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Modeling systems from collected data faces twomain difficulties: the first one

concerns the choice of measurable variables that will define the learnt model

features, which should be the ones concerned by the addressed physics,

optimally neither more nor less than the essential ones. The second one is

linked to accessibility to data since, generally, only limited parts of the system

are accessible to perform measurements. This work revisits some aspects

related to the observation, description, and modeling of systems that are only

partially accessible and shows that amodel can be definedwhen the loading in

unresolved degrees of freedom remains unaltered in the different experiments.
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1 Introduction

Simulation-based engineering (SBE) considers well-experienced physics-based
models that are expected to describe the reality under scrutiny. These models must be
calibrated from experiments in order to fine-tune the different parameters they involve.
After that, they can be used to make predictions on the evolution of the considered
system. The numerical solution of these models needs adequate numerical techniques
to discretize the partial differential equations by which they are usually described, as well
as powerful computing platforms to solve them efficiently.

Such a rationale was the main driving factor of last century engineering
and faces two main limitations. The first handicap we must face is the fact
that engineering is nowadays more concerned with performance than with the
products themselves. Thus, engineering is expected to follow-up or monitor
its designs all along their lives, resulting in the so-called Digital Twins,
Tuegel et al. (2011); Chinesta et al. (2020); Ghanem et al. (2022); Kapteyn and
Willcox (2020); Moya et al. (2022b); Argerich et al. (2020); Sancarlos et al. (2021b,
a). However, they use craves for fast and accurate responses, and SBE often
found difficulties to encompass real-time feedback. This limitation was alleviated
by use of advanced model order reduction techniques Chinesta et al. (2011),
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Chinesta et al. (2013), Chinesta et al. (2014), Chinesta et al. 
(2015); Ibáñez et al. (2018); Borzacchiello et al. (2019);
Sancarlos et al. (2021c). The second difficulty appears when
the model solution exhibits a significant deviation with
respect to the reality that it is expected to describe. The main
reasons for the just mentioned deviations are incompleteness
of models to recreate a complex reality and the intrinsic
uncertainty and variability in our approximation to the physical
reality.

Recent machine learning techniques enable alleviating the
just referred limitations within the so-called fourth paradigm
of sciences. On the one hand, accurate regressions can be
constructed from the input/output data, which will later allow
for collection of the output from the input in almost real-
time, likemodel order reduction techniques (referred previously)
performed on the solution of the complex mathematical
models. The data manipulated by machine learning techniques
can be experimental or synthetic (coming from high-fidelity
simulations). On the other hand, when the considered data come
from the real system, assumed free of noise, the learnt model
will represent the reality in a very accurate manner, sometimes
with higher accuracy than the existing physics-based models,
Fasel et al. (2022).

In between the fully physics-based and the fully data-
driven perspectives, an intermediate setting exists: the so-called
hybrid paradigm, at the origin of the so-called Hybrid Twins
Chinesta et al. (2020), that can be viewed as instances of physics-
augmented learning or transfer learning, Weiss et al. (2016).

When considering machine learning techniques, the choice
is very large. First, the adequate technique depends on the type
of data to be manipulated. There are powerful tools to process
images [e.g., convolutional neural networks, CNNs, Venkatesan
and Li. (2017)], graphs [e.g., graph neural networks, GNNs,
Bronstein et al. (2021) Hernandez et al. (2022)], time series [e.g.,
recurrent neural networks, rNNs, and long short-time memory,
LSTM, Hochreiter and Schmidhuber (1997); Zhou et al. (2016)]
.When data are very rich, many correlations may exist, and prior
to proceeding with modeling, data-reduction seems a valuable
route, with many manifold learning approaches available.
Nonlinear dimensionality reduction can be efficiently performed
in a nonlinear setting by using, for example, auto-encoders
Goodfellow et al. (2016); Schmidhuber (2015); Hinton and
Zemel (1993). Sparse autoencoders are of particular importance
Ng (2011); Makhzani and Frey (2014).

