacrylate monomer (MMA) and acrylic copolymers.
The combination of the resin with a compatible initiator system
such as a benzoyl peroxide allows for the conversion of MMA to its
polymer PMMAunder diffusion-controlled reactions in a free radical
polymerization. They provide the same mechanical properties as
compared to epoxy resins (Table 1).

The resin with a viscosity of around 10 mPa·s allows to
impregnate all the empty pores between the dry fibre
reinforcement in its net shape in a closed mould such as
RTM/VARTM. Moreover, some of its variants can be cured at
ambient temperatures (Elium, 2022). TPCs with an acrylic
polymer such as polymethylmethacrylate (PMMA) are more
cost-efficient than the aforementioned first-generation reactive
resins and have comparable tensile modulus to those of epoxy
(Liu and Wagner, 2007). The synthesis of PMMA can be carried
out by bulk free radical vinyl polymerization of the

FIGURE 1 | Processing temperature and viscosity ranges of various polymers suitable for reactive processing (adapted from (van Rijswijk and Bersee, 2007),
plotted in black and white, and (Qin et al., 2020), plotted in blue).

TABLE 1 | Benchmarking of E-glass fibre/acrylic against E-glass fibre/epoxy vacuum-infused laminates and corresponding matrix resins—Tensile, bending, shear, mode I
interlaminar fracture toughness and thermomechanical properties (adapted from Obande et al., 2019 and Obande and Bradaigh, 2021).

Property (Measured) Glass fibre/acrylic (Elium
®
188 O) Glass fibre/epoxy (SR 1710/SD 7820)

Tensile properties (transverse) Strength (MPa) 73 ± 3.9 54 ± 4.1
Modulus (GPa) 13 ± 0.6 13 ± 0.5
Failure strain (%) 1.2 ± 0.3 2.1 ± 0.2

Bending properties (longitudinal) Strength (MPa) 879 ± 49 869 ± 42
Modulus (GPa) 40 ± 1.7 38 ± 2.3
Failure strain (%) 3.3 ± 0.4 3.4 ± 0.6

Bending properties (transverse) Strength (MPa) 91 ± 5.4 94 ± 7.2
Modulus (GPa) 11 ± 0.2 12 ± 0.4
Failure strain (%) 1.7 ± 0.3 2.0 ± 0.2

Short beam shear properties Strength (MPa) 58 ± 1.7 57 ± 1.0
Fracture toughness properties (Mode I) GIC-Init. (J/m

2) 556 466
GIC-Prop. (J/m

2) 1,814 1,574
Thermo-mechanical properties (DMA) T°g, tan delta (°C) 106 119

Height of tan delta peak 0.76 0.45
Storage modulus at onset (GPa) 40 38

Property (from technical datasheets or litterature) Range for different
Elium® resin grades

Acrylic matrix—Elium®

188 O (Arkema)
Epoxy matrix—SR

1710/SD7820 (Sicomin)

Tensile properties Strength (MPa) 66–76 66 78
Modulus (GPa) 3.17–3.3 3.2 3.8
Failure strain (%) 2.8–6 2.8 2.6

Bending properties Strength (MPa) 111–130 111 117
Modulus (GPa) 2.91–3.25 2.9 2.8

Glass transition temperature (°C) 116.2–123.4 120 127
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methylmethacrylate monomer (MMA). The use of benzoyl
peroxide in the presence of an amine will generate the radicals
under milder conditions (i.e. at room temperature). In other
words, this type of polymerization reaction does not require an
additional heat source for the initiation of the reaction (Goseki
and Ishizone, 2014).

The properties of Elium® acrylic-based composites have been
studied by many authors. Obande et al. have summarized the
published literature on comparative performance of acrylic
composites reinforced with flax, glass, carbon and vegetal
fibres against comparable epoxy composites (Obande et al.,
2019). The authors have also made a comprehensive
benchmark of E-glass fibre/acrylic against E-glass fibre/epoxy
laminates showing that the former exhibited comparable and
marginally superior mechanical performance and even
significantly higher fracture toughness (+15–19%) and tensile
transverse strength (+33%) than its counterpart (Table 1).

