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To demonstrate the superiority of dam concrete, a systematic study was conducted
to examine the durability of low-heat cementitious composite (LHCC) that is
composed of Portland cement (PC), fly ash (FA), and MgO expansive additive
(MEA) with PC as the reference group. Through GEMS software, XRD, SEM, and
EDS, the differencemechanism in durability between the two cementitious materials
was revealed from the perspectives of phase evolution and microstructural
characteristics. Water at 40 °C was adopted for curing in the study to match the
long-term temperature field inside the concrete dam. According to the results of the
RCM, accelerated carbonation, and rapid freeze–thaw cycle experiments, LHCC
outperforms PC in durability. The hydration process of LHCC is simulated by
inputting the reaction degree of each phase calculated using the MPK model into
the GEMS software. The thermodynamic model output shows that portlandite first
increases and then decreases as LHCC hydration proceeds, and C-S-H and
stratlingite are supplemented in the later stage, which reflects the high
performance of FA involved in hydration. In addition, hydrotalcite that is capable
of chloride ion adsorption is increasingly generated with the consumption of brucite.
As is clearly shown in the SEM images, there are denser space grids formed by
overlapping C-S-H in LHCC with almost no capillary pores. Meanwhile, when
combined with the results of EDS, it is strongly demonstrated that the FA in
LHCC can be hydrated to produce dense fibrous C-S-H in large amounts,
providing a basis for the positive development of durability.
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Introduction

The construction of water conservancy and hydropower projects is inseparable from mass
concrete retaining dams (Wang et al., 2018). Compared with earth-rock dams, concrete dams
are more commonly constructed due to their adaptability to various environmental conditions
and convenient construction (Noroozi et al., 2022). However, the existence of cement hydration
heat makes the temperature in concrete dams reach as much as 70 °C, and it is difficult for the
heat stored in the dam to dissipate (Atiş, 2002; Chen et al., 2017; Klemczak et al., 2017). The
considerable thermal stress makes the concrete dam susceptible to cracking, which shortens its
service life (Tayade et al., 2014). Therefore, it is essential to prevent the cracking of concrete
dams in engineering practice.

To mitigate the temperature increase that plays a key role in the prevention of fracture
evolution, physical cooling methods are adopted during construction (Ha et al., 2014). For
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example, a common practice is to reduce the temperature of the
mixture before mixing the concrete or installing pipes for the transfer
of cold water into the poured mass concrete, which requires complex
construction technology and increases time and economic costs. In
contrast, the replacement of cement with FA in large amounts can
effectively suppress the generation of hydration heat and facilitates
proper construction (Zhang and Canmet, 1995; Ng and Justnes, 2016).
With the extension of curing, the pozzolanic activity of FA gradually
increases, and secondary hydration occurs with cement. This results in
the generation of more and more stable C-S-H, which significantly
enhances the performance of dam concrete in crack resistance (Ali and
Mullick, 1998; Qian et al., 1998; Wang et al., 2020). Furthermore, in
considering the reduction of carbon emissions from the cement
industry and the promotion of industrial solid waste recycling, FA
has basically been applied as the fifth component of dam concrete
(Yoon et al., 2002; Vargas and Halog, 2015).

In reality, it is impossible to completely avoid cracking through
controls of the temperature. Cement-based cementitious materials
are prone to shrinkage in various ways, such as self-shrinkage, drying
shrinkage, plastic shrinkage, and carbonation shrinkage (Wolterbeek
et al., 2021; Zheng et al., 2022). In addition to provide channels for
harmful ions to pass through, the cracks caused by thermal stress and
volume shrinkage can also have negative effects on the properties of
cement (Xin et al., 2018). To repair cracks as much as possible, MEA
is often added into the dam concrete (Gao et al., 2008). MEA is
characterized by a slow hydration process, stable hydration products,
and a lasting expansion effect, which matches the long-term
temperature drop and volume shrinkage process of hydraulic
mass concrete (Mo et al., 2014; Zhang, 2022). As a result, the
low-heat cement-based composites obtained by the hydration of
cement and large amounts of FA and MEA after mixing have
gradually been applied as the major cementitious component of
dam concrete (Gao et al., 2013).

