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In the field of bone regeneration, insertion of scaffolds favours bone formation

by triggering the differentiation of mesenchymal cells into osteoblasts. The

presence of Calcium ions (Ca2+) in the interstitial fluid across scaffolds

is thought to play a relevant role in the process. In particular, the Ca2+

patterns can be used as an indicator of where to expect bone formation.

In this work, we analyse the inverse problem for these distribution patterns,

using an advection-diffusion nonlinear model for the concentration of Ca2+.

That is, given a set of observables which are related to the amount of

expected bone formation, we aim at determining the values of the parameters

that best fit the data. The problem is solved in a realistic 3D-printed

structured scaffold for two uncertain parameters: the amplitude of the velocity

of the interstitial fluid and the ionic release rate from the scaffold. The

minimization in the inverse problem requires multiple evaluations of the

nonlinear model. The computational cost is alleviated by the combination of

standard Proper Orthogonal Decomposition (POD), to reduce the number of

degrees of freedom, with an adhoc hyper-reduction strategy, which avoids

the assembly of a full-order system at every iteration of the Newton’s method.

The proposed hyper-reduction method is formulated using the Principal

Component Analysis (PCA) decomposition of suitable training sets, devised

from the weak form of the problem. In the numerical tests, the hyper-

reduced formulation leads to accurate results with a significant reduction of

the computational demands with respect to standard POD.

KEYWORDS

reduced-order models, parameter identification, inverse problem, proper orthogonal

decomposition, hyper-reduction, scaffold, osteoinduction

1 Introduction

Material-associated osteoinduction is the process by which steam cells differentiate
into osteoblasts due to their interaction with the material conforming bone graft
substitutes or scaffolds. Scaffolds are biocompatible structures that support bone
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formation when inserted into a proper physiological
environment. The causes behind osteoinduction are not
completely understood, and identifying the material properties
that stimulate cell differentiation and favour bone regeneration
is of major interest in tissue engineering. Some of the
factors behind osteoinduction have been related to the
architecture or morphology of the material (that is, its
microstructure and porosity), its chemical composition, and
the presence of calcium (Ca2+) and phosphate ions in the
interstitial fluid (Ripamonti et al., 2007; Danoux et al., 2015;
Habraken et al., 2016; Bohner et al., 2022). Also, Ca2+ gradients
are related to cell migration and osteoinductive differentiation
(Tang et al., 2018). Analysing the distribution of ions through
scaffolds is therefore crucial to determine the effect that different
physical and geometrical parameters can have on osteoinduction.

Numerical simulation enables to test different designs and
compositions while reducing experimental costs, with the final
objective of reducing in vivo and in vitro experimentation
to a minimum (Santamaría et al., 2013; Guyot et al., 2014;
Van hede et al., 2021). In this framework, a multiparametric
advection-diffusion nonlinear model for the concentration of
Ca2+ ions across calcium phosphate scaffolds is proposed in
Muixí et al. (2022). The Ca2+ steady-state distribution is there
viewed as an indicator of where to expect bone formation for
different material configurations. Actually, the highly-crowded
regions in the numerical simulations qualitatively agree with
the patterns of bone growth in experimental observations by
Barba et al. (2017). Themodel in Muixí et al. (2022) accounts for
six physical parameters which are difficult to estimate, related to
the diffusivity of the ions, the velocity and the viscosity of the
interstitial fluid and the release rate of ions from the scaffold. The
value of each parameter ranges in a large interval accounting for
uncertainty in the input data.

The goal of this work is to study the associated inverse
problem: given a set of observables or observational data for
a final Ca2+ distribution, we aim to identify the value of the
parameters in the model that best fit the observations. With this,
we would be able to estimate the value of uncertain parameters
given the experimental outcome for some configuration. This
is done through the definition of a cost functional that
quantifies the misfit between the outcome of the simulation and
the observables. The minimization of this functional requires
multiple evaluation of the parametric model, which leads to a
high computational cost. For illustrative purposes, we restrict
ourselves to the identification of two parameters: the velocity
amplitude of the interstitial fluid and the release rate of Ca2+

from the scaffold, which are the parameters leading to more
differentiated patterns.

The numerical efforts in the minimization can be reduced
with a Reduced Order Modelling (ROM) formulation of the
problem. Here, we apply the widely used Proper Orthogonal
Decomposition (POD) (Berkooz et al., 1993; Patera and

Rozza, 2007; Quarteroni and Rozza, 2014; Díez et al., 2021).
POD discovers a linear space of low dimension embedding
the manifold of parametric solutions by doing a Principal
ComponentAnalysis (PCA) of a precomputed family of solutions
(the training set). Afterwards, the PCA low-order basis is used
to approximate the solution in subsequent evaluations of the
model, significantly reducing the number of degrees of freedom.

Nevertheless, in the case of nonlinear models, POD fails
to drastically reduce the computational cost. In a standard
POD formulation, we first build the full-order system of
equations and then project it into the PCA reduced space.
For nonlinear systems, this means assembling a full-order
system at every iteration of, for instance, the Newton’s
method scheme. To remedy this issue, several hyper-
reduction methods have been proposed, including the Discrete
Empirical Interpolation Method (DEIM) (Chaturantabut and
Sorensen, 2010; Negri et al., 2015), the Best Points Interpolation
Method (BPIM) (Nguyen and Peraire, 2008), among others.
Here, the POD is combined with an adhoc hyper-reduction
technique to estimate the nonlinear contributions, which is also
based in the PCA of suitable training sets and offers an easy-to-
implement strategy to build the reduced systems in the Newton’s
formulation of the problem.

This paper is structured as follows. In Section 2, the
forward and the inverse problems are presented, as well as the
employed reduced-order methodology. The POD formulation
is summarized in Section 2.2.1 and the adhoc hyper-reduction
technique is described in 2.2.2. In Section 3, numerical results
for the inverse problem are shown in a realistic domain, based
on a 3D-printed calcium phosphate structured scaffold. Finally,
the main results and the limitations of the strategy are discussed
in Section 4.

