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Introduction: Resource environment load data are important for analyzing and
improving the environmental performance, which are affected by the process
condition of metal material machining processes. However, the environmental
performance assessment in previous research focused on the results under the
specific process conditions. The resource environment load data need to be re-
collected when the process conditions are changed for a credible assessment, which
is time- consuming and tedious.

Methods: This paper proposed a process condition- oriented prediction method of
resource environment load data with limited samples. The significance of process
condition elements on the resource environment load data was analyzed, and then
the resource environment load was predicted according to the similarity between
the process condition to be predicted and the existing process conditions.

Results and Dicussion: The results show that the average prediction accuracy of this
method exceeds 90%, and further the accuracy for predicting the environmental
performances using the predicted data is more than 93% which would help process
designers to choose the better process condition for machining the metal materials.
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1 Introduction

The manufacturing industry is the important pillar of world’s economic development.
Simultaneously, metal machining process also results in significant resource and energy
depletion, accompanied the generation of a large amount of environmental waste in the
form of solids, liquid, gas and airborne particulates (Du et al., 2020; He Y. et al., 2022).
International Energy Agency (IEA) had reported that it is responsible for approximately 30% of
global final energy consumption and over 20% of global CO2 emissions (Agency, 2008).
Consequently, to address on the environmental issues, environmental performances are
evaluated based on the life cycle assessment (LCA) methodology which has been widely
applied in the metal machining process to guide enterprises toward Green Manufacturing. The
accuracy of the environmental performance results directly depends on the resource
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environment load data in life cycle inventory (LCI) which is the second
of four phases of the LCA methodology regulated by the ISO
14040 and ISO 14044 series of international technical standards
(Ferrari et al., 2021). Therefore, it has become a crucial concern to
obtain the reliable resource environment load data.

Resource environment load data in LCI for evaluating the
environmental performances of metal machining process can be
divided into primary data (when the data are obtained directly at
the production sites and associated to the related process units) and
secondary data (when the data come from databases, literature,
estimates) (Ferrari et al., 2021). Some researchers have evaluated
the environmental performances based on the secondary data.
Bekker et al. evaluated the environmental performances of
computer numerical control (CNC) milling according to the
resource environment load data entries in SimaPro software
(Bekker and Verlinden, 2018). He et al. investigated the
environmental performances of an automotive fuel-line clip
produced with recycled polyamide 12 from the selective laser
sintering process in comparison to the conventional polyamide
66 counterpart, based on commercial LCA databases (He D. et al.,
2022). Soares et al. conducted a comparative environment
performance assessment between hobbing 20MnCr5 with
minimum quantity lubrication and flood lubrication based on the
data obtained from database provided by GaBi (Soares et al., 2022).
Vukelic et al. monitored the negative environment impact of cutting
processes through midpoint and endpoint assessment based on
Ecoinvent database (Vukelic et al., 2020). In the above research,
the environmental performances were predicted with the secondary
data which mainly depend on material and process types (Narita et al.,
2008). Once the material and process types are determined, the
resource environment load data would be predicted to be the
constant value. However, during the metal machining process, the
resource environment load data are associated with the specific
process conditions (Liu et al., 2022), which not only relate to the
process type andmaterial type, but also depend on process parameters,
equipment, etc., (Khettabi et al., 2007; de Souza Zanuto et al., 2019;
Wang et al., 2021). The change of process conditions will lead to the
change of resource environment load. For example, the disc
mechanism consumes 478% more energy than the two-cylinder
mechanism on average to grind the single 2-m-long timber beams
made of three wood species: ash, pine and spruce. (Warguła et al.,
2022). Therefore, the secondary data without considering specific
process conditions is unsuitable for accurate environmental impact
assessment for the actual metal machining process (Dai et al., 2022).

Employing the reliable primary data obtained directly at
production or experiment sites is critical for obtaining credible
assessment results (Kalverkamp et al., 2020). Some researchers
focused on the environmental performances considering the
primary data. Afzal et al. had analyzed the environmental
performances of three different welding processes based on the
resource environment load data collected on site for welding 1 m
long and 2.5 thick AISI 304 stainless steel sheets under given
experimental conditions (Afzal et al., 2021). Pittner et al.
conducted an environmental impact assessment using the resource
environment load data obtained from experiments for different fusion
welding processes of the shear test specimens and automotive cap
profile under specified parameter settings, and the results showed that
laser beam welding brings about up to 60% reduced environmental
performances for both cases in comparison to the resistance spot