To explore the superiority of LHCC, there have been many studies
conducted to experiment on its various properties. Choi et al. (2014)
conducted tests to confirm that light-burned MgO can improve the
compressive strength and durability of FA concrete cured at 20 °C in
water over a long time. By measuring the volume deformation of
MgO-based shrinkage-compensating cement containing FA, Zhang
et al. (2022) found out that FA can help enhance the effectiveness of
MEA in compensating for the early shrinkage of cement and
suppressing the late excessive delay expansion of Mg(OH)2, which
significantly reduces the risk of expansion-induced cracking for the
cementitious matrix. These studies have proven the superior influence
of FA and MEA on performance despite a lack of clarity on the related
hydration mechanism. Meanwhile, prior studies are based on the
curing at 20 °C, which is inconsistent with the high-temperature
environment inside dam concrete (Dung and Unluer, 2021; Cao
and Al-Tabbaa, 2022).

A literature review showed that the long-term internal
temperature of mass concrete is approximately 40 °C (Saeed et al.,
2015; Hu et al., 2021; El-Mir et al., 2022). Therefore, this paper studied
the hydration mechanism and durability of LHCC used for dam
concrete under 40 °C water curing through thermodynamic
modeling and experiments. The resistance to chloride ion
penetration, carbonation, and frost was evaluated through the
RCM, accelerated carbonation, and rapid freeze–thaw cycle
experiments, respectively. The hydration process was
thermodynamically modeled by GEMS software, the generated

crystal hydrate was analyzed by XRD, and the microstructure was
examined by SEM and EDS.

Materials and methods

Raw materials

The cement was P I 42.5, which satisfied the quality requirements
set out in Appendix A of GB8076-2008. The FA was Grade I. The
purity of MEA was 87%, and its activity was 185 s according to the
citric acid neutralization test. Classified as type M, it had a calcination
temperature ranging from 900 °C to 1,100 °C. Table 1 and Figure 1
show the chemical compositions and particle size distributions of the
raw materials, respectively.

Composition design of the cementitious
materials

To reduce the heat of hydration and compensate for shrinkage as
much as possible through expansion, the FA content in this study was
set to 40%, and the content of MEA was set to 8% according to the mix
proportion used in several previous projects. Meanwhile, the
specimens in the study were cured in 40 °C water to match the
temperature field inside the dam concrete. For a comparative
study, the PC with the same water/binder was treated as the
reference group. Table 2 indicates the compositions of cementitious
materials used in the study.

Experimental methods

Chloride ion penetration experiment

In this study, the chloride ion penetration resistance was
characterized by the chloride ion permeability coefficient through
the rapid chloride ion migration coefficient (RCM) method. During
the experiment, the specimens that were cured for 90 days were first
placed in a vacuum water-retaining machine for 24 h and then in the
test channel of the RCM-NTB chloride diffusion coefficient tester for
another 24 h. Following the test, specimens were collected and split
with a splitting tester. Finally, a 0.1 mol/L AgNO3 solution was sprayed
onto the split section of the specimens, and a vernier caliper was used
to measure the distance between the color development boundary and
the edge of the specimens. The area that is penetrated by chloride ions
turned a silver white. The chloride diffusion coefficient was calculated
by substituting the measured penetration depth into the related
equations. Three specimens were tested for each group, and the
average was used.

Carbonation experiment

In this study, the accelerated carbonation process was simulated
on the carbonation test chamber with a carbon dioxide
concentration of (20 ± 3)% and a relative humidity of 70 ± 5%.
Prior to the experiment, the specimens that were cured for 90 days
were placed in the oven at 60 °C and baked to a constant weight. The

Frontiers in Materials frontiersin.org02

Zhang and Lv 10.3389/fmats.2023.1120520

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1120520


specimens were then taken out after being carbonized for 3 days,
7 days, 14 days, and 28 days, respectively, and then split using an
automatic testing machine. The phenolphthalein alcohol solution
with a concentration of 1% was sprayed onto the cross section.
There was no color change observed in the carbonized area, and it
turned purple red in the non-carbonized area. After the color
development was stabilized, a vernier caliper was used to
measure the depth of the area without color change. Finally, the
average was obtained from the measurement results of each side to
characterize the carbonation.