2 Materials and methods

2.1 Problem statement

We consider the multiparametric advection-diffusion
nonlinear model proposed in Muixí et al. (2022) for the
concentration of Ca2+ in the interstitial fluid that passes through
a scaffold. The model accounts for the scaffold releasing ions
in the interstitial fluid and the fluid dragging them, changing
the concentration distribution. Bone formation is expected
in regions with a high concentration of Ca2+. Here, the
parametrisation is given by the velocity amplitude of the fluid, υ,
and the Ca2+ release rate from the scaffold into the surrounding
fluid, r, which are parameters with a significant effect on the
amount of expected bone formation.

We aim to infer the value of the parameters, υ and r,
given a set of observables (or outcomes) associated to the
concentration of Ca2+, by solving the corresponding inverse
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problem. The multiple model evaluation needed to solve the
inverse problem motivates the use of a ROM technique to
accelerate the computation. Due to the nonlinear character of
the model, we combine the Proper Orthogonal Decomposition
(POD) to reduce the dimension of the systems, with an adhoc
hyper-reduction strategy to make the assembly process more
efficient.

The problem is solved in a realistic domain based on
a 3D-printed structured calcium phosphate scaffold, see
Figure 1. This geometry was first developed and experimentally
tested for osteoinduction in intramuscular implantation by
Barba et al. (2017). The scaffold has a geometrically structured
distribution, with regular pores with an average size of 289μm
and a porosity of 54.1%. We consider a representative volume of
dimensions 1930× 2040× 1960μm3.

2.1.1 Forward problem and parametrization
The steady nonlinear advection-diffusion problem reads

{{{{{{
{{{{{{
{

− ∆⋅ (ν (c) ∆c) + υ ⋅ ∆c = 0 in Ω,

c = 0 on ΓI,

∆c ⋅ n = 0 on ΓO,

− ν (c) ∆c ⋅ n = r (c− 1) on ΓS,

(1)

where c is the adimensional concentration of Ca2+ (normalized
to the maximum value of 1), and Ω ⊂ IR3 is the domain through
the scaffold occupied by the intersitital fluid. The boundary ∂Ω is
partitioned into ∂Ω = ΓI ∪ ΓO ∪ ΓS, being ΓI the inlet of the fluid,
ΓO the outlet and ΓS the part of the boundary in contact with
the scaffold, as shown in Figure 1. In the equations, ν(c) is the
diffusivity, υ≔ υ(x;υ) is the advection velocity and υ denotes its
amplitude (see Eq. 4), r is the Ca2+ release rate from the scaffold,
and n stands for the outward unit normal vector. We account for
the uncertainty and variability of two parameters: υ and r.

On the inlet ΓI , Dirichlet boundary conditions are set to zero
to simulate the entry of clean interstitial fluid in the domain
and to avoid upstream diffusion against the flow direction. On
the outlet ΓO, homogeneous Neumann boundary conditions are
imposed. On ΓS, which is the solid-fluid interface, we impose
Robin boundary conditions with ionic release rate r. A higher
(positive) value of r implies a faster relase of ions from the scaffold
into the fluid. Note that the Robin condition sets a saturation
concentration of c = 1. For this analysis, r is parametrised in the
range Ir = [5,20]μm/s.

The expression for the concentration-dependent diffusivity
ν(c) is

ν (c) = DSE10−c, (2)

whereDSE is the constant Stokes-Einstein diffusion coefficient for
Ca2+, obtained as

DSE =
kBT
6πηρ
, (3)

FIGURE 1
Domain for the interstitial fluid across a representative volume of
the 3D-printed structured scaffold. The three dark grey faces
(through the origin) mark the inlet faces, ΓI, where Dirichlet
conditions are set to 0. The opposite light grey faces correspond
to the outlet, ΓO. Light red surfaces indicate the scaffold-fluid
interface, ΓS, where the release Robin conditions are imposed.

with kB = 1.38 ⋅ 10–23JK−1 the Boltzmann constant, T = 37°C
the temperature, ρ = 114 pm the ionic radius of Ca2+

(Manhas et al., 2017) and η = 1.2 ⋅ 10–3 Pa⋅s the viscosity of the
fluid, which is taken in the range of blood plasma’s viscosity
(Késmárky et al., 2008). With the diffusivity law in (Eq. 2),
an increase in the concentration c implies a decrease in
the diffusivity. Actually, diffusivity is reduced by one order
of magnitude in fully crowded regions (where c = 1), when
compared to regions without Ca2+ (where c = 0).

The advection velocity υ is an input for the problem. It is
expressed as a combination of normalized velocity fields υx, υy
and υz , coming from potential flows in X, Y and Z directions,
respectively, that is

υ (x;υ) = υ(sin ⁡γ cos ⁡β υx (x) + sin ⁡γ sin ⁡β υy (x) + cos ⁡γ υz (x)) ,
(4)

with υ the velocity amplitude and combination angles γ = β = π
4
.