When proceeding with data for modeling purposes, a
recurrent issue concerns data accessibility. Sometimes, the
considered system is not globally accessible, with only a small
part of it being accessible to perform measurements.

The present study addresses a conceptual issue that will be
discussed on an example simple enough to be fully understood,
and at the same time complex enough to encompass all the
modeling issues discussed in the present study.

The main question could be formulated as follows: if there
is a part of a system inaccessible for observation in which a
loading that we cannot either observe or measure applies, and
that influences the measures performed in the observable part of
the system, different questions arise:

• is there a model connecting the observable input(s) to its
output(s), knowing that they are impacted by the hidden
dynamics of the system? Is it unique?

• Under which conditions thatmodel could exist? How to find
it?

• How to formulate it correctly? Is it well-posed and
consistent?

• How to learn it?
• What is the impact of these hidden dynamics on the learning

process?

We referred previously to the use of rNN or LSTM, whose
choice is guided by the knowledge gained from physics and
mathematics, excellent allies ofmachine learning (ML). It is well-
known that ML technologies such as rNN or LSTM allow us to
manage, in transient problems, the hidden variables that, even if
they are not observed, influence the evolution of the data in the
observable regions Williams et al. (2022); Manohar et al. (2018).

This study aims at revisiting the construction of models in
the domains exhibiting partial observability, in both the steady
and transient cases, while following a double approach: the
usual algebraic formulation and the one concerned by machine
learning approaches.

2 On the existence of models
relating observable features

In this section, we assume a large system, whose state is
described by a number of state variables. We consider that
the variables involved in the state description are well-defined.
However, the model governing the state or its time evolution
is assumed to be unknown, and the data describing the state
are only observable and measurable on a part of the system,
remaining unattainable in the rest of the system. Previous
analysis on the field can be found in González et al. (2021) or
Moya et al. (2022a).

For instance, in the case of the two-mass oscillator depicted
in Figure 1, we assume that the state is perfectly defined by
the position and momentum of each mass; however, only the
state of the second mass is accessible (and thus, measurable). A
natural question concerns the possibility of learning the model
that governs the observable state (q2,p2) while ignoring the state
of the first mass (q1,p1).

In the following section, we address this question using a
quite generic algebraic rationale in two situations: a model that
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FIGURE 1
Oscillator composed of two masses, two linear springs of
stiffness k1 and k2, reference lengths l1 and l2, and whose state is
defined by the position and momentum of each mass
(q1,p1,q2,p2).

does not depend on time and a transient problem.Wewill discuss
the multiple-mass oscillators later. Henceforth, more generic
settings are considered.

2.1 Time-independent problem

A generic linear time-independent model can be expressed
from:

KU = F, (1)

which, considering the observable variables Uo and the internal
ones Ui, can be rewritten as follows:

(
Koo Koi
Kio Kii

)(
Uo
Ui
) = (

Fo
Fi
). (2)

Developing the last equation, we find that

KioUo +KiiUi = Fi→ Ui = K−1ii Fi −K
−1
ii KioUo. (3)

Also, introducing the resulting expression of Ui into the
development of the first, we obtain (this is known as static
condensation or Guyan reduction)

(Koo −KoiK
−1
ii Kio)Uo = Fo −KoiK

−1
ii Fi, (4)

which can be rewritten as

K̃ooUo = Fo − F̃i, (5)

with

{
K̃oo = (Koo −KoiK−1ii Kio)
F̃i = KoiK−1ii Fi

. (6)

Remark 1:

• If Fi = 0, a direct relation exists between Uo and Fo.
• In the case of a 1D system in which only the borders of

the interval are accessible (observable), Uo and Fo contain
two components. If we apply Uo

T = (1,0), the resulting Fo
represents the first column of K̃oo, and the solution Fo
related to Uo

T = (0,1) will represent the second column of
K̃oo.