The freeze–thaw cycle experiment

In this study, specimens cured to 90 days were placed on the
concrete rapid freeze–thaw test machine after the initial mass was
weighed and the initial relative dynamic elastic modulus was
measured with a non-metallic ultrasonic detector. Specimens
were collected after every 25 cycles to measure the mass and
relative dynamic elastic modulus. When the mass loss rate
reached 5% or the relative dynamic elastic modulus decreased

by 60%, the freeze–thaw cycle experiment was terminated, and
the maximum number of cycles was 200.

Thermodynamic modeling

Based on the Gibbs free energy minimization theory, the GEMS
software was applied to calculate the equilibrium state of the system under
specific conditions to simulate the hydration process of cement
(Lothenbach et al., 2008; Carriço et al., 2020). To make the model
applicable to the cement-based system containing FA, the modified
Parrot–Kiloh model (MPK model) proposed by Glosser et al. was used
and the specific form and parameters are shown in Eqs 1–6 (Glosser et al.,
2020). The thermodynamic data on each phase were collected from
Cemdata 18. Table 3 lists the reaction rate coefficients used in this
study (Lothenbach et al., 2019).

α t( ) � ∫
t

0

DoR* min
A

A0
r1r2r3{ }fw/bβHe

Ei
R

1
T0
− 1
T( )( )( )dt, (1)

r1 � K1

N1
1 − α t( )( ) −ln (1 − α t( )( ))1−N1 , (2)

r2 � K2

									
1 − α(t)2(3

√
1 − 									

1 − α t( )( )3
√ , (3)

r3 � K3 1 − α t( )( )N3 , (4)
fw/b � 1 + 3.33 × H ×

w

b
− αt( )( )4

, (5)

βH � h − 0.55
0.45

[ ]4

, (6)

where r1, r2, and r3 are the rates of nucleation, precipitation, and
diffusion, respectively; A and A0 are the surface area and the reference
surface area of cementitious material, respectively; R (8.314 J/mol/K)
is the universal gas constant; Ei (J/mol) is the activation energy of each
phase; T0 and T are the reference temperature (298.15 K) and the

TABLE 1 Chemical compositions of the raw materials (%).

Raw material SiO2 Al2O3 Fe2O3 CaO MgO SO3 f-CaO LOI

PC 20.08 5.09 3.81 63.41 2.06 2.33 0.88 1.72

FA 38.00 37.70 4.97 6.35 0.873 - - 5.71

MEA 1.64 1.25 2.51 2.68 87 - - 3.82

FIGURE 1
Particle size distributions of the raw materials.

TABLE 2 Compositions of cementitious materials (%).

Number PC (%) FA (%) MEA (%) Water (%)

PC 100 0 0 40

LHCC 60 40 8 40

TABLE 3 Empirical reaction rate coefficients for the MPK model.

Phase K1 N1 K2 K3 N3 H

C3S 1.500 .700 .050 1.100 3.300 2.000

C2S .500 1.000 .020 .700 5.000 1.550

C3A 1.000 .850 .040 1.000 3.200 1.800

C4AF .370 .700 .015 .400 3.700 1.650

SiO2 .490 .626 .047 .362 3.988 1.040

CaO 1.000 1.700 2.000 .239 .980 .010

Al2O3 .500 .702 .050 .393 2.000 .090
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modeling temperature, respectively; K1, N1, K2, K3, and N3 are the
parameters of the reaction rate; α(t) is the hydration degree of each
phase; fw/b is the physical quantity affected by the water/binder w/b;
H is a fitting factor; αt is the average reaction degree at time t ,
αt >H × w/b; and βH is the physical quantity considering the
influence of relative humidity h and generally takes 1.

X-ray diffraction (XRD)

To verify the accuracy of the GEMS simulation and to further
understand the hydration process, XRD was used to analyze the
generated crystal hydrate. The core of the broken specimen was
immersed in isopropyl alcohol for 7 days and then dried in a
vacuum drying oven at 60°C for 3 days to stop hydration. Before
testing, the treated sample was ground into a powder and passed
through a 200-mesh sieve. Finally, the prepared powder was used to
obtain the XRD pattern with the equipment Bruker D8 advance at a
scanning speed of 5°/min, within the scanning range of 5°–70°.