The amplitude v varies in the interval Iυ = [1,60]μm/s.
The intervals for the two parameters, namely Ir and Iυ,

are chosen in Muixí et al. (2022) by numerical experimentation,
covering cases in which the final distribution presents highly
differentiated patterns.
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2.1.2 Newton’s method formulation
The nonlinear Boundary Value Problem (BVP) (Eq. 1) is

solved using Newton’s method. Given an initial guess to the
solution, c0, we seek a succession of approximations ck+1 = ck + δc
for k = 0,1,… until convergence. For parameters υ and r,
the weak form of the kth Newton iteration reads: given
an approximation ck ∈ V, with V = {w ∈H1(Ω) :w|ΓI = 0}, find
δc ∈ V such that

a1 (δc,ck,w) + a2 (δc,ck,w) + a3 (δc,w;υ) + a4 (δc,w; r)

= −(a1 (c
k,ck,w) + a3 (c

k,w;υ)

+ a4 (c
k,w; r) − a4 (1,w; r))

∀w ∈ V,

(5)

with

a1 (δc,ck,w) = ∫
Ω
ν(ck) ∆δc ⋅ ∆w dΩ,

a2 (δc,ck,w) = ∫
Ω
ν′ (ck) δc ∆ck ⋅ ∆w dΩ,

a3 (δc,w;υ) = ∫
Ω
υ ⋅ ∆δc w dΩ,

a4 (δc,w; r) = ∫
ΓS
r δc w dΓ,

(6)

and then set ck+1 = ck + δc. We use the notation ν′(c) = dν
dc
(c). The

initial guess c0 is taken as the solution for the linear case with
constant diffusivity ν = DSE.

The discretization of (Eq. 5) leads to a system of the form

K (ck;μ)δc = f (ck;μ) , (7)

with ck and δc the vectors of nodal values for ck and
δc, respectively, and μ = (υ, r) the parameters in the model.
Convergence is reached when both the relative values of the
Euclidean norm of δc and of the residual f (ck;μ) are below some
tolerance, here set to 10–6. Due to the nonlinear dependence on
c of the weak form of the problem (Eq. 6), the system has to
be assembled at every iteration k. In order to effectively reduce
the cost, we reduce the number of unknowns in (Eq. 7) using
POD. In a nonlinear context, POD reduction is not sufficient
and in order to properly approximate the nonlinear contributions
in K(ck;μ) and f (ck;μ), an adhoc hyper-reduction technique is
devised in Section 2.2.

2.1.3 Observables
Regions with high concentrations of Ca2+ are the regions

where we expect bone formation. Actually, inMuixí et al. (2022),
highly-concentrated regions present qualitatively similar
patterns to those of bone growth in the experiments by
Barba et al. (2017). Thus, we assume that the amount of formed
bone for a parametric setting is characterized through the
volumes of regions with a minimum Ca2+ concentration and
the total concentration in the domain.

We define four observables, or quantities of interest, for
a given concentration field c. Three observables account for

the relative volumes occupied with minimum concentration
thresholds β = 0.1, 0.5 and 0.9, namely

Vβ (c) = |Ωβ| / |Ω| , (8)

where |Ω| stands for the volume of the domain Ω and

Ωβ = {x ∈Ω : c (x) > β} . (9)

The normalized total concentration of Ca2+ in the domain is
computed as

VT (c) =
1
|Ω|
∫

Ω
c dΩ, (10)

where the normalization accounts for the maximum value of
concentration, c = 1, as stated by the Robin boundary condition
on ΓS in the system of Eq. 1.

The vector containing the observables for a given
concentration field c(υ, r) is denoted by

V (υ, r) = (V0.1 (c) ,V0.5 (c) ,V0.9 (c) ,VT (c)) . (11)

Note that these four observables are adimensional and take
values between 0 and 1.

2.1.4 Inverse problem
The inverse problem consists in identifying the parameters

υ and r that minimize the discrepancy between some given
observablesV∗ and the outcome of the parametricmodelV(υ, r).
This discrepancy is quantified through the functional J (υ, r),
defined as

J (υ, r) = ‖V∗ −V (υ, r)‖, (12)

where ‖ ⋅ ‖ stands for the Euclidean norm. Thus, the inverse
problem over the parametric space reads: given V∗, find υ∗ ∈ Iυ
and r∗ ∈ Ir such that

(υ∗, r∗) = argmin
υ∈Iυ,r∈Ir

J (υ, r) . (13)

The minimization requires multiple evaluations of the
forward problem (Eq. 1), corresponding to different values
of the parameters. The numerical methodology described in
Section 2.2 aims at making this computation efficient.

2.2 Numerical methodology

The multiple evaluations required in solving the inverse
problem (Eq. 13) call for the use of a reduced-order strategy
to reduce the computational cost. For any given parameters
μ = (υ, r), the solution is computed with the Newton’s method,
iteratively solving the linear system of Eq. 7 until convergence.
In order to make each evaluation more efficient, we propose:
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• using the Proper Orthogonal Decomposition (POD) to
reduce the number of unknowns in Eq. 7, and
• approximating the nonlinear contributions in K(ck;μ) and
f (ck;μ) with an adhoc hyper-reduction technique, thus
avoiding the assembly of the full-order system at every
iteration.

2.2.1 Proper orthogonal decomposition
Solutions of a parametric problemwith np parameters lie in a

manifold of low dimension, equal to the number of independent
parameters, which is embedded in the larger space IRnd , with nd
the number of degrees of freedom in the discretization. POD
discovers a linear space of dimension nk, with np ≤ nk ≪ nd,
including the manifold of parametric solutions, by performing
a Principal Component Analysis (PCA) of a precomputed
family of solutions or snapshots (the training set). Then, for
subsequent evaluations of the model, the solution of the system
is approximated in the PCA linear subspace of dimension nk,
readily reducing the number of unknowns from nd to nk by
following a Reduced Basis approach.

The training set is defined as the solutions of the nonlinear
full-order problem (Eq. 1) corresponding to a representative
sampling of the parametric space, given by μi for i = 1,…,nS, with
nS < nd. These solutions or snapshots are denoted by xi = c(μi).
Snapshots are centered as

x̂i = xi − x, (14)

for i = 1,…,nS, where x stands for the mean of the snapshots
defined as

x = 1
nS

nS
∑
i=1

xi. (15)

Centered snapshots are then collected in amatrixX ∈ IRnd×nS , this
is,

X = [x̂1 x̂2 … x̂nS] . (16)

Centering the snapshots is recommended to improve the
numerical properties of PCA.