welding (Pittner and Rethmeier, 2022). Khanna et al. presented the
comparison of dry and cryogenic LCO2 machining based on the
collected data on the consumption of electricity and LCO2 for milling
a slot with 1,000 mm. And the results show that considering all impact
categories, more than 95% higher impacts have been generated in the
case of LCO2 condition in comparison with dry machining (Khanna
et al., 2022). Shah et al. evaluated the environment performance for
drilling the Inconel 718 using cryogenic cutting fluids based on the
collected primary data in each cutting test, and the representative
impact category results at three different cutting speeds between the
two cryogenic environments were obtained (Shah et al., 2021).
However, these studies performed the environmental performance
assessment using the primary data and these data are directly obtained
under the given process conditions. Further, the resource environment
load data in LCI is changeable in different process conditions. When
the process condition change, new resource environment load data are
required to assess the environmental impact of the metal machining
process. Using the above methods, the resource environment load data
needs to be re-collected when the process conditions are changed for a
credible assessment, which is time-consuming and tedious. Therefore,
the motivation for this research was to investigate the resource
environment load data prediction under the new process condition
for evaluating the environmental performances and further promoting
the efficient improvement of metal machining process conditions.

Therefore, the major aim and novelty of this research is to
effectively predict the resource environment load under changeable
process condition and accurately evaluate the environmental
performance. In this method, the process condition is introduced
to comprehensively describe the process type, materials, processing
mode, equipment, process parameters and other information during
the metal machining process. And then, the resource environment
load database is constructed based on the concept of process condition
to store the collected data. Moreover, a process condition similarity
matching method based on weighted Euclidean distance is proposed
for predicting the resource environment load data of new process
conditions with limited sample data. Finally, a case study was
conducted to validate the proposed method. The predicted data
can be used for assessing the environment performance under the
new process condition for machining the metal materials.

2 Materials and methods

2.1 Resource environment load database
construction

The actual production processes are complex and diverse, the
process conditions are not identical in different processes. For
example, in the cutting process, the type of material and processing
method may be the same, while process parameter and equipment are
different. However, different process conditions such as Equipment,
Processing Modes, Material Types, Process Parameters, etc., may lead
to different energy requirement, processing time, etc., These
differences would further result in the changes of resource
environment load data. Taking the same product as an example,
the energy consumption and emissions generated by a small lathe and
a large CNC lathe are different, while other process conditions are the
same. Therefore, it is necessary to define and store the process
conditions corresponding to the current resource environment
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load. The concept of process condition is used to comprehensively
describe process conditions including information related to material,
process parameters, processing mode, processing method, equipment
and condition description. Table 1 shows the elements of the
machining process condition and its explanation in detail as an
example.

As shown in Table 1, the processing methods include milling,
turning, etc., The processing materials include steel, aluminum, etc.,
The processing equipment may use lathes, milling machines, etc., The
processing modes include wet cutting, dry cutting, etc., while the
processing parameters in the processing process include Feed speed,
Cutting force, etc., and the description of the current processing
location and time.

Further, the ultimate purpose of the resource environment load
in LCI is to evaluate the environmental problems caused by actual
production, and reduce the degree which harm to the human body
and the environment, and further to provide scientific and accurate
evidences for process designers. Based on process condition
description, the resource environment load can be analyzed in
detail. The resource environment load usually includes the input of
resources, energy and environmental output. Resource and energy
input include the amount of process objects, the amount of
auxiliary materials, and energy consumption; Environmental
outputs include air pollution, water pollution, solid waste, and

occupational health. The resource environment load is shown in
Figure 1.

Specifically, the resource environment load under a process
condition is mainly represented by the input and output model
(IPO). For example, in the machining process, resource inputs
include raw materials, energy inputs (mainly refer to electrical
energy), and the output mainly includes finished workpieces, and
some environmental pollutants (such as waste liquid, Gaseous waste,
occupational hazards and so on). The above information is presented
using the IPO diagram, as shown in Figure 2.

The type of resource environment load in the target condition can
be clarified through the IPO diagram. When evaluating the
environmental performances, the resource environment load data
can be selected according to the demand for analyzing and
assessing the resource environment load in the target condition.
For example, if the purpose of studying resource environment load
is to reduce human body damage, the main research resource
environmental load indicators are occupational health, air
pollution, etc., The selection of resource environment load
indicators should follow a few principles.

• Systematic principle: the selection of indicators must be
reasonable in hierarchy, which can comprehensively
characterize the process environmental problems.

