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Introduction: Although electric field mediated the magnetic anisotropy in
ferromagnetic/ferroelectric structure have an intense report, the angle between
the magnetic uniaxial anisotropy and strain anisotropy influencing the
rearrangement of the magnetic moment has not well investigated.

Methods: Keithley 2410 direct current power supply was used to provide voltage
through the Cu wires. Static magnetic properties of CoZr layer were measured
through VSM (MicroSense EV9). Dynamicmagnetic properties were obtained by FMR
(JEOL JES-FA 300 spectrometer, power of 1-mW, X-band at 8.969 GHz).

Results and Discussion: Electric field-mediated, room-temperature magnetic
anisotropy of CoZr/Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) structures, in which
easy axis of CoZr layer along either direction of [01-1] or [100] of PMN–PT, was
investigated. Measured with vibrating sample magnetometer, for [01-1] easy-axis
direction sample, when an electric field was applied, these directions of easy axis and
hard axis remains unchanged. However, for [100] easy-axis direction sample, these
directions of easy axis and hard axis were changed obviously with applying electric
field, attributable to the competition between magnetic uniaxial anisotropy of
CoZr layer and piezostrain anisotropy of PMN-PT substrate. Nevertheless, change
of the resonance magnetic field with electric field–measured by ferromagnetic
resonance–exhibited non-volatile behavior, which possibly indicates magnon-
driven magnetoelectric coupling existing in CoZr/PMN–PT structures.
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1 Introduction

Advancements in ferromagneticmaterials, either single-phase (Zhao et al., 2006; Chu et al., 2008;
Lebeugle et al., 2008; Catalan and Scott, 2009) or heterostructures (Murugavel et al., 2004;
Zurbuchen et al., 2005; He et al., 2007), have promising practical applications in
magnetoelectric devices. Multiferroic heterostructures which exhibit strong coupled
magnetization and electric polarization across the interfaces, especially ferromagnetic/
ferroelectric (FM/FE) structures (Liu et al., 2013; Cui et al., 2014; Li et al., 2014; Yang S. W.
et al., 2014), have stimulated much research. Magnetic properties (mediated by electric field) and
ferroelectricity (mediated by magnetic field) can be realized by magnetoelectric (ME) coupling.
Recently, with the development of ME random–access memory (which can substantially improve
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storage density), research has focused on how to exploit electric field-
mediated themagnetic properties (Liu et al., 2013; Yang S.W. et al., 2014).
The common ferroelectric crystal material PMN-PT (Wu et al., 2011;
Yang L. F. et al., 2014) exhibits a d33 parameter that is much higher than
the d31 parameter, consequently, this material is often used in FM/FE
structures. When applying electric field on the PMN–PT layer, strong
strain or charge effect at the interface of FM and PMN-PT layers can
mediate magnetic properties of the adjacent FM layer. Because of strain
that is caused by the piezo-electric and electrostrictive effects (attributable
to applied electric field) in the FE material (Thiele et al., 2007; Pertsev,
2008; Wang et al., 2014; Zhou et al., 2021), large magnetic response was
produced in FM layer, which can lead to a strongME coupling. Thus, one
always observes butterfly-type behavior. The charge accumulation/
dissipation is relevant to the spin carriers, which is induced in the
interfacial FM/FE layer (Weisheit et al., 2007; Molegraaf et al., 2009).
These above two main mechanisms form an important basis for ME
coupling in FM/FE structure to mediate magnetic anisotropy. Hu and
Nan (2009) reported the influence of the residual strains or modes of
applied electric fields on themagnetic easy axis for various FM films (such
as Fe, Ni, Fe3O4 and CoFe2O4) grown on FE substrates (such as PZN-PT,
BTO, and PZT). Wang et al. (2014) used an electric field to mediate the
magnetic anisotropy of Co/PMN–PT heterostructure in which easy axis
of Co. thin film was along [01-1] direction of PMN–PT substrate. The
angle between the magnetic uniaxial anisotropy and strain anisotropies
can influence the rearrangement of the magnetic moment. Therefore, in
this report, at room-temperature, non-volatile electric field-mediated
magnetic anisotropy of CoZr/PMN–PT heterostructures, in which the
easy axis of CoZr layer was along either [01-1] or [100] direction of

