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Reconfigurable intelligent surfaces (RISs) have attracted extensive attention in recent years
due to their strong ability to improve and customize electromagnetic wave propagation
channels in wireless communications. In this article, we propose a design procedure for an
RIS and its programmable element, whose reflection phase and amplitude can be jointly
controlled by adjusting the states of the varactor and PIN-diode. In addition, by introducing
metallic vias in the RIS element, the programmable element can maintain the stable
reflection amplitude and phase responses under the illumination of transverse magnetic
(TM) wave with the incident angle of 0–60°. In order to verify the beam steering
performance of the RIS, theoretical calculations and full-wave simulations of single
beam and dual beams are carried out according to the addition theorem of the
complex reflection coefficient. The amplitude- and phase-coding patterns on the RIS
array are well designed so that the deflection angles and power intensities of the scattered
beams can be manipulated independently.

Keywords: reconfigurable intelligent surface, programmablemetasurface, beammanipulation, reflection amplitude,
and phase control, angular insensitivity

INTRODUCTION

Reconfigurable intelligent surfaces (RISs), which developed from metasurfaces, are two-dimensional
artificial electromagnetic materials which can be assembled in the wireless channel to improve or
even customize the wireless channel by changing the environment of electromagnetic (EM) wave
propagation in space (Basar et al., 2019) (Wu and Zhang, 2019) (Di Renzo et al., 2020) (Dai et al.,
2020) (Sur and Bera, 2021). In recent years, RISs have attracted great research interest in the wireless
communication community due to their great application potential. Metasurfaces, which have strong
abilities to manipulate the EM waves, have also experienced a rapid development from analog to
digital and from untunable to programmable (Cui et al., 2014) (Jing et al., 2019) (Ma et al., 2019)
(Jing et al., 2019) (Cui et al., 2020). Therefore, the digital and programmable metasurfaces are
important platforms to realize RIS-based wireless communication.

The proposal of the convolution theorem (Cui et al., 2016a) and the addition theorem (Wu et al.,
2018) make it possible for RISs to form more advanced beam patterns. However, only the phase
responses of the elements are considered while their amplitude responses are ignored in these
metasurface designs (Cui et al., 2014) (Cui et al., 2016b) (Chen et al., 2018) (Wu et al., 2018) (Chen
et al., 2019) (Liu et al., 2020) (Zhang et al., 2020) (Zhao et al., 2020) (Chen et al., 2021) (Huang et al.,
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2021) (Gao et al., 2021). In Ref. (Bao et al., 2019) (Rajabalipanah
et al., 2019), both the amplitude and phase responses of the
element are taken into consideration at the same time, thus
forming a more complex multiple beams with controllable
deflection angles and power intensities.

However, most of the reported metasurfaces with independent
control of amplitude and phase are not programmable (Bao et al.,
2019) (Rajabalipanah et al., 2019). Liao et al. (2021) proposed a
PIN-diode-based 1-bit programmable element in which one PIN-
diode was used to achieve two states with a 180° phase difference,
and one PIN-diode was used to achieve variable attenuation of
reflection amplitude. The proposed element in Liao et al. (2021)
only realized symmetrical beams with large sidelobes due to the 1-
bit phase accuracy. Li et al. (2022) proposed a programmable
element with independent controls of transmission amplitude and
phase, but its complicated structure makes manufacturing difficult.
And Dai et al. (2018) realized the independent control of the
amplitude-phase by introducing time dimension into the coding
sequences, which is only effective for high-order harmonics.

In this article, we propose a programmable element whose
reflection amplitude and phase can be jointly controlled by its own
embedded PIN-diode and varactor. Three states of reflection
amplitude and four states of reflection phase can be obtained by
changing the operating states of the PIN-diode and varactor. In
addition, numerous metallic vias are introduced in the
programmable element to maintain a stable reflection amplitude
and phase responses under the illumination of transverse magnetic
(TM) waves with the incident angle of 0°–60°. Finally, in order to
verify the performance of the proposed RIS element, the
independent control of the deflection angles and power
intensities of the dual-beam scattering patterns is realized by the
addition theorem of complex reflection coefficients.

THE DESIGN PROCEDURE OF THE
PROGRAMMABLE ELEMENT

The proposed programmable element is a typical double-layered
metal structure and can be fabricated by Print Circuit Board

(PCB) technology. Figure 1 shows the schematic of the RIS
array and its close-up view of programmable elements. Figure 2
shows the three-view of the programmable element labeled with
structure parameters. F4B substrate (tanδ � 0.001, εr � 2.65)
with a thickness of 3 mm is used to isolate the top and
bottom metal layers. The bottom layer with a complete metal
ground is used as a reflector plate. The top metal layer of the
element is mainly composed of three patches with a thickness of
0.035 mm.