• In the same one-dimensional system, when Fi ≠ 0, there
are two effective internal variables, the components of F̃i.
Thus, all the richness of Fi endangers these two components,
generating some sort of irreversibility: from Fi, we can
obtain F̃i, but from the last one, we cannot come back to the
former.The condensation of the internal degrees of freedom
into the observable one produces an entropy increase in the
theory of information sense: there are many micro-states Fi
associated with the macro-state F̃i.

• Computing these two effective internal variables just
referred needs extra-calculation. For example, if Uo = 0,
then Fo = F̃i.

2.2 Time-dependent problem

A general linear second-order dynamical system can be
expressed from

MÜ+CU̇+KU = F, (7)

which, applying Fourier transform, becomes

−ω2M𝕌+ iωC𝕌+K𝕌 = 𝔽, (8)

with i ≡ √−1 (without confusion with respect to other i subscript
symbols used in the study, like the index i referring to the internal
variables or the index i in vector components) and 𝕌 and 𝔽,
the Fourier transforms of U and F , respectively. The previous
equation can be rewritten as follows:

K
∗
𝕌 = 𝔽, (9)

with K
∗
= −ω2M+ iωC+ K, that can be separated in the same

way considered in the time-independent case, but now, for each
possible frequency (ω) involved in the loading and operating in
the complex domain, leading to

K̃
∗
oo𝕌o = 𝔽o − �̃�i, (10)

which proves that all the discussion previously addressed in
the time-independent case remains valid as soon as the Fourier
transform applies.

Thus, one could expect that a model relating observable
variables might exist as well (and could be learnt from collected
data) in the time domain, under certain constraints, as the one
referred in Remark 2 below, due to the dependence of �̃�i on the
internal loading 𝔽i. This would imply the consideration of the
history of the variables, which is naturally implicit in the Fourier
transform. We will discuss this point later.

Remark 2:
The just-described rationale applies in the forced regime, i.e.,

far from the transient effects induced by the initial condition. In
order to address transient regimes, the Laplace transform could
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be employed instead of the Fourier one. However, it is well-
known that the Laplace inverse transform is less simple from the
numerical point of view thanFourier’s. It is also important to note
that the Fourier transform of the internal loading considered in
the training stage should remain invariant to ensure the validity
of the learnt model.

2.3 Neural network-based modeling

In many cases, artificial intelligence, and more concretely
machine learning, aims at extracting the model that relates
measured inputs to the corresponding outputs Brunton and
Kutz (2019); Liu and Tegmark (2021). In general, the measured
output depends on the whole internal state. For instance, in
a structural dynamics problem where the loading (evolving
in time) constitutes the problem’s input, the corresponding
response is the displacement at each point and time, whereas the
corresponding output data are the measured displacement in a
certain observable point of the structure.

In physics-based structural mechanics, the internal response
(displacement at any location and time instant) is obtained by
discretization of the continuum mechanics model, consisting of
the momentum balance and the constitutive equations; from this
internal state, the output of interest is directly extracted at each
time instant. Alternatively, machine learning looks for the direct
relation between observables, the input action, and themeasured
response that, as just mentioned, can depend on the present and
past values of a series of non-observed internal variables Lee and
Carlberg (2020).

Recurrent neural networks (rNNs) and their long-short time
memory counterparts (LSTM) address such situations by trying
to model the time evolution of the internal state at the same time
it constructs the model relating the observable input and output
(action and response). For the sake of completeness, revisits both
rNN and LSTM neural networks.