PMN–PT, was investigated. For the [01-1] easy-axis sample, when an
electric field was applied, these directions of easy axis and hard axis
remains unchanged, which was measured by vibrating sample
magnetometer (VSM). However, for [100] easy-axis direction sample,
these directions of easy axis and hard axis were changed obviously with
applying electric field, attributable to the competition between magnetic
uniaxial anisotropy of CoZr layer and piezostrain anisotropy of PMN-PT
substrate. In addition, change of resonance magnetic field (Hr) under
various electric fields measured by ferromagnetic resonance (FMR)
exhibited non-volatile behavior, which possibly indicates magnon-
driven magnetoelectric coupling in CoZr/PMN–PT heterostructures.

2 Materials and methods

The 40 nm-thick CoZr thin films were deposited on (011)-oriented
PMN-PT substrate by magnetron sputtering. The oblique sputtering
angle is 20°. Six Zr chips were regularly placed onto a Co. target. The easy
axes of CoZr thin film were along the [01-1] or [100] direction (sample
1 and sample 2, respectively) of PMN–PT substrate during sputtering,
respectively. 20 nm-thick Pt layer was sputtered on the top surface, and
100 nm-thick Pt layer was prepared on the bottom side, which for use as
top electrode and bottom electrode, respectively. Two Cu wires were
connected to them, respectively. Keithley 2410 direct current power
supply was used to provide voltage through the Cu wires. Static magnetic
properties of CoZr layer were measured through VSM (MicroSense
EV9). Dynamic magnetic properties were obtained by FMR (JEOL JES-
FA 300 spectrometer, power of 1-mW, X-band at 8.969 GHz).

FIGURE 1
Magnetic hysteresis loops at the hard axis under various electric fields for the CoZr layer along (A) (01–1) and (C) (100) of the PMN–PT substrate; rotating
angle-remanent curves under various electric fields for the CoZr layer along (B) (01–1) and (D) (100) of the PMN–PT substrate. Inset: magnetic hysteresis loops
at the easy and hard axes at the P0 state.
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3 Results and discussion

3.1 Electric field control of static magnetic
property

For the sample 1, the inset of Figure 1A shows typical in-plane
magnetic hysteresis loops of CoZr layer along easy axis and hard axis
at unpoled (P0) state, measured with the VSM. There was obvious in-
plane uniaxial anisotropy, attributable to 20° oblique sputtering angle.
The easy axis of CoZr layer is along [01-1] direction of PMN-PT
substrate at P0 state (Figure 2A), regarded as 0°. The hard axis is along y
direction, which can be defined as 90°. Then, the sample1 was pre-
polarized by an applied electric field of ±10 kV/cm for two cycles. For
brevity, only data at the hard axis was plotted. The electric field applied
from top side to bottom side for sample 1 was defined as positive (+),
whereas negative (−) (Figure 2A). The maximum value of electric field
applied on the sample 1 was 10 kV/cm; Figure 1A shows
representative magnetic hysteresis loops, measured at 90° at the Pr

+

state and ±10 kV/cm. Pr
+ state referred to the remnant polarization

state after applied electric field applied decreasing from 10 kV/cm to
0 kV/cm. When the electric field was changed from 10 kV/cm
to −10 kV/cm, saturation magnetic field decreased, which indicates
a decrease of the magnetic anisotropy. That is, magnetic anisotropy of
sample 1 can be mediated by the electric field. In addition, rotating of
the angle-remanent curves was measured at Pr

+ state and −10 kV/cm.
Remanent magnetization (Mr) state was achieved by reducing applied
magnetic field 1000 Oe to 0 Oe. Mr was measured in the plane of every
5° by attaching sample 1 to rotatable holder of VSM. Figure 1B showed
angle-dependence of Mr at Pr

+ state and −10 kV/cm. Here, these
curves indicated a two-fold symmetric magnetic uniaxial anisotropy.
Maximum and minimum values of Mr at 0° and 90°, respectively was
obtained. When applying different electric fields, value of Mr changed,
while the direction of hard axis remained unchanged. However, for
sample 2 (Figure 1D), the direction of hard axis generated an obvious
30° change. Noticeably, the direction of the 0° still represent the
direction of easy axis for sample 2, which is along the [100] of
PMN-PT substrate (Figure 2B). Concomitantly, the relative
remanent magnetization Mr/Ms at the hard axis exhibited an
increase of 0.3. Figure 1C shows representative magnetic hysteresis

loops measured at 90° under various electric fields, which indicates
similar behavior with the rotating-angle result (Figure 1D).