• The principle of quantification: the selection of indicators needs
to consider the quantification of resource environment load, and
the purpose of assessing environmental problems in actual
process conditions can be achieved through monitoring and
collecting the basic data of resource environment load.

• The principle of operability: During the selection of resource
environment load indicators, it is necessary to take into account
the operability to facilitate the evaluation of environmental
indicators.

• The principle of independence: the indicators should avoid the
intercorrelation. If they are related to each other, it will lead to
unreasonable selection of indicators, which will increase the
basic data collection workload of resource environment load,

TABLE 1 Process condition elements of machining process and the explanations.

Process condition elements Explanation

1 Processing Type Turning, Milling . . .

2 Material Types Steel, Aluminum . . .

3 Equipment Lathes, Milling machines . . .

4 Processing Modes Dry cut, Wet cut . . .

5 Process Parameters Feed speed, Cutting force . . .

6 Condition description Time, Location . . .

FIGURE 1
Resource environment load.
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and ultimately affect the accuracy of resource environment load
evaluation results.

Further, in order to ensure the accuracy of the environmental
performances results, primary data at the production site are usually
the basis of the evaluation. According to the input and output
information described in the IPO diagram, the corresponding data
are collected by sensors equipment such as power meters (measuring
energy consumption), dust sensors (measuring the dust or oil mist,
noise sensors, gas testers, etc.,). However, the resource environment
load data collected by the sensor are difficult to structure in the actual
process. Therefore, there is an urgent need to build a resource
environment load database to manage resource environment
load data.

In order to solve the above problems, this paper adopts B/S
architecture to achieve WEB-based data access, and decouples the
development of the front and back ends. The front-end page adopts

Html, Css and JavaScript development, and the progressive
development framework Vue is selected to simplify the
development process. The Vue framework abstracts the state and
behavior of the view based on the MVVM model. The back-end
mainly uses the Springboot development framework, and the data
storage uses MySQL and MogoDB for data persistence. Implement
user-oriented data sharing services and applications, and support
dynamic data update and structured management. The database
development technology system is shown in Figure 3.

2.2 Resource environment load prediction
method

2.2.1 Prediction method framework
Considering the similarity of resource environment load data in

homogeneous process conditions, this paper evaluates the resource

FIGURE 2
IPO model of the machining processes.

FIGURE 3
Database development technology system.
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environment load corresponding to the target condition by matching
the existing data. Based on this, a framework of evaluating the resource
environment load for process conditions is constructed and shown in
Figure 4.

The resource environment load prediction method for process
condition flow is as follows: Firstly, select the data from the resource
environment database and environmental indicators. Secondly,
analyze the significance of each resource environment load
indicators according to the data. Thirdly, according to the
significance of the resource environment load indicator, set the
relative weight of each indicator. Fourthly, the weighted Euclidean
distance and similarity are calculated between the target condition and
the reference condition according to the resource environment load
indicators and the corresponding weights. Fifthly, select the resource
environment load data corresponding to the process condition with
the greatest similarity as the evaluation value of the new process
condition. And then, verify the evaluation values and giving an
explanation. Finally, store reasonable evaluation results.

2.2.2 Significance analysis of process condition
Different process condition elements have different impacts on

resource environment load. Therefore, significance analysis is used to
explore the significant impact of process condition elements on
resource environment load. Assume that there is correlation
between resource environment load y and m(m≥ 2) process
condition elements, and satisfies:

yj � β0 + β1x1 + β2x2 +/ + βmxm + ε
ε ~ N 0, σ2( ){ (1)

That is y ~ N(β0 + β1x1 + β2x2 +/ + βmxm, σ2), where
β0, β1/, βm, σ

2 is an unknown parameter unrelated to x1, x2/, xm,
ε is an unobservable random variable.

In general, if there is no linear relationship between y and
x1, x2/, xm, then all the βi(i � 1, 2,/, n) in the model are 0.
Therefore, to test that there is linear relationship between y and
x1, x2/, xm is to verify whether the hypothesisH0: β0 � β1/ � βm �
0 is true.

It can be seen from ST � SE + SR that the larger SE is, the smaller
SR is, whichmeans the closer the linear relationship between a and b is,
where ST, SR, SE represent sum of square of deviations, Residual Sum
of Squares, Explained Sum of Squares respectively. Therefore, it is
conceived to test hypothesisH0 with the ratio of SE/SR as a statistic. So
it is necessary to determine the distribution of the test statistics.