The PCA, which is based on the Singular Value
Decomposition (SVD), is used to eliminate redundancies in
X. The SVD of X reads

X = UΣVT, (17)

with U ∈ IRnd×nd and V ∈ IRnS×nS two unitary matrices, and Σ ∈
IRnd×nS a diagonal matrix containing the singular values of X in
descendent order, σ1 ≥ σ2 ≥⋯ ≥ σnS ≥ 0. The first nS columns of
U define an orthonormal basis for the linear subspace generated
by the snapshots. In order to keep only the relevant information,
we choose nk such that

nk
∑
i=1

σi ≥ (1− ε)
nS
∑
i=1

σi, (18)

for some tolerance ɛ. The linear space spanned from the nk first
columns of U , assembled in a matrix U⋆ ∈ IRnd×nk , approximates
the linear space that contains the manifold of snapshots, up to
tolerance ɛ.

For a new parametric point μwhich is not in the training set,
the solution c is approximated by

c ≃ x +U⋆z = x +
nk
∑
i=1

uizi, (19)

for some coefficients z ∈ IRnk . In the same way, we approximate

δc ≃ U⋆δz =
nk
∑
i=1

uiδzi, (20)

in thend × nd systemofEq. 7, with z the newvector of unknowns.
The POD reduced system becomes

[U⋆TK (ck;μ)U⋆]δz = U⋆Tf (ck;μ) ,

ck+1 = ck +U⋆δz,

zk+1 = zk + δz,

(21)

which is a system with nk equations and nk unknowns.

2.2.2 Adhoc hyper-reduction strategy based
on PCA

The nk × nk POD reduced system (21) depends on the
solution ck from the previous iteration in the Newton scheme, as
well as on the parameters of the model μ = (υ, r). Using standard
POD, we need to assemble the full-order K(ck;μ) and f (ck;μ) at
every iteration of the Newton scheme, as the approximation of
the solution ck is updated, and then reduce them by multiplying
by U⋆T.

In order to circumvent the computational expense from
assembling the full-order system at every iteration, we
propose an adhoc hyper-reduction strategy to approximate
the nonlinear contributions in K(ck;μ) and f (ck;μ). Following
the same philosophy as in POD, we aim to approximate the
nonlinear contributions as a linear combination of reduced
precomputed matrices and vectors, of dimension nk × nk and
nk × 1, respectively. These matrices and vectors are assembled
from the PCA reduced bases of suitable training sets, which are
defined next based on the expressions of the bilinear forms in
the Newton weak formulation (Eq. 5).

All terms in formulation (Eq. 5) are linear with respect to ck,
ν(ck) or ν(ck) ∆ck. In particular, note that from the diffusivity law
in (Eq. 2) we have

ν′ (c) = −ln (10)ν (c) . (22)

To simplify the notation, we define

y (c) ≔ ν (c) , (23)

and

g (c) ≔ ν (c) ∆c. (24)
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The nodal evaluation of these expressions leads to vectors y(c) ∈
IRnd and g(c) ∈ IR3nd , accounting for the three components of
g(c) at every node of the finite-element mesh. We compute the
gradient on the nodes by means of an L2 projection.

In the Newton’s algorithm, matrices and vectors that are
linear with respect to ck are approximated using the POD
approximation of ck in (Eq. 19), which is obtained from the
snapshots xi, with i = 1,…,nS, through the PCA decomposition
of the training set matrix X ∈ IRnd×nS (Eq. 16). Analogously, to
approximate the terms which are linear with respect to y(ck) or
g(ck), we define two additional training sets, Y and G.

First, we consider yi = y(xi), for i = 1,…,nS, computed by
the nodal evaluation of the diffusivity law (Eq. 2). Following the
same notation as in Section 2.2.1, these vectors are centered with
mean y, and they are then collected in matrix Y ∈ IRnd×nS ,

Y = [ŷ1, ŷ2 … ŷnS] . (25)

The SVD decomposition of Y leads to Y = UYΣYV
T
Y . Applying

the analogous criterion to (Eq. 18), we defineU⋆Y ∈ IR
nd×nkY as the

matrix with the first nkY columns of UY , denoted by u1
Y ,…,u

nkY
Y .

With this, the nodal vector yk = y(ck) is approximated by

y (ck) ≃ y +U⋆YzY = y +
nkY
∑
i=1

uiYz
i
Y , (26)

where zY is computed as

zY = U⋆TY (y
k − y) . (27)

Similary, we define g i = g(xi), for i = 1,…,nS. These
snapshots are centered with mean g and collected in matrix
G ∈ IR3nd×nS ,

G = [ĝ1, ĝ2 … ĝnS] . (28)

With analogous notation, the nodal vector gk = g(ck) is
approximated by

gk ≃ g +U⋆GzG = g +
nkG
∑
i=1

uiGz
i
G, (29)

with

zG = U
⋆T
G (g

k − g) . (30)

Approximation of the reducedmatrix

Denoting byAj thematrix associated to the form aj in (Eq. 5),
with j = 1,…,4, we are able to split the contributions in thematrix
of the system as

K (ck;μ) = A1 (y
k) +A2 (g

k) +A3 +A4. (31)

Note thatmatricesA1 andA2 have to be updated at every iteration
k of the Newton scheme. On the contrary, matrices A3 and

A4 depend only on the parameters and remain constant. The
dependence on μ is omitted for the sake of clarity. Equivalently,
the nk × nk matrix in the POD reduced system (Eq. 21) reads

U⋆TK (ck;μ)U⋆ = Ared
1 (y

k) +Ared
2 (g

k) +Ared
3 +A

red
4 , (32)

with

Ared
1 (y

k) = U⋆TA1 (y
k)U⋆,

Ared
2 (g

k) = U⋆TA2 (g
k)U⋆,

Ared
3 = U

⋆TA3U
⋆,

Ared
4 = U

⋆TA4U
⋆.