3.2 Schematic of heterostructures

The aforementioned data can be explained as follows. For sample
1, the easy axis of CoZr was parallel to (01–1) direction of PMN–PT
substrate, which indicates that direction of magnetic uniaxial
anisotropy Hk was with that of easy axis of the piezostrain Hλ
(originating from PMN–PT substrate) (Figure 2A). Thus, the
direction of easy/hard axis can negligibly shift under various
electric fields. Nevertheless, for sample 2, easy axis of CoZr was
parallel to the [100] direction of PMN–PT substrate, which indicates
that there was an angle between direction of magnetic uniaxial
anisotropy and that of easy axis of piezostrain from the PMN–PT
substrate (Figure 2B). When applying the various electric fields, there
was a competition between Hk and Hλ, which can lead to divergence
of the magnetic moment (M) from original easy axis and
rearrangement along new direction of magnetic anisotropy field.
In addition, Hλ increased with increasing the applied electric field.
Upon obtaining a sufficiently large Hλ, the magnetic moment
arranged along the direction of Hλ. This is the reason that the
direction of the easy axis generated an obvious 30° change in
sample 2.

3.3 Electric field control of dynamic magnetic
property

Next, the dynamic magnetic properties of two samples mediated
by electric field can be investigated at room temperature, which was
measured by FMR. Figure 3A shows the configuration for FMR
spectroscopy. The sample dimensions were 1 mm × 1 mm. For the
sample 1, at P0 state, FMR integral spectra were obtained with angle φ
(between [01-1] direction of PMN–PT substrate and that of applied
magnetic field) rotating from 0° to 90° (Figure 3B). Considering the
precession of magnetization was stimulated by microwave excitation
with special phase coupling, the spectra contained real part and

FIGURE 2
Schematic of magnetic uniaxial and piezostrain anisotropy for the CoZr layer along (A) (01–1) and (B) (100)of the PMN–PT substrate. φ is the angle of the
applied magnetic field with respect to the direction of easy axis at P0 state.
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imaginary part, which was a mixture of them. Therefore, the FMR
function as follows (Zhou et al., 2017):

ζ H( ) � A
ΔH cos δ + H −Hr( ) sin δ

ΔH2 + H −Hr( )2 (1)

where H was applied magnetic field; δ was the phase mixing real and
imaginary parts of dynamic susceptibility; A was integral coefficient;
ΔH was half-width.

FMR integral curves under different angles φ can be fit on the
basis of Eq. 1. These related parameters such as Hr can be obtained.
Further, Hr−φ curve at Pr+ state and −10 kV/cm was shown in
Figure 3C, which demonstrates an obvious in-plane uniaxial
anisotropy of CoZr layer originating from oblique magnetron.
The position of minimal value of Hr was at 0°, indicating easy
axis along 0°. The maximal value of Hr was at 90°, which
represented hard axis along 90°. The directions of easy axis and
hard axis remained unchanged for sample 1 even applying various
electric field, which is consistent with the result measured by VSM
as shown in (Figure 1B). Nevertheless, for sample 2, the direction of
the easy axis generated an obvious 45° change, compared with the
data at Pr

+ state and −10 kV/cm as shown in (Figure 3D). The results
measured by FMR has a difference with the results obtained with
the VSM, attributable to the two points: 1) the direction of in-plane
magnetic uniaxial anisotropy is inconsistent with sample design’s
direction as shown in Figure 2 due to the CoZr thin film without a
single crystal structure. Additionally, due to the ferroelectric domain
distributing in PMN-PT substrate with applying electric field, the
direction of piezostrain anisotropy stemming from PMN-PT
substrate is not necessarily consistent with that in a real state. 2)
The another ME coupling mechanism excepting for piezostrain
effect can be considered in CoZr/PMN-PT structure.