A PIN-diode and a varactor connect the patches over the
narrow slot between the three main surface patches. The PIN-
diode (SMP1321-040LF) can be modeled as a series connection
of a tunable resistor RPIN and an inductor LPIN (0.27–0.36 nH).
When the forward direct current (DC) decreases from 100 mA
to 100 uA, the RPIN increases from 0.46 to 19.7 Ω. The varactor
(SMV1405-079LF) can be modeled as a series connection of a
tunable capacitor CVar, a resistor RVar (0.63 Ω), and an
inductor LVar (0.7 nH). When the reverse DC voltage
increases from 0 to 30 V, CVar decreases from 2.6 to 0.6 pF.
The DC feeding lines are designed for the PIN-diode and
varactor to set desired working states. The thin metallic strip
on the top layer serves as a DC ground, which crosses the
element and connects the adjacent element. There are also thin
metal strips going through the two larger patches. In such a
design of DC feeding lines, all elements along the x-axis
direction work in the same state for simplifying the DC
control circuit to some extent.

Liang et al. (2021) proposed a method to decrease angular
sensitivity by introducing metallic vias between adjacent
elements. The dielectric discontinuity caused by the metallic
vias destroys the original EM wave propagation mode and
builds a more stable propagation mode. Considering the
machining accuracy and approximate effect, metallic vias with
a diameter (D) of 0.3 mm and a spacing (S) of 0.3 mm are drilled
in the dielectric substrate. Other dimensional parameters in
Figure 2 are Px = 9.5 mm, Py = 17.6 mm, L1 = 8.7 mm, L2 =
8.4 mm, L3 = 1.7 mm, L4 = 1 mm, L5 = 1.7 mm, W1 = 3.7 mm,
W2 = 2.4 mm, W3 = 1.9 mm, W4 = 3 mm, W5 = 0.4 mm, W6 =
1.9 mm, and H = 3 mm.

FIGURE 1 | (A) Schematic diagram of the RIS array and (B) its close-up view of programmable elements integrated with a PIN-diode and a varactor.
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The equivalent circuit model theory can be used to explain the
operating mechanism of the proposed programmable element
(Liang et al., 2021) (Vendik and Nikol, 2001). As shown in
Figure 3, the element can be regarded as the load terminal
when it is illuminated by a plane wave. The internal resistance
of free space is η0 � 377 Ohm. Three parallel capacitors, C1, C2,

and C3, are formed between the three main surface patches. The
grounded dielectric substrate operates as a transmission line with
a terminal short-circuit, and its equivalent impedance can be
calculated as (Pozar, 2005) (Yu et al., 2011):

Za � j
η0��
εr

√ tan
2πf

��
εr

√
H

c
(1)

in which j is the imaginary unit. εr and H are the relative
permittivity and the thickness of the dielectric substrate,
respectively. f is the frequency of the incident EM wave, and c
is the velocity of light in the vacuum. A capacitor CSIW is formed
by metallic vias between adjacent elements. The PIN-diode and
the varactor are in parallel connection with C1 and C2,

respectively. The overall input admittance Yin can be easily
achieved as:

Yin � 1
Za

+ jωCSIW + (jωC1 + 1
RPIN + jωLPIN

) +⎛⎝jωC2

+ 1
RVar + jωLVar + 1

jωCVar

⎞⎠ + jωC3 (2)

The reflection coefficient in the far-field is given as:

Γ �
1
η0
− Yin

1
η0
+ Yin

(3)

Eq. 3 indicates that the amplitude and phase of the reflection
coefficient can be jointly controlled by adjusting RPIN and CVar in
the model of PIN-diode and the varactor together.

NUMERICAL RESULTS OF THE
PROGRAMMABLE ELEMENT

The commercial EM simulation software, CST Microwave Studio
2021, is employed to calculate the EM responses of the

FIGURE 2 | The three-view of the proposed programmable element.

FIGURE 3 | (A) Equivalent capacitance between the surface patches. (B) The equivalent circuit model of the proposed programmable element.
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programmable element. To simulate an infinite array, Floquet
periodic boundaries are set along the x- and y-axes, and a Floquet
port along the z-axis is used as an excitation to simulate the
incidence of a plane wave. The excited electric field is set along the
y-axis.