(33)

From the expression for a1 in (Eq. 6), matrixAred
1 (y

k) is linear
with respect to yk. Using (Eq. 26), this matrix is approximated as
a linear combination of nk × nk matrices,

Ared
1 (y

k) ≃ Ared
1 (y) +

nkY
∑
i=1

Ared
1 (u

i
Y)z

i
Y . (34)

Matrices Ared
1 (y) and Ared

1 (u
i
Y ), i = 1,…,nkY , are computed and

saved a priori as a preprocess. Then, at the kth iteration of the
Newton scheme, matrixAred

1 (y
k) is taken as a linear combination

of these saved matrices using the coefficients from (Eq. 27).
Matrix Ared

2 (g
k) is also approximated by

Ared
2 (g

k) ≃ Ared
2 (g) +

nkG
∑
i=1

Ared
2 (u

i
G)z

i
G, (35)

in this case, using the PCA reduced space for training setG since
the bilinear form a2 (Eq. 6) is linear with respect to gk.

By approximating the Jacobian, the convergence of Newton’s
method slightly deteriorates and it needs more iterations.
Nevertheless, we still experience an improvement in efficiency:
instead of assembling the finite element nd × nd matrix at every
iteration, we compute the projections zY and zG and approximate
the system matrix as a linear combination of precomputed
matrices of dimension nk × nk, with nk ≪ nd. Moreover, in
our experience, approximating the Jacobian leads to the same
accuracy for POD than assembling the full-order matrices, as
discussed in Section 3.

Approximation of the reduced vector

We denote by f j the right-hand side vector associated to the
form aj in (Eq. 5), with j = 1,3,4. The vector of the system is

f (ck;μ) = −(f 1 (g
k) + f 3 (c

k) + f 4 (c
k) − f 4 (1)) , (36)

where each term can be computed as

f 1 (g
k) = A1 (yk)ck,

f 3 (c
k) = A3c

k,

f 4 (c
k) = A4c

k.

(37)

The POD reduction of the system leads to the system vector

U⋆Tf (ck;μ) = − (f red1 (g
k) + f red3 (c

k)

+ f red4 (c
k) − f red4 (1)) . (38)
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Note that f red3 and f red4 can be simply evaluated at every iteration
k of the Newton scheme as

f red3 (c
k) = U⋆TA3x +A

red
3 zk,

f red4 (c
k) = U⋆TA4x +A

red
4 zk,

(39)

which follows from approximating the solution by (Eq. 19).
The contributions related to x are to be computed once as a
preprocess. The computational cost of subsequent evaluations is
therefore reduced to cheap matrix-vector products of dimension
nk. For the evaluation of f red1 (g

k), we take approximations from
the training set G, as

f red1 (g
k) ≃ f red1 (g) +

nkG
∑
i=1

f red1 (u
i
G)z

i
G. (40)

All nk-dimensional vectors in combination (Eq. 40) are also
computed and stored as a preprocess.

It is worth mentioning that, in some implementations,
assembling the vector on the right-hand side is very efficient. In
this cases, we recommend to approximate the system matrix as
described above while assembling the full-order system vector
at every iteration of the Newton scheme, since approximating
the residual implies a loss of accuracy in the POD solution, as
explained in Section 3.

2.2.3 Algorithmic description
In this section, we summarize the steps of the ROM strategy

described in Sections 2.2.1, 2.2.2 to solve nonlinear problem
(Eq. 1).We distinguish an offline phase and an online (real-time)
phase. The offline phase is executed once, given a sampling of the
parametric space and a tolerance ɛ. It consists of the computation
of the three training sets (X, Y and G), the corresponding PCA
dimensionality reductions and the computation of the reduced
matrices Ared

1 (u
i
Y ), i = 1,…,nkY , and Ared

2 (u
i
G), i = 1,…,nkG,

and reduced vectors f red1 (u
i
G), i = 1,…,nkG, as detailed in

Algorithm 1. Contrarily, the online phase is executed for all new
evaluations of the model. This phase includes the ROM solution
of the problem for parameters μ which are not in the training
set, by iterating over the hyper-reduced Newton formulation,
Algorithm 2.

3 Results

This section assesses the performance of the ROM strategies
described in Section 2.2 to approximate the solution of the
inverse problem in (Eq. 13). First, we show the accuracy of
standard POD for the forward problem in Section 3.1. The
hyper-reduced POD formulation is tested in Section 3.2. Finally,
the inverse problem is solved in Section 3.3 for some values of
the parameters.

Throughout the section, the values for the amplitude υ
and the release rate r are expressed in μm/s. The tolerance
for convergence of the Newton scheme is set to 10–6, and

Input: Sampled parameters μi = (vi,ri), for i = 1,…,nS,

tolerance ε

POD approximation

1: Compute the snapshots xi by solving the

full-order problem K(ci;μi)xi = f(μi), for i =

1,…,nS
2: Center the snapshots and assemble them in

matrix X as in (16)

3: PCA dimensionality reduction of X: from

the SVD factorization X = UΣVT, choose nk by

applying criterion (18) and define U⋆ with

the first nk columns of U

Additional training sets

4: Build matrix Y as in (25)

5: PCA dimensionality reduction of Y: from

the SVD factorization of Y, choose nkY by

applying criterion (18) and define U⋆
Y

6: Build matrix G as in (28)

7: PCA dimensionality reduction of G: from

the SVD factorization of G, choose nkG by

applying criterion (18) and define U⋆
G

Save reduced matrices and vectors

8: Compute and store the nk ×nk matrices Ared
1
(ui

Y
)

for i = 1,…,nkY, Ared
2
(ui

G
) for i = 1,…,nkG, Ared

1
(y)

and Ared
2
(g)

9: Compute and store the the nk ×1 vectors

fred
1
(ui

G
) for i = 1,…,nkG

Output: matrices U⋆,U⋆
Y
,U⋆

G
,Ared

1
(ui

Y
) for i = 1,…,nkY,

Ared
2
(ui

G
) and fred

1
(ui

G
) for i = 1,…,nkG, Ared

1
(y) and Ared

2
(g)

Algorithm 1. Offline phase.

the initial approximation is taken as the closest snapshot
in the training set (closeness is measured with Euclidean
distance in the parametric space). The truncation tolerance in
criterion (Eq. 18) to approximate the solution in (Eq. 20) is
ɛ = 10–3. All errors are measured with the relative Euclidean
norm with respect to the full-order finite element (FE) solution.
Computations are performed using the open-source solver
FEniCS (Alnaes et al., 2015; Langtangen and Logg, 2017).