ST � �Y
T �Y � �Y

���� ���� � ∑ yi − �y( )2 (2)
SR � ∑ yi − yi( )2 (3)
SE � ∑ yi − �y( )2 (4)

In this model, if the hypothesis H0 is true, where the following is
true:

SE
σ2

~ χ2 m( )
SR/σ2 ~ χ2 n −m − 1( )

F �
SE
m
Sc

n−m−1( )
� SE
Sc

· n −m − 1
m

~ F m, n −m − 1( ) (5)

Where F is the statistic that tests hypothesis H0, so for a given
significance level α, the F-value calculated from the sample detection
value. If Fi ≥Fa(1, n −m − 1), the tests hypothesis H0 will be rejected,
that is, the regression effect is considered significant; Otherwise, accept
H0, that is, the regression effect is considered not significant. When the
overall regression effect is verified, it is also necessary to test whether
each process condition element xi has a significant linear impact on the
resource environment load data.

2.2.3 Process condition similarity matching based on
weighted euclidean distance

Euclidean distance method can reflect the absolute difference of
different sample characteristics, which mostly used to analyze the
difference in the size of dimension values (Terrados-Cristos et al.,
2021). In a multidimensional data spatial structure, Euclidean distance
is a method for measuring the spatial distance of two vectors. The
magnitude of the Euclidean distance reflects the degree of similarity
between the two vectors, i.e. the smaller the value, the smaller the
difference between the two vectors (Ji and Ni, 2022).

First of all, the coordinates of the p-dimensional vector (i.e., the
vector composed of process condition factors) of the reference
condition M and the target condition N as follows:

Mx � xm1, xm2,/, xmp( ) (6)
Nx � xn1, xn2,/, xnp( ) (7)

According to the concept of Euclidean distance, the distance dMN

between the reference condition and the target condition can be

FIGURE 4
The framework of resource environment load prediction.
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obtained, as expressed in formula 8. Further, the process condition
similarity (PCS) is used to describe the similar between the reference
condition and the target condition as expressed in formula 9 (Xu and
Zhen-jun, 2005):

dMN �













∑p
i�1

xmi − xni( )2
√√

(8)

PCS � 1 − dMN (9)
However, in the traditional Euclidean distance method, all variables

in the similarity matchingmodel are treated equally and consistently. In
fact, the similarity between the corresponding elements should be fully
considered. For example, in the machining process, the cutting speed
has a greater impact on noise and significantly less on carbon emissions.
Therefore, it is more practical to consider the weight based on the
significance of each variable.

TABLE 2 Resource environment load data with different process conditions.

Vc (m/min) f (mm/r) ap (mm) ae (mm) CC Noise (dB) PM (g) Carbon emission (g)

M1 90 0.2 0.8 2.5 1 82 108.00 114.23

M2 165 0.2 1.2 4 1 82 138.33 49.00

M3 115 0.28 0.8 4 1 85 118.00 77.43

M4 140 0.2 2 3.5 1 86 134.67 51.75

M5 140 0.24 1.6 4 1 89 101.33 88.67

M6 90 0.24 1.2 3 1 84 100.00 66.40

M7 140 0.28 1.2 2.5 1 85 95.30 79.78

M8 115 0.32 1.2 3.5 1 86 88.67 62.77

M9 165 0.24 0.8 3.5 1 84 98.33 70.80

M10 165 0.32 1.6 2.5 1 87 92.00 104.95

M11 90 0.28 1.6 3.5 1 85 90.30 154.08

M12 140 0.32 0.8 3 1 96 98.00 55.80

M13 115 0.2 1.6 3 1 84 88.33 62.95

M14 90 0.32 2 4 1 90 78.00 76.01

M15 115 0.24 2 2.5 1 88 86.00 64.96

M16 165 0.28 2 3 1 89 112.33 37.21

M17 90 0.2 0.8 2.5 2 94 90.67 230.08

M18 165 0.2 1.2 4 2 106 101.00 100.49

M19 115 0.28 0.8 4 2 90 90.33 173.11

M20 140 0.2 2 3.5 2 104 88.67 181.81

M21 140 0.24 1.6 4 2 102 84.67 101.20

M22 90 0.24 1.2 3 2 88 79.00 185.53

M23 140 0.28 1.2 2.5 2 101 85.67 240.80

M24 115 0.32 1.2 3.5 2 100 88.00 161.91

M25 165 0.24 0.8 3.5 2 97 98.00 157.98

M26 165 0.32 1.6 2.5 2 106 85.67 185.94

M27 90 0.28 1.6 3.5 2 89 89.33 165.25

M28 140 0.32 0.8 3 2 92 99.00 154.69

M29 115 0.2 1.6 3 2 88 85.67 282.19

M30 90 0.32 2 4 2 101 83.33 157.50

M31 115 0.24 2 2.5 2 94 93.67 138.67

M32 165 0.28 2 3 2 105 106.67 165.51
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Assuming that there are q resource environment load
indicators corresponding to process conditions M and N, which
are represented by yj, j � 1, 2, ..., q. The weighted Euclidean