2.4 Addressing time-dependent
problems in the time domain

Finally, to reinforce the main conclusions of Section 2.2, we
are briefly discussing time-dependent problems modeling but
directly operating in the time domain, instead of operating in
the Fourier domain as was considered before. For simplicity, we
contemplate the first-order dynamical system

CU̇+KU = F, (11)

whose implicit time discretization reads

CUn +ΔtKUn = ΔtFn +CUn−1, (12)

with Δt being the considered time step. This equation can be
rewritten in the more compact form

K
∗
Un = F

∗,n +CUn−1, (13)

with K
∗
= C+ ΔtK and F

∗ ,n = ΔtFn.
The sequencing of these equations can be written, inspired by

the dynamic model decomposition, in the matrix form

K
∗
[Un,…,U1] = [F

∗,n,…,F
∗,1] +C[Un−1,…,U0] , (14)

and by defining the extended vectors U and F ,

{
{
{

UT = [UnT ,Un−1T ,…,U0T]

FT = [Fn
T
,Fn−1

T
,…,F1T]

, (15)

and the extended matrix K

K =(
K
∗
−C 0 … …

0 K
∗
−C 0 …

… … … … …
), (16)

The previous system reads

KU = F , (17)

where the solution U is, in general, computed from theKmatrix
pseudo-inverse.

This algebraic system can be addressed by using the same
rationale that was applied before, but this time, the model will
explicitly involve the time evolution of the input(s) and output(s),
reinforcing the result already obtained when using the Fourier
transform.

Another alternative formulation, more aligned with the use
of machine learning techniques that will be presented afterward,
consists of writing the explicit integration

CUn = ΔtFn −ΔtKUn−1 +CUn−1, (18)

that can be reformulated as

Un = AFn +BUn−1, (19)

perfectly expressible within the rNN architecture illustrated in
Figure 12. When the model concerns only a part of the state (the
observable part), rNN and/or LSTM seem especially appealing to
carry out the task.

3 Results

This section addresses, as indicated in the introduction,
some numerical examples, simple enough to be perfectly
understood, but complex enough to underline all the issues and
methodological aspects just discussed.

One could think that working with a three-mass dynamical
systemwhile observing only the state of one of them is too simple.
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It is in fact very simple to visualize, and this was the primary
objective: being easy to reproduce because such a model is quite
simple to understand and replicate and check all the discussions
that we are discussing in the present section.

However, this simplicity is only apparent. Forces are being
applied to the internal masses, unknown and unobserved by the
modeler, who, furthermore, totally ignores how many hidden
masses are involved in the system. We consider three in the
present example, but they could come in any number, from one
to thousands.

When introducing all the system’s degrees of freedom—in
our case, the state of the three masses—in a model, the last one
becomes larger but finally simpler to interpret and to learn since
all the needed data for properly describing the system are there,
fully available. On the contrary, when considering only the data
associated to one mass, while ignoring all the data related to all
the other masses, the model seems simpler from its size, but very
intricate nonetheless.

For this reason, and this was our motivation, the simplicity
is only apparent and allows for a more fruitful discussion on the
issues and the conceptual questions previously addressed.

For completeness, the different programs elaborated and
used in the numerical examples addressed in the present
section, in particular the rNN and LSTM neural network
architectures (with their associated hyper-parameters), are
available at https://github.com/cghnatios/LSTM-rNN-for-
Modeling-systems-from-partial-observations-.git.

3.1 Learning in the Fourier space

We consider the linear N-mass dynamical system, including
inertia, elastic, and damping behaviors, illustrated in Figure 2.

The state of each mass is represented by zi = (qi,pi), with qi
and pi being the i-th mass position and momentum, respectively.
We define the system state from the extended vector ZT =
(zT1 ,…,z

T
N).

The usual model, coming from Newton’s equation, can be
expressed by

Ż = TZ+ J+ F, (20)

where matrix T includes the system properties, masses, spring
stiffness, and viscosity of the dampers. On the other hand, J
is a constant vector (in the linear case addressed below) and
F contains the external forces applied to the different masses,
appearing at odd positions in vector F (an explicit form of that
matrix, and those vectors will be given later).