Scanning electron microscopy (SEM) and
energy dispersive spectrometry (EDS)

To further understand the hydration mechanism of LHCC, the
microstructure of the hardened paste was examined under SEM and
EDS. A small amount of samples that have stopped hydration directly
stuck to the conductive adhesive, while gold was sprayed with an Oxford
Quorum SC7620 sputtering coater for 45 s. Subsequently, the TESCAN
MIRA LMS device was used to examine the morphology of the sample

with an acceleration voltage set to 3 kV. When shooting the energy
spectrum, the acceleration voltagewas 15 kV and the detectorwas the SE2.

Results and discussion

Durability

Chloride ion penetration resistance
Table 4 lists the experimental temperature and penetration depth,

as measured during the RCM experiment. By inputting the relevant
data into Eqs (7) and (8), the chloride ion diffusion coefficients of PC
and LHCC that were cured to 90 days were calculated and the results
are shown in Figure 2.

DRCM � 2.872 × 10−6
Th Xd − α

			
Xd

√( )
t

, (7)
α � 3.338 × 10−3

			
Th,

√
(8)

where DRCM is the chloride ion diffusion coefficient; T is the
experiment temperature (K); h is the height of the specimen (m);
Xd is the chloride ion diffusion depth (m); t is the power on time (s);
and α is an auxiliary variable.

The figure shows that the DRCM of PC was 2.78 × 10–12 m2/s and
the DRCM of LHCC was 1.28 × 10–12 m2/s. The DRCM of LHCC was
about 46% of that of the PC, which suggests a stronger resistance to
chloride ion penetration. As the particle size of the FA used was
smaller than the cement clinker, the pores of the cementitious matrix
could be filled with FA and thus complicating the pore structure of the
hardened paste. This hindered the movement of chloride ions in the

TABLE 4 Chloride ion penetration experiment results.

Number Experimental temperature (K) Penetration depth (m)

PC 301.5 0.0062

LHCC 301.2 0.0030

FIGURE 2
Chloride ion permeability coefficients of PC and LHCC.

FIGURE 3
Carbonation depths of PC and LHCC.
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TABLE 6 Relative dynamic elastic modulus during 200 freeze and thaw cycles (%).

Number Number of cycles

0 25 50 75 100 125 150 175 200

PC 100 99.2 97.0 92.5 81.8 72.5 43.8

LHCC 100 99.5 97.8 97.3 92.3 80.5 76.3 65.4 55.1

FIGURE 5
XRD spectra of specimens cured for (A) 3 days and (B) 90 days.

FIGURE 4
Phase evolution of (A) PC and (B) LHCC by thermodynamic simulation.

TABLE 5 Mass loss rates during 200 freeze–thaw cycles (%).

Number Number of cycles

0 25 50 75 100 125 150 175 200

PC 0 0.2 0.5 0.7 1.7 2.4 4.8

LHCC 0 0.1 0.3 0.5 0.9 1.8 2.2 3.5 4.5

Frontiers in Materials frontiersin.org05

Zhang and Lv 10.3389/fmats.2023.1120520

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1120520


pores and blocked the diffusion channel of the free chloride ions in the
cement. In the meantime, the Mg(OH)2 generated from MgO
hydration continuously reduced the pore volume through delayed
expansion, which reduced the number of diffusion channels for
chloride ions (Pu and Unluer, 2018). In the follow-up study, the
enhancement of chloride ion penetration resistance was further
discussed in combination with the phase evolution output through
the thermodynamic model and the SEM observation results.

Carbonation resistance

Figure 3 displays the carbonation depths of PC and LHCC that were
cured to 90 days in the accelerated carbonation experiment. The

carbonation depths of the PC were 1.24 mm, 1.83 mm, 2.86 mm, and
3.33 mm at the carbonation age of 3 days, 7 days, 14 days, and 28 days,
respectively. In addition, the LHCC at the same carbonation age were
0.92 mm, 1.22 mm, 2.44 mm, and 2.60 mm. In comparison, the
carbonation depth of the PC at each carbonized age was greater than
the LHCC. Meanwhile, the carbonation resistance of LHCC at 3 days,
7 days, 14 days, and 28 days was 25.8%, 33.3%, 14.7%, and 21.9% higher
than that of PC at the same age, respectively. Both themicro-filling effect of
FA and the delay expansion of Mg(OH)2 significantly improved the
carbonation resistance of cementitious composites (Choi et al., 2014).
According to previous studies, Mg(OH)2 generated dense CaCO3 and
MgCO3 through a carbonation reaction in the early stage, whose reactions
are shown in Eqs 9–11. MgCO3 developed a network and prismatic
microstructure, which was filled in the cementitious matrix and thus

FIGURE 6
Comparison of the micromorphology of (A), (C), and (E) PC and (B), (D), and (F) LHCC cured for 90 days.
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improved the density of the cement. Consequently, it became increasingly
difficult for the external carbon dioxide to diffuse to the area to be
carbonized (Liska et al., 2008). The exact mechanism of the smaller
scale will be discussed later.