distance between process conditions M and N can be expressed
as follows:

dMjNj �
















∑p
i�1
wij

xmi − xni

Si
( )2

√√
(10)

where wij is the weight that xmi corresponds to the resource
environment load indicator yj, and
wij > 0, i � 1, 2,/p; j � 1, 2, ..., q; Si represents the standard
deviation of each dimension; xmi is the normalized indicator value,
which can be expressed as follows:

FIGURE 5
Resource environment load database interface.

FIGURE 6
The weight set of process condition factors for Al6061.

TABLE 3 The range analysis results of resource environment load corresponding
to Al6061 process condition.

Resource environment load Vc f ap ae CC

Carbon Emission (g) 34.6 27.4 34 42 97

Noise (dB) 5.4 4 4.6 2.4 10.9

PM (g) 14.2 11.9 10.4 3.2 11.1

Frontiers in Materials frontiersin.org07

Xing et al. 10.3389/fmats.2023.1129850

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1129850


xmi � x −m

s
(11)

where x is the original data value, m is the mean of each dimension,
and s is its standard deviation.

It can be seen from the formula 10 that under the condition of
sample determination, the calculation result of the Euclidean distance is
proportional to the corresponding weight. However, giving weights to
individual variables characterizes the subjectivity of the decision maker
to the variables, but the completely subjective Euclidean distance
calculation lacks the professionalism and credibility in the field.
Therefore, objective weights need to be given to individual variables.

Taking the analysis result as the objective basis for determining the
weight of each variable, if the range Rij is the value of the jth variable
corresponding to the ith resource environment load indictor, the weight
that the jth variable corresponding to the ith resource environment load
indicator and the similarity between the reference condition and the
target condition can be expressed as follows:

wij � Rij∑p
i�1
Rij

(12)

PCSMjNj � 1 − dMjNj (13)

According to the results of similarity calculation, the data of
resource environment load corresponding to the process condition

with maximum similarity is used as the evaluation value of the new
process condition. With the continuous enrichment and expansion of
the process condition library, the accuracy of matching results can be
further improved.

3 Results

3.1 Resource environment load data
collection

Aluminum alloy materials are widely used metal material in the
manufacturing industry, and it is of great significance to conduct
environmental performance assessment during machining process.
Therefore, in order to verify the accuracy and effectiveness of proposed
method, an experiment which use VCML850 to mill aluminum alloy
Al6061 on a CNC machine tool was conducted.

Due to the equipment is generally selected according to the
process type, the resource environment load data is collected
considering the process parameters, processing methods and
other factors when processing aluminum alloy Al6061.
Therefore, according to the systematic principle, quantitative
principle, independence principle and operability principle of
resource environment load data, noise, dust and carbon
emission are selected as the resource environment load data in

TABLE 4 The matching results corresponding to N1.

Reference condition Carbon emission Noise PM

dMjNj Similarity dMjNj Similarity dMjNj Similarity

M1- N1 0.381 0.619 0.396 0.604 0.453 0.547

M2- N1 0.323 0.677 0.326 0.674 0.375 0.625

M3- N1 0.303 0.697 0.276 0.724 0.291 0.709

M4- N1 0.274 0.726 0.291 0.709 0.341 0.659

M5- N1 0.237 0.763 0.185 0.815 0.181 0.819

M6- N1 0.208 0.792 0.260 0.740 0.306 0.694

M7- N1 0.237 0.763 0.187 0.813 0.182 0.818

M8- N1 0.210 0.790 0.227 0.773 0.278 0.722

M9- N1 0.264 0.736 0.303 0.697 0.347 0.653

M10- N1 0.323 0.677 0.326 0.674 0.375 0.625

. . . . . . . . . . . . . . . . . . . . .

M31- N1 0.725 0.275 0.690 0.311 0.551 0.449

M32- N1 0.710 0.290 0.701 0.299 0.582 0.418

TABLE 5 Prediction accuracy for N1.