Figure 4 shows the numerical full-wave simulation results of
the element at the normal incidence. “A0A1A2A3B0B1B2B3C0” is
defined as nine coding states, which can be roughly divided into
three groups. In the first group of states, the amplitude of states
“A0A1A2A3” is about 0.85, and there is a 90° phase shift among
adjacent states. Different PIN states are employed to obtain the
same reflection amplitude between states of A0~A3. In the second
group, the amplitude of states “B0B1B2B3” is about 0.6, also with a
90° phase shift interval. The state “C0” has the lowest amplitude of
about 0.2. The nine coding states corresponding to RPIN and CVar

are listed in Table 1.
Wu et al. (2018) mentioned a special situation of “indefinite

coding addition” when applying the addition theorem for RIS.
This situation is caused by a 180° phase difference between the
corresponding digits in the two sets of coding sequences before
the addition operation. (Wu et al. (2018) makes artificial
interventions for this special situation by introducing more
coding states for the programmable element. However, it is
not very friendly to the RIS loaded with tunable devices when
balancing phase shift range and EM wave loss. Thus, the low-
amplitude state (“C0”) is designed to deal with this indefinite
situation. Due to its low amplitude, the error caused by its phase
can be negligible.

To visually display the EM response of the programmable
element, Figure 5A shows the reflection coefficients of nine
coding states on the complex plane at normal incidence at
3 GHz. The position of the reflection coefficient A · ejφ of each
state is determined by its amplitude A and phase φ
simultaneously. To investigate the impact of oblique incidence,

Figures 5B, C show the reflection coefficient at TM incidence
angles of 30 and 60°. The reflection coefficients of nine coding
states exhibit stable amplitude and phase responses at different
incident angles, which is very important to ensure angular
reciprocity in wireless communications (Liang et al., 2021).

NUMERICAL RESULTS OF RIS FOR BEAM
STEERING

According to the generalized Snell’s law, anomalous reflection or
refraction of EM waves will occur when there is a phase
discontinuity on the material interface [30]. A phase gradient
along the RIS can be set to realize beam steering. In addition, since
the coding states “A0A1A2A3” and “B0B1B2B3” exhibit similar
phase responses but different amplitude responses, they can be
directly used to generate beams in the same direction but with
different power intensities.

As a proof-of-principle example, an RIS array with 12 ×
24 elements is considered, which has more elements in the
direction of phase gradient, that is y-axis, to reduce the
influence of truncated boundaries on the array simulation.
The RIS array is illuminated by a normal incident uniform
plane wave. For an array consisting of M × N elements, its
scattering pattern in the far-field can be calculated as (Cui
et al., 2014):

f(θ,φ) � ∑M

m�1∑N

n�1fmn(θ,φ)e−j·φmn−j·k·d· sin θ((m−1
2) cosφ+(n−1

2) sinφ)
(4)

in which fmn(θ,φ) is the scattering pattern of themn-th element.
k is the wavenumber of the EM wave in the vacuum. d is the
period of the element.

FIGURE 4 | Numerical simulation results for the (A) amplitude and (B) phase responses of the programmable element. “A0A1A2A3B0B1B2B3C0
” is defined as nine

coding states with different reflection amplitude and phase.

TABLE 1 | The nine coding states of the proposed programmable element.

States A0 A1 A2 A3 B0 B1 B2 B3 C0

Phase (Deg.) 0 90 180 270 0 90 180 270 315
Amplitude (Linear) 0.85 0.85 0.85 0.85 0.6 0.6 0.6 0.6 0.2
PIN (RPIN, Ω) 6.7 0.46 0.46 6.7 19.7 6.7 6.7 19.7 19.7
Varactor (Cvar, pF) 2.6 1.24 0.96 0.6 2.6 1.27 0.96 0.7 1.2
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Figures 6A–C shows the scattering patterns of two set of
coding sequences “A0A0A0A1A1A1A2A2A2A3A3A3...” and
“B0B0B0B1B1B1B2B2B2B3B3B3...”. The two sets of coding
sequences form the same phase gradient on the RIS and
thus deflect the beam in the same direction θ � −27°.
However, since the reflection amplitudes of the elements in
the first coding sequence are larger than that in the second
coding sequence, the beam intensity of the first coding
sequence is larger than that of the second coding sequence.
Figures 6D–F shows the simulation results of another two set
of coding sequences “A3A3A2A2A1A1A0A0...” and
“B3B3B2B2B1B1B0B0...”, it can be observed that two beams
are pointed to the same direction of θ � 47° with different
power intensities.