3.1 POD for the forward problem
(without hyper-reduction)

We test the accuracy of a standard POD approximation for
the forward problem in (Eq. 1), as described in Section 2.2.1.
The FE discretization of the domain leads to full-order solutions
with dimension nd = 45,542. The goal is to reduce the number of
degrees of freedom fromnd tonk, using the PCA reduced space of
a training set X (Eq. 16). In this case, we assemble the full-order
nd × nd matrices K(ck;μ) and vectors f (ck;μ) at every iteration
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Input: new parametric point μ, matrices U⋆, U⋆
Y
,

U⋆
G
, Ared

1
(ui

Y
) for i = 1,…,nkY, Ared

2
(ui

G
) and fred

1
(ui

G
) for

i = 1,…,nkG, Ared
1
(y), Ared

2
(g) and tolerance tol for the

Newton method

Newton iterative scheme

1: Set k = 0 and take c0 as the closest

snapshot in the parametric space

2: Assemble A3 and reduce Ared
3
= U⋆TA3U⋆

3: Assemble A4 and reduce Ared
4
= U⋆TA4U⋆

4: Compute U⋆TA3x and U⋆TA4x

5: Assemble f4(1;r) and reduce fred
4
(1) = U⋆Tf4(1;r)

6: while stopping criterion is not satisfied

do

7: Compute fred
3

and fred
4

using z = U⋆T (ck −x) as

in (39)

8: Compute Ared
1

using zY = U⋆TY (y
k −y) as in

(34)

9: Compute Ared
2

and fred
1

using zG = U⋆TG (g
k −g)

as in (35) and (40)

10: Compute A = Ared
1
+Ared

2
+Ared

3
+Ared

4

11: Compute f = fred
1
+fred

3
+fred

4
−fred

4
(1)

12: Solve the reduced system Az = f

13: Compute δc = U⋆z and ck+1 = ck +δc

14: if ‖δc‖2 < tol then

15: Stop iterating

16: else

17: k = k+1

18: end if

19: end while

Output: reduced-order solution ck+1 ≃ c(μ)

Algorithm 2. Online phase.

k of the Newton scheme, and we project them into the reduced
space as in (21). This is, even though we assemble the full-order
system, we end up solving a nk × nk system at every iteration.

We consider three training sets with 16, 42 and 208
snapshots. These correspond to all possible combinations of
parameters in the following sets:

1) 16 snapshots: υ ∈ {1,20,40,60}, r ∈ {5,10,15,20},
2) 42 snapshots: υ ∈ {1,10,20,…,60}, r ∈ {5,8,11,…,20},
3) 208 snapshots: υ ∈ {1,5,10,…,60}, r ∈ {5,6,7,…,20}.

The PCA dimensionality reduction of these training sets
with tolerance ɛ = 10–3 leads to reduced dimensions nk = 12,16
and 18, respectively. The reduction in the number of degrees of
freedom is significant in the three cases, from nd = 45,542 to
nk ≪ nd.

Table 1 shows the relative errors obtained with the three
training sets, for the nodal solution and two of the observables,

V0.9 and VT , when approximating the solutions corresponding
to some parameters which are not in the training sets, namely,
for (v, r) = (12,18.5) (25,9.5) and (53,6.5). As expected, errors
on the nodal solution decrease with the number of snapshots
in the training set: for the poorer training set errors are of the
order of 10–3, while for the most-populated training set errors
become of the order of 10–5. We observe a similar behaviour
for the observables when computed from the reduced-order
solutions. However, the definition of V0.9 using a threshold value
accentuates the discrepancies between the reduced-order and the
reference full-order solution.

The accuracy is remarkable in all cases given the number
of snapshots. Also, note that the number of Newton iterations
needed to converge is below five in all cases.These results validate
the suitability of POD to solve the forward problem.

3.2 Performance of the hyper-reduction
strategy

Next, we use the hyper-reduction strategy presented in
Section 2.2.2 to assemble the system in the POD formulation.
We consider the intermediate training set with 42 snapshots,
reducing the number of degrees of freedom to nk = 16.

Test 1: Hyper-reduction of (only) the matrix
The first test consists in hyper-reducing only the Jacobian

in the Newton formulation, while keeping the standard POD
assembly and projection of the residual. This is, we approximate
the nonlinear dependences on ck in matrix K(ck;μ) with the
hyper-reduction strategy based on tranining sets Y and G, but
the full-order vector f (ck;μ) is assembled at every iteration of the
Newton scheme.

The accuracy of the hyper-reduced formulation is compared
with that of standard POD inTable 2 for the previous parametric
points (v, r) = (12,18.5), (25,9.5) and (53,6.5). We take different
truncation tolerances in the matrix approximations (Eq. 34) and
(Eq. 35). We consider the approximation of A1 and A2 given by
only their evaluation on the means y and g , this is, A1(c

k) ≃
Ared

1 (y) and A2(c
k) ≃ Ared

2 (g) (nkY = nkG = 0). Also, we truncate
the approximation with tolerances ɛK = 10–1 and ɛK = 10–3 for
both training sets Y and G. With ɛK = 10–1 the number of terms
in the approximations are nkY = 3 and nkG = 4. By decreasing the
tolerance to ɛK = 10–3, the number of terms increases to nkY = 14
and nkG = 17.