Mg OH( )2+CO2+H2O → MgCO3 · 3H2O (9)
5Mg OH( )2+4CO2 → 4MgCO3 ·Mg OH( )2 · 4H2O (10)

5Mg OH( )2+4CO2 +H2O → 4MgCO3 ·Mg OH( )2 · 5H2O (11)

Frost resistance

Table 5 andTable 6 show themass loss rate and relative dynamic elastic
modulus of PC and LHCC that were cured to 90 days in the freeze–thaw
cycle experiment, respectively. As shown in these two tables, PC and LHCC
withstood 150 and 200 freeze–thaw cycles, respectively. Meanwhile, LHCC
had a smaller mass loss rate and larger relative dynamic elastic modulus
than PC after the same number of freeze–thaw cycles. As a consequence,
LHCC performed better in frost resistance. When the water trapped by the
pores inside the cement paste was frozen, the volume expanded in this part
and thus pushed the non-frozen water in the pores around to generate
hydrostatic pressure. This was the cause for the freeze–thaw damage.
Because of the delayed expansion of Mg(OH)2, there was a reduction in
the volume that could hold the pore solution. As a result, the maximum
hydrostatic pressure declined and the rate of freeze–thaw damage

decreased. For the additional mechanism of improving the frost
resistance of LHCC, it will be further elaborated later.

Hydration process

Figure 4 shows the phase evolution of hydrated pastes during 1,000days,
as calculated through the thermodynamic simulation of GEMS software.
With the hydration extension, the clinker in PC progressively decreased and
the order of the reaction rates was as follows: aluminate > alite > ferrite >
belite. The hydration products of PCwere dominated by portlandite, C-S-H,
and ettringite and the content gradually increased. Therefore, the number
largely determined the performance of the hardened cement paste.
Meanwhile, as the consumption of the pore solution continued, the
capillary negative pressure in the pores caused the hardened cement
paste to shrink gradually or even crack. By providing channels for the
diffusion of chloride ions, carbon dioxide, and water, this hindered the
improvement of the durability.

With the introduction of FA in large amounts, the initial content of
clinker in the LHCC decreased, as a result of which the C-S-H and
portlandite generated in the early stage were outweighed by PC. MEA was
mostly hydrated to brucite first, and the expansion effect compensated for
the significant shrinkage occurring in the early stage of hydration. This was
the requisite for the enhancement of durability (Song et al., 2021). As
hydration proceeded, portlandite and brucite continued to accumulate.
When the environmental alkalinity was sufficient to stimulate the

FIGURE 7
Spherical vitreous morphology of FA in LHCC under (A) 20,000x and (B) 50,000x (C) element line scanning in (B).
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pozzolanic activity of FA, the aluminosilicate in FA reacted with
portlandite to generate C-S-H and C3AH6, which continuously reduced
portlandite and greatly increased C-S-H (Deschner et al., 2012; Hamzaoui
et al., 2016).Meanwhile, C-S-H generated from the secondary hydration of
cement was further stabilized to hinder carbonization and indicated the
formation of stronger carbonization resistance (Ali and Mullick, 1998;
Qian et al., 1998). The low availability of CaO causedmore stratlingite to be
generated in the later hydration stage of LHCC, a kind of AFm phase,
which is often incompatible with portlandite. In addition, brucite partially
reacted with the aluminates in FA to generate hydrotalcite that was capable
of absorbing free chloride ions and thus enhanced the resistance to chloride
ion penetration of LHCC to a significant extent (Yang et al., 2020).

Figure 5 shows the XRD patterns of PC and LHCC that were cured for
3 and 90 days. The addition of FA to replace part of the cement reduced the
content of portlandite and generated C3AH6 in the later stage. Meanwhile,
the content of brucite in LHCC decreased with age, which was consistent
with the simulation results of GEMS software. Due to the characteristics of
the gel, the peak position of C-S-H could not be identified by XRD. In
addition, compared with PC, there were more monosulfates in LHCC.