In the forced regime, the Fourier transformation becomes
a valuable route. The dynamical model in the Fourier domain
reads:

(−T+ iωI)ℤ = 𝕁 +𝔽. (21)

By defining the effective loading 𝕊 = 𝕁 +𝔽 and T̃ = −T+ iωI,
we can write the matrix form that separates the degrees of
freedom related to the measurable position (noted by q) and the
derived momentum (p):

(
T̃qq (ω) Tqp
Tpq T̃pp (ω)

)(
ℤq (ω)
ℤp (ω)
) = (
𝕊q (ω)
𝕊p (ω)
) = (

0
𝕊p (ω)
) . (22)

Being 𝕊q (ω) = 0, ℤp (ω) can be expressed in terms ofℤq (ω):

T̃qq (ω)ℤq (ω) +Tqpℤp (ω) = 0→ℤp (ω) = −T
−1
qp T̃qq (ω)ℤq (ω) ,

(23)

that, introduced into the second equation, leads to

(Tpq − T̃pp (ω)T
−1
qp T̃qq (ω))ℤq (ω) = 𝕊p (ω) , (24)

which can be reshaped into a more compact form:

A (ω)ℚ(ω) = ℝ(ω) , (25)

with A (ω) = Tpq − T̃pp (ω)T−1qp T̃qq (ω), ℚ(ω) ≡ ℤq (ω), and
ℝ(ω) ≡ 𝕊p (ω).

This way, we have removed the momentum from the state
variables since it derives directly from the measurable position.

Now, the partition between the internal and the observable
degrees of freedom can be enforced:

(
Aoo (ω) Aoi (ω)
Aio (ω) Aii (ω)

)(
ℚo (ω)
ℚi (ω)
) = (
ℝo (ω)
ℝi (ω)
) (26)

such that following the aforementioned rationale leads to

Ãoo (ω)ℚo (ω) = ℝo (ω) − ℝ̃i (ω) , (27)

with ℝ̃i (ω) = Aoi (ω)A−1ii (ω)ℝi (ω) and Ãoo (ω) = Aoo (ω) −
Aoi (ω)A−1ii (ω)Aio (ω), where the same remarks that were
previously discussed apply.

As a particular example, we consider a system composed
of three identical masses (m1 = m2 = m3 = m), springs
(k1 = k2 = k3 = k), and dampers (c1 = c2 = c3 = c), with the
springs having a reference length also identical (l1 = l2 = l3 = l).
Forces can be applied on both the internal masses (the first two)
and on the observable one, the third. The following values are
considered: m = 0.5 Kg, c = 0.8 N/m, k = 1 N/m, and l = 1 m.

The dynamical model reads

(((

(

q̇1
ṗ1
q̇2
ṗ2
q̇3
ṗ3

)))

)

=
(((

(

0 1/m 0 0 0 0
−2k −2c/m k c/m 0 0
0 0 0 1/m 0 0
k c/m −2k −2c/m k c/m
0 0 0 0 0 1

m
0 0 k c/m −k −c/m

)))

)

×
(((

(

q1
p1
q2
p2
q3
p3

)))

)

+
(((

(

0
k1l1 − k2l2

0
k2l2 − k3l3

0
k3l3

)))

)

+
(((

(

0
F1 (t)

0
F2 (t)

0
F3 (t)

)))

)

,

(28)
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FIGURE 2
N-mass dynamical system.

which, in the linear case and taking into account that
k1 = k2 = k3 = k and l1 = l2 = l3 = l, after applying Fourier
transform, leads to

(((

(

iω −1/m 0 0 0 0
2k iω+ 2c/m −k −c/m 0 0
0 0 iω −1/m 0 0
−k −c/m 2k iω+ 2c/m −k −c/m
0 0 0 0 iω −1/m
0 0 −k −c/m k iω+ c/m

)))

)

×
(((

(

q̂1
p̂1
q̂2
p̂2
q̂3
p̂3

)))

)

=
(((

(

0
0
0
0
0
kl

)))

)

δ (ω) +
(((

(

0
F̂1
0
F̂2
0
F̂3

)))

)

, (29)

where the hat operator, •̂, refers to the Fourier transform of the
mass positions, momentum, and applied forces.