Note that all options lead to the same relative error in the
reduced-order solution up to (at least) 7 decimals. Indeed, the
accuracy of the solution is dictated by the residual of the system,
which here is computed with the standard POD approach. The
number of iterations needed to converge increases for rough
approximations of the matrix. In particular, we observe the
highest number of iterations when the matrix is approximated
by its mean. However, we remark that in this case the scheme
less computationally demanding.
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TABLE 1 Relative errors and number of Newton iterations of standard PODwhen solving the BVP in (Eq. 1). Training sets with 16, 42 and 208 snapshots are
used to approximate solutions for parameters (υ,r) = (12,18.5) (25,9.5) and (53,6.5). The truncation tolerance in POD is ɛ = 10–3, and the tolerance for
convergence in the Newton scheme is 10–6.

Parameters Error solution Error V0.9 Error VT Newton iterations

Training set with 16 snapshots: nk = 12

 υ = 12, r = 18.5 2.06 ⋅ 10–3 7.50 ⋅ 10–3 8.81 ⋅ 10–5 4
 υ = 25, r = 9.5 4.24 ⋅ 10–4 3.88 ⋅ 10–4 2.34 ⋅ 10–5 4
 υ = 53, r = 6.5 8.87 ⋅ 10–4 8.80 ⋅ 10–3 4.74 ⋅ 10–6 4

Training set with 42 snapshots: nk = 16

 υ = 12, r = 18.5 2.02 ⋅ 10–4 7.39 ⋅ 10–4 6.36 ⋅ 10–6 3
 υ = 25, r = 9.5 5.43 ⋅ 10–5 1.84 ⋅ 10–4 9.37 ⋅ 10–6 3
 υ = 53, r = 6.5 3.03 ⋅ 10–4 6.13 ⋅ 10–4 2.51 ⋅ 10–5 4

Training set with 208 snapshots: nk = 18

 υ = 12, r = 18.5 6.53 ⋅ 10–5 1.12 ⋅ 10–4 8.87 ⋅ 10–6 3
 υ = 25, r = 9.5 9.21 ⋅ 10–6 0 2.62 ⋅ 10–6 3
 υ = 53, r = 6.5 5.12 ⋅ 10–5 2.71 ⋅ 10–3 1.76 ⋅ 10–5 3

TABLE 2 Relative errors and number of Newton iterations when approximating only thematrix in the POD formulationwith hyper-reduction. The
hyper-reduction takes nkY and nkG terms in approximations (Eq. 34) and (Eq. 35) for A1 and A2, respectively. Solutions corresponding to parameters
(υ,r) = (12,18.5), (25,9.5) and (53,6.5). Training set with 42 snapshots, which leads to reduced systems of dimension nk = 16.

Hyper-reduction matrix Num terms in approx Error solution Newton iterations

(υ, r) = (12,18.5)

 None (Standard POD) — 2.020579 ⋅ 10–4 3
 Mean nkY = 0,nkG = 0 2.020884 ⋅ 10–4 9
 ɛK = 10–1 nkY = 3,nkG = 4 2.020578 ⋅ 10–4 5
 ɛK = 10–3 nkY = 14,nkG = 17 2.020582 ⋅ 10–4 4

(υ, r) = (25,9.5)

 None (Standard POD) - 5.429624 ⋅ 10–5 3
 Mean nkY = 0,nkG = 0 5.429743 ⋅ 10–5 4
 ɛK = 10–1 nkY = 3,nkG = 4 5.429619 ⋅ 10–5 4
 ɛK = 10–3 nkY = 14,nkG = 17 5.429616 ⋅ 10–5 4

(υ, r) = (53,6.5)

 None (Standard POD) - 3.031158 ⋅ 10–4 4
 Mean nkY = 0,nkG = 0 3.031426 ⋅ 10–4 16
 ɛK = 10–1 nkY = 3,nkG = 4 3.031143 ⋅ 10–4 4
 ɛK = 10–3 nkY = 14,nkG = 17 3.031158 ⋅ 10–4 4

Indeed, for nkY > 0 and nkG > 0, the coefficients in the
linear combination of terms are updated as the solution
of the Newton scheme is modified. The computational
expense of assembling a full-order matrix at every iteration
is replaced by the computation of yk = y(ck) and gk = g(ck)
and the linear combination of precomputed nk × nk matrices.
Contrarily, approximating the matrices for their evalution
on the means implies taking a constant matrix for all
iterations k of the Newton scheme, with no additional
computations.

Test 2: Hyper-reduction of the vector
From the previous test, we deduce that the hyper-reduced

approximation of the matrix is robust in terms of accuracy. Next,
we study the effect of applying the hyper-reduction strategy to
the right-hand side vector, approximating the contribution of
f red1 (g

k) by (Eq. 40).
Approximating the residual is more critical since we may

converge to a different solution. Accuracy is then affected
by both the POD approximation of the solution and the
approximation of the residual. Table 3 lists the errors and the
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TABLE 3 Relative errors and number of Newton iterationswhen approximating thematrix and the vector in the POD formulationwith hyper-reduction, with
tolerance ɛf for the vector andmeanmatrices, and tolerance ɛK,f for approximating both thematrix and the vector. Solutions corresponding to parameters
(υ,r) = (12,18.5) (25,9.5) and (53,6.5). Training set with 42 snapshots.