Microstructural characteristics

To a large extent, themacroscopic properties of cement-basedmaterials
depend on the spatial aggregates formed by the mutual accumulation and
connection of their hydration products. To better analyze themechanism of
the difference in durability between the two, Figure 6 shows the
micromorphology of PC and LHCC at different scales. When the
magnification was 1,000, it was obvious in LHCC that the spherical
particles in the FA were closely embedded in the cementitious matrix,
which produced the micro-filling effect. When the magnification was
10,000, there were more layered large crystals of Ca(OH)2 stacked in
the PC and overlapped with C-S-H to form a space grid, and the pores were
filled with plenty of AFt and AFm. However, at the same magnification, it
was difficult to find oriented Ca(OH)2 layered crystals in LHCC, and the
hydration products were dominated by C-S-H, which was consistent with
the phase evolution output from the thermodynamicmodel. Figure 6 e) and
f) show the morphology of C-S-H, as observed in PC and LHCC at
50,000 magnifications, respectively. The connection among C-S-H in PC
was weak with a distribution of many capillary pores, which was suspected
to occur from the contraction caused by negative capillary pressure (Ahmad
et al., 2019). According to some research, the existence of capillary pores was
adverse to the development of mechanical properties and the improvement
of durability (Li and Li, 2014; Pu et al., 2021). In contrast, the network
structure formed by C-S-H overlapping in LHCC was denser and
extensively distributed. On the one hand, the delay in the expansion of
Mg(OH)2 was conducive to compensating for the shrinkage of cement. On
the other hand, the existence of FA caused the secondary hydration of
cement. Therefore, due to the combined effect of MEA and FA, more
C-S-H was filled in the capillary pore volume, which improved the
compactness of the pore structure for hardened paste and enhanced its
resistance to penetration of chloride ions, carbon dioxide, and water.

The hydration degree of large amounts of FA in cement is a long-
standing concern. If there is no way to control the inert filling effect of FA,
it is difficult to ensure the effect of cement secondary hydration. Figure 7
shows the spherical vitreous morphology of FA in LHCC. The spherical
glass incorporated into the cement matrix reacted at a slow pace with the
surrounding Ca(OH)2 to generate fibrous hydrate, as shown in Figure 7 b).
The result of element line scanning in Figure 7 c) and the morphology of

the hydrate jointly indicated that the fibrous hydrate was C-S-H, which
indicated that FA in LHCC could effectively participate in the hydration
(Richardson, 2004; Deschner et al., 2012). In addition to the alkaline
products obtained by the hydration of PC, the excitation of pozzolanic
activity of FA was also promoted by the alkaline environment created by
Mg(OH)2 in LHCC and high-temperature curing (Liu and Zhang, 2021).
The increasing hydration degree of FA enhanced the mass generation of
C-S-H and improved the outcome of pore size refinement. This
significantly reduced the diffusion of the pore solution, mitigated the
mass loss caused by the frost heaving force and decreased the relative
dynamic elastic modulus. Apart from strengthening the connection
between the spherical glass body and the surrounding cement matrix,
the fibrous C-S-H generated by the hydration of FA also filled the porous
cement matrix, which was beneficial to the improvement of crack
resistance and durability for dam concrete.

Conclusion

Thermodynamic modeling and experiments were performed in
this paper to systematically explore the hydration mechanism and
durability of LHCC used for dam concrete under 40 °C water curing.
The conclusions obtained in this study are as follows.

1 Compared with PC, LHCC performs better in resistance to chloride
ion penetration, carbonation, and frost, which demonstrates the
excellent durability of LHCC.

2 With the decrease of portlandite content, there is compensation for
the content of C-S-H and stratlingite in LHCC, which results from
the pozzolanic reaction of FA. There are plenty of hydration
products generated in the later stage to fill the pores caused by
cement shrinkage. Meanwhile, hydrotalcite, which can absorb
chloride ions, is generated and steadily increases.

3 Themicrostructure of LHCC is dominated by C-S-H that is overlapping
and closely arranged with almost no capillary pores observed. In
addition, the fibrous C-S-H formed by the hydration of FA in
LHCC strengthens the connection between the spherical vitreous and
the surrounding cementitious matrix to fill the porous cement matrix.
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