3.4 Mechanism of electric field control of
magnetic property

Additionally, these measured FMR integral curves under various
electric fields can also be fit on the basis of Eq. 1. For sample 1, Hr−E
curve at 90° can be obtained as shown in (Figure 4A), which reveals
non-volatile electric field tunning of magnetic behavior. Moreover, the
results for sample 2 (Figure 4B) were similar to those in Figure 4A.
Generally, two main ME coupling mechanisms, piezostrain effect and
charge effect, exist in FM/FE structure. The S−E curve for the two
samples as shown in Figure 4C indicates piezostrain effect stemming
from PMN-PT substrate with applying electric field can transfer to
CoZr layer in a manner that resulting in a butterfly-like magnetic
response. In comparison with FMR results in Figures 4A,B, loop-like
Hr−E curves indicated non-volatile behavior, different from that of
butterfly-like S−E curve. The above result indicated that another ME
coupling mechanism must be into consideration. However, the
magnitude of charge screening length for conventional charge
effect was on the order of angstrom for typical FM film according
to previous reports on MgO-based magnetic tunnel junctions and
FeNi/PMN-PT multiferroic heterostructures (Shiota et al., 2012;
Wang et al., 2012). Therefore, the transposition of the ME coupling
mechanism should be considered with care. But in fact, 40 nm-thick
CoZr layer was prepared in our CoZr/PMN–PT structure. This
thickness was much larger than charge screening length, and thus
conventional charge effect can be ignored. In the present study (Jia
et al., 2014), we have showed that the spin-polarized screening charge
is surface confined, in the spin channel a local non-uniform spiral spin
density builds up at the interface and goes over into the initial FM
magnetization within the spin-diffusion length of the order of tens of
nanometers. The interfacial spiral spin density can be viewed as a

FIGURE 3
(A)Configuration for FMR spectroscopy; (B) in-plane rotating-angle FMR integral spectra for the CoZr layer along the (01–1) PMN–PT substrate at the P0

state; Hr−φ curve under various electric fields for the CoZr layer along (C) (01–1) and (D) (100) of the PMN–PT substrate.
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magnonic accumulation stabilized by the interfacial, spin-dependent
charge rearrangement at the contact region between the FM and the
FE (with the electric polarization P). Meanwhile, we have reported this
direct ME coupling can pass into the initial FM magnetization and
steer the magnetic dynamics in single crystal Fe thin film with
thicknesses of 4, 15, and 30 nm (Zhou et al., 2018a) and single
crystal Co. thin film of 14 nm (Zhou et al., 2018b). That is, the
diffusion length of magnon-driven interfacial ME coupling (belong
to charge effect) can reach magnitude of nanometers (Zhou et al.,
2019). Furthermore, strong correlation between magnetization M and
polarization P can be received in the magnon-driven interfacial ME
coupling (Figure 4D), which lead to non-volatile magnetic response
such as loop-like Hr−E curve as shown in Figures 4A, B. Therefore,
piezostrain effect and magnon-driven ME coupling belonging to
charge effect coexist in our CoZr/PMN–PT structure.

4 Conclusions

We reported electric-field mediated magnetic anisotropy in CoZr/
PMN–PT heterostructures, in which the easy axis of CoZr layer was along
(100) and (01-1) directions of PMN–PT substrate, respectively. For [01-1]
easy-axis sample, electric-field-induced the direction of the easy axis to
remain in almost the same position. However, for the (001) easy-axis
sample, the applied electric field changed the direction of the easy axis and
hard axis, attributable to competition between the magnetic uniaxial
anisotropy and piezostrain anisotropy. Additionally, change of resonance
magnetic field with electric field measured by ferromagnetic resonance
exhibited non-volatile behavior, which possibly indicates magnon-driven
magnetoelectric coupling in CoZr/PMN–PT heterostructures.
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