RESEARCH TREND ABOUT ELIUM
®

By searching for “Elium®” in Scopus, 75 papers contain this term
in their title, abstract, or keywords. From the analysis of 75 papers
published since 2016 in more than 10 journals and three
conference proceedings, it is observed that most of the
research papers are related to impact properties of Elium®
based FRP composites. These recent advances have already
reported remarkable enhancement, especially in the impact
response (up to 40% increase in the impact energy absorption
(Bhudolia et al., 2021)) and structural integrity (21% lower loss
(Bhudolia et al., 2020a)) of Elium® based composites in
comparison with their epoxy counterparts. The importance of
moulding methods for in-situ polymerization of Elium® based
composites has recently been dealt with only in fewer than five
papers per year. The same trend is observed with respect to the
polymerization (Han et al., 2020), weldability (Bhudolia et al.,
2020b), and recycling of Elium® based FRP composites (Bel Haj
Frej et al., 2021; Khalili et al., 2021).

As the key advantage of reactive thermoplastic monomer is in-
situ polymerization, the characterization of polymerization and
its modelling have been the main research topics with respect to
the manufacturing process. Indeed, the polymerization kinetics
has been a classic research topic for many decades and a wide
span of literature exists about this subject. There are new
challenges, however, when the process cycle time should be
reduced to less than two or 3 mins, as needed for mass
production of automotive vehicles, and adapted materials
should be developed (Henning et al., 2019). For example, the
polymerization of highly reactive acrylic resins starts while the
mould is still being filled (Han et al., 2020). Moreover, it is
indispensable to develop a reliable simulation tool for fully
automated and reproducible composites manufacturing
processes (Chai et al., 2021).

Polymerization of the methylmethacrylate monomer (MMA)
into its polymer PMMA is carried out by free-radical addition
polymerization. The free-radical polymerization of MMA occurs
in a bulk state, consisting of only monomers, polymer, and

initiators. The final product is, therefore, of high purity as
there is no other additive contaminant (Mills et al., 2020).

The mechanism of bulk free radical polymerization of MMA
has been well reported in the literature (Odian, 2004; Mita and
Horie, 1987; Biondi et al., 2010). The analysis of polymerization is
critical not only for the optimization of process cycle time but also
for the minimization of residual stress generated during the
manufacturing process. In particular, the exothermic reaction
heat generation during the conversion of MMA into PMMA is
relatively great (57 kJ/mol, three times greater than typical epoxy
resins) and the corresponding residual stress induced during the
polymerization can be more pronounced in the manufacturing of
thick products (Han et al., 2020; de Andrade Raponi et al., 2018a;
Murray et al., 2019).

The optimisation of MMA polymerization depends on many
variables in the production process such as temperature history,
processing time, part size, and may help to reduce the amount of
scrap associated with cost and environmental implications
without compromising the performance of composite
components (Terrazas-Moreno et al., 2008; Asteasuain et al.,
2006; Flores-Tlacuahuac and Biegler, 2008; Flores-Tlacuahuac
and Biegler, 2007; Rivera-Toledo et al., 2006). Nevertheless, the
most important parameter is the temperature history. To
distribute heat generation under a controlled temperature
history, and subsequently reduce the occurrence of thermal
runaway, one possible scenario is to use different initiators by
simultaneously triggering initiator scission at different times
(Cioffi et al., 2001; Cioffi et al., 2004; Pojman et al., 1995;
Pojman et al., 1995; Ray et al., 1995; Ram et al., 1996; Garg
et al., 1999). In addition, the initiator content and thermal history
of a reacting system are very important parameters to achieve the
optimum condition for MMA polymerization.