It is important to note that, in the nonlinear case described
later on, since the spring stiffnesses depend on the spring
elongation and the latter will obviously be different for each
node—unlike here in the linear case— the first vector of the
right hand member will contain three non-vanishing spring
contributions: k1l1 − k2l2, k2l2 − k3l3, and k3l3.

By reordering the previous system, the position and
momentum degrees of freedom can be grouped:

and then, the momentum degrees of freedom p̂i condensed into
the ones related to the mass positions q̂i, as previously discussed:

(Tpq − T̃pp (ω)T
−1
qp T̃qq (ω))ℤq (ω) = 𝕊p (ω) . (31)

that, after separating the internal and observable degrees of
freedom, reads

which allows making the model involving the observable degree
of freedom, q̂3, explicit:

{A33 (ω) − (A31 (ω) A32 (ω))

× (
A11 (ω) A12 (ω)
A21 (ω) A22 (ω)

)
−1

(
A13 (ω)
A23 (ω)
)} q̂3 (ω)

= klδ (ω) + F̂3 + (A31 (ω) A32 (ω))

×(
A11 (ω) A12 (ω)
A21 (ω) A22 (ω)

)
−1

(
F̂1 (ω)
F̂2 (ω)
) , (33)

that, arranged in a more compact manner, reads

Ã33 (ω) q̂3 (ω) = klδ (ω) + F̂3 (ω) + F̂i3 (ω) , (34)

which represents the system transfer function.
Now, the final point concerns the data-driven model

identification, that is, how to extract from the given data the
different model components: Ã33 and F̂i3, for each involved
frequency ω. In the last equation, the index i associated with
F̂i3 reflects all the effects coming from the unresolved degrees of
freedom (internal unobserved masses).

Conceptually, the system identification could proceed as
follows:

1. The free response associated with F3 = 0 (only the loads on
the internal masses apply), qf3(t), is obtained (measured), and
the superscript •f refers to the fact that the observable mass
remains free of loading.

2. Then, for a non-null applied (and measurable) loading on the
observablemass, F3 ≠ 0, the system response q3(t) is recorded,
which now is a consequence of all the loading terms involved
in the right-hand member of the previous equation.

3. The difference between the forced and free displacement
can be obtained from Δq3(t) = q3(t) − q

f
3(t), allowing for

computation of its Fourier transform Δ̂q3(ω).
4. Finally, by means of the just calculated Δ̂q3 and the Fourier

transform of the measurable force F̂3(ω), the model coefficient
Ã33(ω) is learnt from

Ã33 (ω) =
F̂3 (ω)
Δ̂q3 (ω)
. (35)
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FIGURE 3
Free response (F3(t) = 0): (A) qf

3 (t); and (B) q̂f
3 (ω).

FIGURE 4
Response: (A) q3 (t); and (B) q̂3 (ω).

When applying a single-frequency loading, we have:

{{{{
{{{{
{

F1 (t) = 2 cos (2πt)

F2 (t) = 2 cos(π
4
t)

F3 (t) = 2 cos(π
2
t)

, (36)

The free and forced responses and their Fourier transforms
are depicted, respectively, in Figures 3, 4. This loading is used to
generate the synthetic data that will serve to identify the model’s
output q3(t) later on as a function of the observed load F3(t).
During the training process of thatmodel,F2(t) andF3(t) are fully
ignored.

Figure 5 shows the response difference Δq3(t) = q3(t) − q
f
3(t)

and its Fourier transform Δ̂q3(ω) on the domain in which
the difference Δq3(t) becomes almost stabilized, meaning the
transient component almost vanishes.

Now, when comparing the reference solution, obtained by
the reference analytical model Ã33 = −1.4848+ 1.0221i, to the
one obtained from the learnt model Ã33 = −1.5242+ 0.9823i (at
principal frequency), an excellent accuracy can be noticed.