Prediction value Experimental value Matched condition Accuracy (%)

Carbon Emission (g) 66.4 71.8 M6 92.5

Noise (dB) 89 82 M5 91.5

PM (g) 101.3 115 M5 88.1
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this case study. During the experimental, milling speed Vc, feed
speed f, milling depth ap, milling width ae, two types of cutting
condition (CC), dry cut and wet cut (represented by 1 and 2,
respectively), were selected as the process condition elements. The

resource environment load data under the different process
conditions are shown in Table 2.

Further, the resource environment load database interface is
shown in Figure 5. The data can be stored in the database after

TABLE 6 The matching results corresponding to N2.

Reference condition Carbon emission Noise PM

dMjNj Similarity dMjNj Similarity dMjNj Similarity

M1- N2 0.622 0.378 0.638 0.363 0.726 0.274

M2- N2 0.363 0.638 0.393 0.607 0.476 0.524

M3- N2 0.370 0.630 0.408 0.592 0.460 0.540

M4- N2 0.309 0.691 0.335 0.665 0.419 0.582

M5- N2 0.204 0.796 0.217 0.783 0.266 0.734

. . . . . . . . . . . . . . . . . . . . .

M16- N2 0.242 0.758 0.197 0.803 0.198 0.802

. . . . . . . . . . . . . . . . . . . . .

M31- N2 0.788 0.212 0.738 0.262 0.622 0.378

M32- N2 0.702 0.298 0.662 0.338 0.508 0.492

TABLE 7 The matching results corresponding to N3.

Reference condition Carbon emission Noise PM

dMjNj Similarity dMjNj Similarity dMjNj Similarity

M1- N3 0.761 0.239 0.746 0.254 0.651 0.349

M2- N3 0.734 0.266 0.711 0.289 0.600 0.401

. . . . . . . . . . . . . . . . . . . . .

M20- N3 0.274 0.726 0.291 0.709 0.341 0.659

M21- N3 0.237 0.763 0.185 0.815 0.181 0.819

M22- N3 0.208 0.792 0.260 0.740 0.306 0.694

M23- N3 0.237 0.763 0.185 0.815 0.183 0.817

. . . . . . . . . . . . . . . . . . . . .

M31- N3 0.303 0.697 0.276 0.724 0.291 0.709

M32- N3 0.264 0.736 0.303 0.697 0.347 0.653

TABLE 8 The resource environment load evaluation results for N2 and N3.

Process
condition

N2 N3

Prediction
value

Experimental
values

Matched
condition

Prediction
value

Experimental
values

Matched
condition

Carbon Emission (g) 88.7 83.7 M5 185.5 172.7 M22

Noise (dB) 89 82 M16 102 94 M21

PM (g) 112.3 106 M16 84.7 76.3 M21

Frontiers in Materials frontiersin.org09

Xing et al. 10.3389/fmats.2023.1129850

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1129850


transmitting to the data processing analysis system. The role of the
database is mainly to realize the management of the basic data of the
resource environment load by using a graphical user interface, which
can be more intuitive to manage the data. When it is necessary to
evaluate the resource environment load of the actual process condition
or optimize the process condition, the database can provide a reference
base data inventory.

3.2 Resource environment load prediction
results

3.2.1 Significance analysis results
According to the framework in Section 2.2, it is first necessary to

analyze the significance of the elements on the resource environment
load in the process condition. Milling Al6061 process condition data is
analyzed for significance and extreme range analysis, and the results
are collated as shown in Table 3. Through the analysis of the range
value, it can be seen that the influence of process condition elements
on the carbon emission is shown as follows: CC > ae > Vc > ap > f for
carbon emission; For noise, CC > Vc > ap > f > ae; With regard to PM,

Vc > f > CC > ap > ae. Therefore, the reasonable process condition
must be taken seriously to reduce the resource environment load.

According to the formula 12, the significance of variable i of each
dimension on each resource environment load can be calculated. The
weight of variable xi corresponds to the resource environment load yj

is wij, and the weight set of each factor corresponding to the process
condition is shown in Figure 6. For carbon emission, the maximum
weight is given to CC with 41%, and the minimum weight of milling
width is 12%; For noise, the CC has the greatest impact on it, with a
weight of 40%, while the milling speed has the lowest impact, with a
weight of 9%. As for PM, feed speed has the highest impact, accounting
for 28%, while spindle speed has the lowest impact, with a
weight of 6%.

3.2.2 Process condition similarity calculation results
Process condition similarity calculation is the premise and core of

resource environment load prediction. Before calculating similarity, it
is necessary to determine the raw data of the reference condition, and
standardize the raw data according to the formula 11. Taking the
reference condition sample M1 shown in Table 2 as an example, the
information can be expressed as M1 = (90, 0.2, 0.8, 2.5, 1).