With respect to the development of mathematical models for
polymerization kinetics, there have been several works in the
literature (Zoller et al., 2015; Suzuki et al., 2018; Charlier et al.,
2018) based on the previous works about free radical bulk
polymerization (Achilias, 2007; Barner-Kowollik et al., 2005;
Russell et al., 1988; Buback, 1990). Based on the model by
Zoller et al. (2015) software PREDICI was developed (Zoller
et al., 2016) and used to optimize the acrylic resin polymerization
kinetics during the pultrusion process (Zoller et al., 2019). In
another model developed by de Andrade Raponi et al. (de
Andrade Raponi et al., 2018a; 2018b), the type (for example,
dibenzoyl peroxide or other peroxide systems) and content of
initiators were also considered.

As stated above, most of works in the literature have focused
on the analysis and characterization of polymerization kinetics so
far, even if there are many other important issues related to the
manufacturing. In the subsequent section, some important other
subjects to address in terms of manufacturing will be stated.

FUTURE RESEARCH OUTLOOK

Rheology
Because the low viscosity of monomers is a key to the use of
Elium®, the characterization of its viscosity has been performed at
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its monomer state. In somemanufacturing processes where a very
short process cycle time is required (e.g. mass production in the
automotive sector), however, the polymerization of monomer
and the impregnation of reinforcement by the resin take place
simultaneously. The monomer of Elium® has the viscosity around
0.1 Pa·s which is equivalent with that of thermoset counterparts.
Nevertheless, its viscosity increases greatly, as the polymerization
proceeds, even if its degree of conversion is still low for example,
about 10% (Suzuki et al., 2018; Miranda Campos et al., 2022).
Hence, it is important to establish a mathematical relation (for
example, in a function of Arrhenius) among the temperature, the
degree of conversion and the viscosity of Elium® as has been done
for thermoset resins. Moreover, the non-Newtonian behaviour,
namely, the relation between the viscosity and the shear rate,
should also be investigated.

• As a matter of fact, this task is not easy because the
polymerization of Elium® takes place instantly and the
corresponding change of viscosity is also fast.
Nevertheless, the viscosity characterization in terms of
temperature and conversion degree has been addressed
for other types of fast curing thermoset resin such as
dicyclopentadiene (DCPD) and epoxy in the literature
(Ng et al., 1994; Rhode et al., 2015). Hence, this subject
can be dealt with by adopting or adapting the
characterization methods used for such materials.

Different Polymerization Strategies
Up to now, the most common method for polymerization of
Elium® is the thermally activated free radical polymerization
process. To further decrease the polymerization cycle time,
however, the photopolymerization method is also considered,
for example in the COMPOFAST project (https://www.
jeccomposites.com/news/lancement-du-projet-compofast/).
Indeed, the photopolymerization process where small molecules
(i.e. monomers) are converted into large molecules (i.e. polymers)
under a light (in general, ultra violet light) is very adaptable to
additive manufacturing by virtue of its instant polymerization
(Bagheri and Jin 2019). Therefore, the research in the
photopolymerization of Elium® should be performed as its
industrial application has already been exploited.

Polymerization Shrinkage
In general, polymer is submitted to a reduction of volume (viz.
shrinkage) during its conversion from monomers, which is a
different mechanism from thermal expansion or contraction.

The most detrimental effect caused by shrinkage stress in the
production of polymer-matrix composite parts is debonding at
the fibre/resin interface, which results in gap formation and
matrix microleakage. These initial defects are detrimental to
the stiffness and strength of polymer composites and also can
accelerate environmental degradation which acts as sites for
macrocracks nucleation (Hsissou et al., 2021; Schricker, 2017).

A more crucial issue for reactive polymer is the residual stress
formed during the polymerization, however, because the
shrinkage tends to be great for highly reactive resin such as
Elium®. The residual stress can lead to the deformation of final

product such as warpage or spring-in, as well as the reduction of
the strength and service life. In general, common PMMA has a
relatively low shrinkage rate, e.g, 0.8% (Obande et al., 2019). On
the contrary, Elium® has a much greater shrinkage (e.g. up to
10%) due to its fast polymerization process. Therefore, the
influence of its polymerization shrinkage and the
corresponding remedies should be investigated.