3.2 rNN and LSTM time simulations in
both the linear and the nonlinear settings

In this section, we consider again the 3-mass dynamical
system. The dynamical problem is integrated numerically to
obtain the ground truth, that is, the reference solution. The
computed data will be used for training the different neural
networks, the rNN and the LSTM.

In both cases, the input data consist of the force F3 and
position q3 in the previous time steps, which results in the
surrogate H:

q̃i3 =H((

Fi3
Fi−13
⋮

Fi−n+13

),(

qi−13
qi−23
⋮
qi−n3

)), (37)

where q̃i3 is the prediction of q3 at time step i.
As Eq. 37 reflects, different memory lengths from the use of

the positive integer n, (n ≥ 0), are taken into account. For n ≠ 0,
an initialization issue occurs.
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FIGURE 5
Response difference: (A) Δq3 (t); and (B) Δ̂q3 (ω).

In the case considered here, the larger memory is the toll
ignoring the internal forces take, whose consequences on the
observed variables are learnt from the time evolution of the last.

The initialization can be carried out following two routes:

• If we are interested in the forced regime, the long-time
solution does not depend on the initialization.

• Should we prefer obtaining the transient solution, one could
consider a coarser model that updates the state from the just
previous state until completing the first n values. Then, the
LSTM can take over.

In the present study, as previously indicated, we are focused
on proving under which conditions a model relating observable
inputs and outputs exists, despite the existence of hidden
dynamics, resulting in a noticeable larger memory. For that
reason, in the simulations considered in the present study, we
assumed the first n values known.

3.2.1 Using a simple recurrent neural network
First, we consider a rNN surrogate model with n = 2, with

respect to Eq. 37. The considered data for training come from
the integration of the dynamical system, in both the linear and
nonlinear cases.

The data consist of 10,000 states of the observable variables
(coming as indicated from the standard integration of the
dynamical system). These data are divided into two sets, the
training and the testing ones, the former containing 80% of the
points and the latter the remaining 20%.

The rNN consists of a single layer with one output q̃i3,
in reference to Eq. 37. The network parameters and the
initialization choices are the ones reported in Glorot and
Bengio (2010). The algorithm is trained during 1,500 epochs,
even though the use of fewer epochs leads to similar results.

The linear problem considers, once more: m1 = m2 = m3
= 0.5Kg, c = 0.8 N/m, k1 = k2 = k3 = 1 N/m, and l1 = l2 = l3 = 1 m,

FIGURE 6
Prediction of the observable position q̃3(t) computed from a
trained rNN with n = 2 (colors green and red mark the training
and testing sets, respectively). It can be noted that the blue
curve is not visible because it is almost exactly under the green
and red curves.

expressing the applied loading the following way:

{{{{
{{{{
{

F1 (t) = 2 cos (2πt)

F2 (t) = 2 cos(π
4
t)

F3 (t) =
t

tmax
+ cos(π

2
t)
, (38)

with tmax = 500s. This loading is used to generate the synthetic
data that will serve afterward to identify the model q3(t) as a
function of the observed load F3(t). During the training process
of that model, F2(t) and F3(t) are again completely neglected.

The computed results from the trained network are given
in Figure 6, being the mean absolute percentage errors (MAPE)
1.38% on the training set and 2.18% in the testing set.
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FIGURE 7
Prediction of the observable position q̃3(t) in the nonlinear case,
computed by a trained rNN with n = 3 (again, colors refer to the
training and testing sets). It can be noted that the blue curve is
not visible because it is almost exactly under the green and red
curves.

The same rNN (now with n = 3 in reference to Eq. 37) was
employed to tackle a nonlinear dynamical system, with similar
parameters to the ones considered in the linear case, except in
what concerns the stiffnesses of the springs, now given by

{{
{{
{

k1 = k01 (1+ αΔl1)
k2 = k02 (1+ αΔl2)
k3 = k03 (1+ αΔl3)

, (39)

with k01 = k02 = k03 = 10 N/kg and α = 10–4 m−1 (arbitrary,
though carefully tuned tomaintain the stability of the simulation)
and where Δl• is the elongation of the corresponding spring, i.e.,
Δl2 = q2 − q1 − f2, Δl3 = q3 − q2 − f3, and Δl1 = q1 − l1.