TABLE 9 The accuracy verification results of prediction method.

Process conditions N1 N2 N3 Average accuracy (%)

Accuracy (%) Accuracy (%) Accuracy (%)

Carbon Emission 92.5 94.1 92.6 93.0

Noise 91.5 91.5 91.5 91.5

PM 88.1 94.0 89.0 90.4

TABLE 10 Environmental performances of N1,N2,N3.

Category N1 N2 N3

Result using
predict data

Result using
actual data

Result using
predict data

Result using
actual data

Result using
predict data

Result using
actual data

ADP fossil 1.73 × 10−13 1.63 × 10−13 3.40 × 10−13 3.12 × 10−13 5.73 × 10−13 5.11 × 10−13

AP 1.41 × 10−13 1.33 × 10−13 2.48 × 10−13 2.33 × 10−13 4.04 × 10−13 3.76 × 10−13

FAETP 2.53 × 10−14 2.38 × 10−14 4.43 × 10−14 4.15 × 10−14 7.23 × 10−14 6.74 × 10−14

GW 1.66 × 10−13 1.57 × 10−13 3.02 × 10−13 2.81 × 10−13 4.96 × 10−13 4.56 × 10−13

HTP 1.70 × 10−12 1.60 × 10−12 2.88 × 10−12 2.71 × 10−12 4.62 × 10−12 4.38 × 10−12

TETP 4.44 × 10−14 4.17 × 10−14 7.56 × 10−14 7.12 × 10−14 1.22 × 10−13 1.15 × 10−13

*ADP, Fossil: Abiotic Depletion; AP, acidification potential; FAETP, freshwater aquatic ecotoxicity pot; GW, global warming potential; HTP, human toxicity potential; TETP, terrestric ecotoxicity

potential.

TABLE 11 The accuracy of total environmental impact using resource environment loading prediction data and actual data.

Process
condition

The total environmental performances using
prediction values

The total environmental performances using
actual values

Accuracy
(%)

N1 2.25 × 10−12 2.12 × 10−12 93.81

N2 3.89 × 10−12 3.65 × 10−12 93.39

N3 6.29 × 10−12 5.91 × 10−12 93.53
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With Al6061 as the processing material, the set of process
condition N1 = (130, 0.26, 1.4, 3.25, 1), were selected as object
process condition. The resource environment data under different

process conditions stored in database are selected. Then, the weighted
Euclidean distance results are used to represent the similarity between
the object process condition to be predicted and the reference process

FIGURE 7
Comparison of assessment results for various environment impact categories using the prediction and actual values under different process conditions.
(A), (B) and (C) represent the environmental performances results of N1, N2 and N3 using the prediction data, respectively (D), (E), (F) represent the
environmental performances results of N1, N2 and N3 using the actual data, respectively.

FIGURE 8
Sensitivity analysis of environment impact categories under different process conditions: (A). Change of environment impact category of process
condition N2 relative to N1. (B). Change of environment impact category of process condition N3 relative to N1. (C). Change of environment impact category
of process condition N2 relative to N3.
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conditions. The matching result is shown in Table 4. According to the
matching results, the reference process conditions with the greatest
similarity to the condition N1 is M6 when predicting the carbon
emission. The reference process conditions with the greatest similarity
for noise and PM are both M5.

In order to demonstrate the accuracy of the proposed prediction
method, the prediction values of each indicator are compared to the
experimental values as shown in Table 5. The prediction accuracy of
carbon emissions, noise, and PM for N1 are 92.5%, 91.5%, and 88.1%
respectively. Besides, the Ecoinvent database was taken as reference to
estimate the resource environmental data for N1. The result showed
that the carbon emission is 46.3 g. Accordingly, the accuracy of the
proposed method for predicting the carbon emission is more than the
one of Ecoinvent database. However, Ecoinvent database lacks the
noise and PM data which results in that these two types of resource
environment load cannot be predicted. Therefore, the proposed
prediction method has the higher accuracy for predicting the
resource environment load and more types can be analyzed,
comparing to the Ecoinvent database.

4 Discussion

4.1 Robust of the prediction method

In order to prove the robust of the proposed prediction method,
another two sets of process conditions N2 = (150, 0.3, 1.8, 3.75, 1), and
N3 = (130, 0.26, 1.4, 3.25, 2) were selected as object process conditions
to test the effectiveness of the method. The weighted Euclidean
distance results are used to represent the similarity between three
process conditions to be predicted and the reference process
conditions. The calculation results are shown in Tables 6, 7.