Hyper-reduction vector Num terms in approx Error solution Newton iterations

(υ, r) = (12,18.5)

 None (Standard POD) — 2.02 ⋅ 10–4 3
 Mean matrices, ɛf = 10–3 nkG = 17 2.34 ⋅ 10–2 17
 ɛK ,f = 10–3 nkY = 14,nkG = 17 2.34 ⋅ 10–2 13

(υ, r) = (25,9.5)

 None (Standard POD) — 5.43 ⋅ 10–5 3
 Mean matrices, ɛf = 10–3 nkG = 17 1.81 ⋅ 10–2 14
 ɛK ,f = 10–3 nkY = 14,nkG = 17 1.81 ⋅ 10–2 13

(υ, r) = (53,6.5)

 None (Standard POD) — 3.03 ⋅ 10–4 4
 Mean matrices, ɛf = 10–3 nkG = 17 2.07 ⋅ 10–2 11
 ɛK ,f = 10–3 nkY = 14,nkG = 17 2.07 ⋅ 10–2 15

FIGURE 2
(A) Discrepancy functional J (υ, r) evaluated on a 50×50 grid on the parametric space Iυ × Ir. (B) White crosses indicate the points for which
J (υ, r)/max(J ) < 10−2. The obtained minimum (in red) is not he best possible approximation for (υ, r) = (35,12.5) (in green).

number of Newton iterations for the previous parametric points,
when using standard POD and for the hyper-reduced residual
formulation with tolerance ɛf = 10–3. For thematrix, we consider
its approximation using the mean values A1(ck) ≃ A

red
1 (y) and

A2(ck) ≃ A
red
2 (g), as well as the hyper-reduction with tolerance

ɛK = 10–3.
We observe again that the accuracy of the reduced-order

solution is determined by the approximation of the residual.With
the same tolerance ɛf , we obtain the same relative error for both
approximations of the matrix. As expected, errors increase when
approximating the residual: for standard POD errors are of the
order of 10–4, while errors from the hyper-reduced formulation

are of the order of 10–2. The number of Newton iterations also
increases, being below 20 in all cases. However, it is worth
mentioning that we avoid assembling the full-order matrices and
vectors, which is beneficial in terms of efficiency.

3.3 Inverse problem: Parameter
identification

We define V* as the observables computed from the full-
order FE solution for parameters υ = 35 and r = 12.5. We aim
at recovering an approximation for the parameters, υ⋆ and r⋆,
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FIGURE 3
(A) Discrepancy functional J (υ, r) evaluated on a 50-point discretization of Iυ for r = 12.5. (B) Discrepancy functional J (υ, r) evaluated on a
50-point discretization of Ir for υ = 35.

by solving the corresponding inverse problem (Eq. 13). In order
to minimize the discrepancy functional J (υ, r) (Eq. 12), we
evaluate it on a 50× 50 grid on the parametric space Iυ × Ir
using the hyper-reduced formulation for the training set with 42
snapshots.

In the Fenics implementation, assembling and projecting the
residual of the system is very efficient.Thus, in our case, themost
suitable option is to hyper-reduce the matrix, approximating the
nonlinear dependences on ck by their evaluation on the means y
and g , and to fully assemble the vector at every iteration of the
Newton scheme to avoid losing accuracy.

Figure 2A shows the value of the functional J (υ, r) on the
50,×,50 parametric discretization. In this case, the minimization
finds υ* = 35.9184 and r* = 12.9592, which are not the best
possible approximations for the given discretization. We observe
that there is a relation between the two parameters: there
are different combinations that lead to a small value of the
discrepancy functional. Actually, in Figure 2B, we mark the
points for which J (υ, r)/max(J ) < 10−2. This indicates the ill-
posedness of the simultaneous minimization over parameters υ
and r.

We repeat the process byminimizingwith respect to each one
of the parameters separately. First, we fix r = 12.5 and discretize
Iυ with 50 equispaced points. The value of the functional with
respect to υ is plotted inFigure 3A. In this case, theminimization
problem is well-defined, and leads to the opitmal υ* = 34.7143.
Setting υ = 35 and discretizing for r, the minimum is also
optimal, r* = 12.6531, Figure 3B.

4 Discussion and conclusion

We solve the inverse problem associated to the Ca2+

concentration in the intersitital fluid across a realistic 3D-printed

structured scaffold. Given the values of some observables that
characterize the expected bone formation, we aim at recovering
the value of two parameters: the velocity amplitude, υ, and the
ionic release rate from the scaffold, r.

The nonlinearity of the model and the multiple evaluations
required to solve the inverse problem motivate the definition
of a ROM strategy. We combine POD, to reduce the number
of degrees of freedom, with a novel adhoc hyper-reduction
strategy to accelerate the assembly of the full-order system at
every iteration of the Newton method. The hyper-reduction is
based on the PCA reduction of two additional training sets,
which are derived from the weak form of the problem at
hand. The idea is to approximate the nonlinear contributions
in the matrices and vectors in the Newton scheme by linear
combinations of precomputed matrices and vectors of reduced
dimension. The formulation is exclusive for this problem, but
it can be easily extended to other nonlinear problems with a
suitable definition of the training sets. This strategy is applicable
in cases in which the nonlinearity is explicitly described in the
equations.

From the numerical tests, we conclude that the accuracy
of the reduced-order solution is only dictated by the hyper-
reduction of the vector of the system. For a fixed approximation
of the residual, we obtain the same accuracy independently of
the number of terms in the approximation of the Jacobian. In
particular, replacing the nonlinear contributions of thematrix by
their evaluation on the mean of the training sets is a competitive
option in terms of accuracy and efficiency. The hyper-reduction
of the matrix increases the number of Newton iterations needed
to converge, but it still implies a gain in efficiency since the
assembly of the full-order system is avoided.Thehyper-reduction
of the residual is more critical since it affects the accuracy of
the reduced-order solution. However, we still obtain reasonable
errors below 5%.
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The solution of the inverse problem indicates a
relation between the two parameters, υ and r. In order
to obtain a well-posed minimization problem, we need
to fix one of them and minimize with respect to the
other. However, from a practical point of view, obtaining
a relation between the parameters (instead of some unique
values) that lead to the desired observables is also of
interest.
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