The considered loading reads

{{{{
{{{{
{

F1 (t) = 2 cos (2πt)

F2 (t) = 2 cos(π
4
t)

F3 (t) = cos(
π
2
t)

. (40)

The results concerning the nonlinear dynamical system are
reported in Figure 7, and, for the sake of clarity, the associated
absolute error is reported in Figure 8, with a mean absolute
percentage error (MAPE) of 1.34% in the training set and 1.29%
in the testing set. The error is slightly larger in the training
set, probably due to the larger transient phase presenting higher
peaks.

3.2.2 Using an LSTM recurrent neural network
The same linear and nonlinear dynamical systems are now

processed by LSTM cells, with the same network parameters and
initializations used for the rNN.

FIGURE 8
Error in the prediction of the observable position q̃3(t) in the
nonlinear case, computed by a trained rNN with n = 2 (the same
color code applies).

FIGURE 9
Prediction of the observable position q̃3(t) computed by a
trained LSTM with n = 2 (the same color code is employed). It
can be noted that the blue curve is not visible because it is
almost exactly under the green and red curves.

When addressing the linear case, the computed results are
given in Figure 9, with an MAPE of 0.84% in the training set
and 1.33% in the testing set. The results in the nonlinear case
are reported in Figure 10, and again, for the sake of clarity, the
associated absolute error is presented in Figure 11, presenting an
MAPE of 0.15% in the training set and 0.14% in the testing set.
The error is again slightly larger in the training set for the same
reasons given before.

As expected, LSTM outperforms the rNN for a large number
of epochs. It was noticed that by reducing the number of epochs,
the rNN outperforms LSTMs because convergence is more easily
achieved using a lower number of parameters. The error in the
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FIGURE 10
Prediction of the observable position q̃3(t) in the nonlinear case,
computed by a trained LSTM with n = 3 (same color code). It
can be noted that the blue curve is not visible because it is
almost exactly under the green and red curves.

FIGURE 11
Error in the prediction of the observable position q̃3(t) in the
nonlinear case, computed by a trained LSTM with n = 3 (same
color code).

linear case was larger, possibly due to the fact that it involves close
to zero values which negatively impacts the error calculation.

It must be noted that several experiments with various
number of elements, different damping coefficients, stiffnesses,
lengths, and masses have been carried out with similarly
satisfactory results (MSE error always below 0.07 for both
training and testing).

4 Conclusion

The issue related to the circumstances enabling the
construction of amodel relating the input and output of observed
quantities, in the frame of a larger system involving a hidden state
that affects the observed variables, was revisited in the present
work.

We proved that for time-independent models, such a model
exists, and the learnt model is the one where the hidden variables
are condensed into the observed ones. As soon as the loading
in the internal unresolved degrees of freedom does not change,
the computed model can be reused for any other prediction with
different loading in the observed region concerned by the learnt
model.

In the transient case, the Fourier transform, applicable in
the linear case far away from the transient regime, allowed to
prove that such a model can be learnt, but in this case, the
model involves the recent history of the considered variables
(present and recent past) and remains valid for any loading in
the observed region, as soon as the forces applied on the hidden
part have the same Fourier transforms.

When operating in the time domain, the rNN and LSTM
are demonstrably the most natural choices for performing the
learning task, and it is also expected that they allow for addressing
nonlinear dynamical systems. Regarding time-integration, the
performances of both neural networks, rNN and LSTM, remain
similar and prove that, as expected from the developments given
in Section 2, the model relating observable inputs and outputs
can be learnt as soon as past values of them are considered in the
model construction.
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