According to the matching results in Tables 6, 7, the reference process
conditions with the greatest similarity to the conditions N2 and N3 are
M5 and M22, respectively when predicting the carbon emission. When
predicting noise, the reference process conditions with the greatest
similarity with the conditions N2 and N3 are M16 and
M21 respectively. When predicting PM, the reference process conditions
with the greatest similarity with the conditions N2 and N3 are M16 and
M21, respectively. The similarity matching results of the process conditions
to be predicted, along with predicted and experimental values of their
resource environment loads are shown in Table 8.

After experimental verification, Table 9 shows the accuracy
verification results of the prediction method. The average
prediction accuracy of carbon emissions, noise, and PM was 93%,
91.5%, and 90.4% respectively, all exceeding 90%. It can be seen that
the proposed prediction method is efficient and robust for predicting
the resource environmental data of different process condition.

4.2 Environmental impact analysis with the
predicted resource environmental data

According to the existing resource environment load data obtained
for the new process conditions, the environmental performances of the
new process conditions are assessed by using the LCA methodology,
which is a widely used method of conducting environmental impact
assessments of products or processes standardized in ISO14040 and
ISO14044 (International Organization for Standardization, 2006; La

Rosa et al., 2018). Accordingly, the environmental performances are
evaluated by prediction data and experimental data, and the normalized
results of six environmental impact categories are shown in Table 10.

Table 11 illustrates the results of total environment performance
assessment using resource environment load predict data and actual
data respectively for process conditions N1, N2 and N3. It could be
seen that the total environmental impact assessment result using the
prediction value is close to the assessment result using the actual value.
The accuracy of the total environmental impact assessment results
using the prediction values for the three scenarios N1, N2 and N3 are
93.81%, 93.39% and 93.53% respectively. The results show that the
method has a high accuracy and the data which predicted by similarity
matching can be used to conduct environmental impact assessment.

Based on the data in Table 10 and Figure 7 shows the comparison
of the percentage of various environment impact categories. Taking
the process condition N1 as an example, it is seen that the evaluated
percentage for each environment impact category is almost equal to
the actual one, as shown in the Figures 7A, 7D. The maximum
environment impact category under process condition N1 is HTP,
which accounts for about 75.6% of the total environmental impact.
About 7.7% of the total environmental impact is consumed by the
ADP fossil, which is the secondary maximum impact category. The
impact of the GW and AP cannot be ignored due to environment
performance of about 7.4% and 6.3% respectively, while the
environment performance for the FAETP is the lowest. The
process condition N2, N3 can be analyzed in the same way.

Figure 8 shows sensitivity analysis of environment impact
categories under different process conditions using the data in
Table 10. It can be drawn that the change proportion of
environmental impact category under different process conditions
presents the similar results. As can be seen from Figure 8A, the
maximal variation indicates that the ADP Fossil is most sensitive
to the change of conditions from N1 to N2. Moreover, the same
conclusion is obtained corresponding to the change of conditions from
N2 to N3. However, the influence of the change of conditions from
N3 to N1 on several environment impact categories are similar. These
analyses can provide guidance for adjusting process conditions to
improve certain environment performance.

5 Conclusion

Resource environment load data are very important for predicting
environmental performances of the metal machining process. In this
paper, a method based on process condition is proposed to predict the
resource environment load data. In the proposed method, the process
condition is introduced to comprehensively describe the process type,
materials, processing mode, equipment, process parameters and other
information of themetalmachining process. A resource environment load
database based on process condition is developed to store the collected
data. After that, a process condition-oriented resource environment load
prediction method is proposed, which uses the weighted Euclidean
distance method for evaluating the resource environment load data.
The results shows that the proposed method is effectively applied to
predict the resource environment load under changeable process
condition, providing basic data for analyzing and optimizing process
condition. In addition, for the evaluated results of environmental
performances of the metal material machining process, the accuracy
for predicting total environmental performances using the predicted
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data is more than 93%. Considering the three different process conditions,
it can be seen that the largest total environmental performances using the
prediction values is under the N3 which agrees with the experimental
values. The method is efficient and practical to evaluate the environment
performances of different process conditions to help process designers
make robust decisions in choosing a better process condition for
machining the metal materials. Further, the future work may focus on
the influence of quantities of the data sets on the prediction results and the
comparison with different data-driven methods.
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