Diverse Manufacturing Processes and
Applications
Elium® can be employed for diverse manufacturing processes
such as liquid composite moulding processes (resin transfer
moulding, vacuum infusion, compression RTM, etc.)
(Bhudolia et al., 2020a; Bhudolia et al., 2021; Han et al., 2020),
pultrusion (Zoller et al., 2019), filament winding, and welding
(Bhudolia et al., 2020b; Gohel et al., 2020) and different grades are
available for each manufacturing process. Moreover, new sheet
moulding compound of Elium® has also been developed to
replace the conventional thermoset SMC. Some industrial
demonstrators such as boat hull, wind turbine blade and
hydrogen tank were fabricated to demonstrate the
manufacturing feasibility (Arkema, 2022). The current state of
the art is still at a low TRL (Technology Readiness Level) and
many issues such as process modelling and optimization, product
durability and economic viability assessment, are yet to be
addressed.

In particular, the interface adhesion mechanism during
additive manufacturing and welding processes should be
deeply investigated. In general, the establishment of
interlaminar strength at the interface of thermoplastic matrix
is modelled by the combination of the establishment of intimate
contact and the polymer molecular interdiffusion across the
contact interface, a.k.a. autohesion or reptation (Lee and
Springer, 1987). In some manufacturing processes of Elium®
such as additive manufacturing, however, the interfacial
adhesion strength is built during the in-situ polymerization
process. Hence, the corresponding mechanism is totally
different and new modelling approaches will be needed.

Recycling
One of the most interesting advantages of Elium® is its
recyclability. Some recycling technologies for Elium® have
already developed. In particular, the mechanical recycling
methods of flax/Elium® (Allagui et al., 2021) as well as carbon/
Elium® and glass/Elium® (Gérard and Lafranche, 2018) have been
investigated. In the case of mechanical recycling, however,
recycled materials are complemented with virgin materials to
obtain goodmechanical properties. On the contrary, the technical
feasibility for the chemical recycling method where Elium® can be
recovered as monomers up to 100% by depolymerization has
already been exploited (Arkema, 2022). Nevertheless, the fibres
are submitted to severe degradation leading to significant
reduction of mechanical properties. Recently, a physico-
chemical recycling method by dissolution where both the
matrix and the fibres can be recovered while keeping the fibre
length has been developed (Gérard, 2022). As a result, more
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intensive work on the process optimization, the characterization
of the properties of recycled products and the analysis of life cycle
should be performed.

CONCLUSION AND OUTLOOK

Elium® acrylic resin has been the subject of much study since its
products were marketed and sold in 2014. For developing the
Elium® acrylic resin, a mixture of 2-Propenic acid, 2-methyl-,
methyl ester or methyl methacrylate monomer (MMA) and
acrylic copolymers are used. Here a free radical polymerization
is used to convert MMA to its polymer PMMA.

Owing to its low viscosity in amonomer state, the impregnation is
relatively easy and the common manufacturing processes for
thermoset counterparts can be employed. Moreover, on account
of its fast polymerization process, the process cycle time can be greatly
reduced compared with the conventional thermoset and
thermoplastic composites manufacturing methods. Its room
temperature process capacity and full recyclability are particularly
advantageous in the design of large structures such as wind turbine
blades and boat hull which have been manufactured by thermoset
matrix composites.

So far, most of research efforts have been made for the
characterization of material properties. With respect to the
manufacturing characteristics, only a few research articles
about the analysis of polymerization kinetics have been
published in the literature and the scientific research about the
other aspects such as rheology and process modelling is still in its
infancy. In fact, the industrial research and development are

ahead the academic research as can be proven by some industrial
projects and demonstrators. Nevertheless, there is still a far way to
go for a widespread adoption of Elium® based composites in
different industrial sectors. There remain a number of topics to
address such as chemorheology, modelling, process-induced
issues (e.g. polymerization shrinkage, volatile generation) and
recycling.
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