According to the addition theorem of the complex reflection
coefficient in Bao et al. (2019) and Rajabalipanah et al. (2019),
the proposed programmable element with independent
control of amplitude and phase can also be used to
generate dual beams with independent control of deflection
angles and power intensities. In this theorem, two sets of
coding arrays S1 and S2 are considered. The complex coding
sequences of S1 and S2 are set as [A1] · ej[φ1] and [A2] · ej[φ2], in
which [A] and [φ] represent the amplitude and phase

distribution in the coding array, respectively. The coding
array S1 and S2 can redirect the incident EM waves to two
angles θ1 and θ2, with power intensities A1 and A2,
respectively. According to the theorem, the composite
coding sequences S can be obtained by

S � [A3] · ej[φ3] � [A1] · ej[φ1] + [A2] · ej[φ2] (5)
The coding sequence S will redistribute the incident wave into

twomain beams pointing at angles θ1 and θ2 simultaneously, with
a power intensity ratio of A1/A2. Theoretically, the proposed
element can be used to form the arbitrary shape of dual or
multiple beams.

To verify the ability to generate the arbitrary shape of dual
beams, two groups of simulations are carried out. In the first
simulation, two sets of coding sequences with different
intensities pointing to −27° and 47° are arranged on the RIS
array. The vector sums of the two sets of coding sequences are
quantized according to the coding states in Table 1. Figures
7A–E shows the dual beams pointing at −27° and 47°

simultaneously, with power intensity ratios of 0:1, 0.5:1, 1:
1, 1:0.5, and 1:0, respectively. Both 3D and 2D far-field
scattering patterns are displayed. Similarly, in the second

FIGURE 5 | The reflection coefficients on the complex plane at incident angles of (A) 0° (B) 30°, and (C) 60°. Stable amplitude and phase responses are obtained
due to the introduction of the numerous metallic vias at 3 GHz.

FIGURE 6 | The 3D scattering patterns of coding sequences (A) “A0A0A0A1A1A1A2A2A2A3A3A3...” (B) “B0B0B0B1B1B1B2B2B2B3B3B3...” (D)
“A3A3A2A2A1A1A0A0...” (E) “B3B3B2B2B1B1B0B0...” and (C,F) their corresponding 2D scattering patterns.
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group of simulations, the dual beams pointing at −21 and 37°

simultaneously with different power intensity ratios are
achieved, as shown in Figures 8A–E. The simulation
results are well consistent with those calculated by Eq. 4.

It should be noted that in some sets of coding sequences,
sidelobes appear at some unexpected angles. One of the reasons
for this phenomenon is quantization errors. The amplitude and
phase of the RIS array after the addition are not the precise preset
coding states in Table 1 in some situations, and this
approximation leads to quantization errors. In addition,
truncating the boundaries also contributes to side lobes for the
limited size of the RIS array.

In Bao et al. (2019) and Rajabalipanah et al. (2019), a freer
intensity distribution for arbitrary multiple beams can be realized.
However, due to the limitation of bit width, there will be more
side lobes when realizing multiple beams by the proposed
element, which is one of the problems that needs to be solved
in the future.

CONCLUSION

In this article, a programmable element with independent control
of amplitude and phase is designed and is applied to construct RIS
arrays to generate scattered beams with controllable deflection
angles and power intensities. A PIN-diode and a varactor are
loaded into the programmable element simultaneously, and nine
coding states with different reflection amplitudes and phases are
obtained. The well-designed element exhibits good angular
stability by introducing numerous metallic vias in the
substrate. Numerical simulations of a single beam in the same
directions but with different power intensities are performed by
applying different coding states. Furthermore, under the guidance
of the addition theorem of complex reflection coefficients, dual
beams with independently controllable deflection angles and
power intensities are investigated with theoretical calculations
and full-wave simulations. All simulation results are basically
consistent with the theoretical ones. This design of RIS with

FIGURE 7 | The 3D scattering patterns of dual beams pointing at -27°

and 47° simultaneously, with power intensity ratios of (A) 0:1 (B) 0.5:1 (C) 1:
1 (D) 1: 0.5 (E) 1:0 and their corresponding 2D scattering patterns.

FIGURE 8 | The 3D scattering patterns of dual beams pointing at -21°

and 37° simultaneously, with power intensity ratios of (A) 0:1 (B) 0.5:1 (C) 1:
1 (D) 1: 0.5 (E) 1:0 and their corresponding 2D scattering patterns.

Frontiers in Materials | www.frontiersin.org July 2022 | Volume 9 | Article 9461636

Liang et al. Beam Manipulations by RIS

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


independent control of amplitude and phase has potential
applications in next-generation wireless communications.
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