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Molybdenum disulfide (MoS2) has great potential for next-generation electronic
devices. On the other hand, stable doping methods are required to adjust its
physical properties so MoS2 can be utilized in practical applications, such as
transistors and photodetectors. On the other hand, a conventional dopingmethod
based on ion implantation is incompatible with 2DMoS2 because of the damage to
the lattice structures of MoS2. This paper presents an n-type doping method for
MoS2 field-effect transistors (FETs) using a poly (vinylidene fluoride-co-
trifluoroethylene) (P (VDF-TrFE)) and polar polymer. The dipole moment of P
(VDF-TrFE) provides n-type doping on MoS2 FETs. The polar phase formation in
dopant films enhances the doping effects, and the relationship between phase
transition and n-type doping states was investigated using optical and electrical
characterization methods. Under the optimal doping conditions, the doped MoS2
FET achieved an improved field effect mobility of 34.4 cm2 V−1s–1, a negative shift
in the threshold voltage by −25.6 V, and a high on-current of 21 μA compared to
the pristine MoS2 FET.
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1 Introduction

Since the first application of graphene in an electronic device, two-dimensional (2D)
materials, including transition-metal dichalcogenides (TMDs), hexagonal boron nitride
(h-BN), and Mxenes, have been highlighted in various research fields. Among the 2D
materials family, MoS2 is a promising next-generation semiconducting material owing to its
mechanical flexibility (Samy et al., 2021), appropriate energy band gap (Kim et al., 2020),
high carrier mobility (Shen et al., 2020), and high transparency (Lee et al., 2013). Therefore,
MoS2 may have a wide range of applications, including displays (Choi et al., 2020; Hwangbo
et al., 2022), chemical sensors (Pham et al., 2019; Kumar et al., 2020), optical detectors (Gant
et al., 2019; Woo et al., 2021a), and integrated circuit devices (Lin et al., 2020; Wang et al.,
2022).

Despite this potential, issues, such as variation in physical properties based on the
number of layers and a high contact resistance caused by the high Schottky barrier between
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the MoS2 and metal electrodes, are a problem in the application field
of MoS2-based electronic devices (Yoo et al., 2018). In general,
doping is the most common technique for controlling the properties
of semiconductors. Ion implantation is the most common technique
for silicon-based electronics because it allows for delicate control
and good quality in the doping process of thick silicon. On the other
hand, this approach is incompatible with 2D MoS2 because it causes
significant damage to the lattice structure and defects in atomically
thin layers.

Various attempts have been reported to overcome the
limitations of the above-described conventional doping
technology. For example, the surface functionalization of
MoS2 can be considered an alternative approach. Depending
on the donor or acceptor states, p-type or n-type doping
effects are achieved on MoS2 devices (Pak et al., 2019). In
doped transistors, however, a large reduction in the
subthreshold swing was often observed due to the formation
of trap states during the functionalization. Substoichiometric
metal oxide dopant films fabricated by atomic layer deposition
(ALD) can also provide efficient doping effects on MoS2 FETs
(Woo et al., 2021b). Metal oxide dopant layers exhibit high
stability without degradation, but the on/off current ratios or
subthreshold swings of doped devices are typically reduced
(McClellan et al., 2021). Furthermore, the ALD-based doping
approach requires a complex and high-cost process. Doping
results for small molecule dopants have a high degree of
freedom regarding the charge carrier concentration and
doping types (Wang et al., 2020). Nevertheless, this method
has stability issues in dopant films (McClellan et al., 2021) in
the viewpoints of air exposure or thermal degradation. To
maintain a doping effect in practical environments, the
stability of the dopant layer should be secured. In general, the
fixed physical or chemical properties of dopant layers provide
high chemical resistance. However, fixed charges or states of
dopant films have a limitation in terms of controllable doping
effect with the variation of dipole moments. A doping approach
that simultaneously provides characteristics such as
controllability, reliability, and stability, which are important
for the practical use of TMD-based electronic devices, is still
lacking.

Along this line, this paper presents a controllable, reliable, and
thermally stable n-type doping approach for MoS2 FETs by forming
a polar P(VDF-TrFE) polymer dopant layer. P(VDF-TrFE) is one of
the most promising piezoelectric materials with good chemical
stability (Choi et al., 2015) and dielectric properties (Meng et al.,
2020). The dopant film was fabricated using a simple spin-coating
method without any functionalization, which reduces the
possibilities of trap-state formation. The top dopant layer
provides n-type doping effects to the bottom MoS2 based on
dipole moments, which can be controlled further by the
crystalline phases via the melting and recrystallization process.
As the concentration of polar phases in dopant films increased,
the proposed device exhibited improved electrical performances,
such as on-current, on/off ratio, and field effect mobility.
Furthermore, the uniformity and reproducibility of the proposed
approach were investigated with 8 different devices. The n-type
doping mechanism on MoS2 was examined according to the phase
transition of dopant films using comprehensive electrical

characterization, Raman and photoluminescence (PL)
spectroscopies.

2 Materials and methods

2.1 The fabrication process of MoS2 FET

A 300 nm of silicon dioxide film was formed using a dry
oxidation process on a heavily boron-doped silicon substrate with
500–550 μm of thickness (supplied from Namkang Hi-Tech Inc.,
South Korea). Heavily boron-doped Si/SiO2 substrates were
sonicated for 10 min with isopropyl alcohol, and ethanol,
subsequently and then blown with nitrogen gas on Si/SiO2

substrates to remove residue. Semiconducting MoS2 layers were
mechanically exfoliated from the MoS2 crystals (supplied from HQ
Graphene, Netherlands) using adhesive 3 M Scotch tapes and
transferred onto heavily boron-doped Si/SiO2 substrates. At this
time, the average thickness of 7 pristine MoS2 flakes is 25.6 nm ±
12.3 nm. The source and drain electrodes were patterned on as-
transferred MoS2 flakes using the conventional photolithography
method (EVG 620, EV Group, Austria). To pattern the source and
drain electrodes, the image-reverse photoresist AZ 5214E (supplied
from Clariant Corp., United States) was spin-coated on Si/SiO2

substrates with MoS2 crystals transferred. Then, the solvent was
removed from the spin-coated photoresist by annealing process on a
hot plate at 110°C for 1 min. The exposure process was performed on
photoresist-coated Si/SiO2 substrates using a photomask with a
mesh structure. To remove the source/drain-patterned
photoresist, phase transition of the photoresist was performed by
annealing on a hot plate at 120°C for 150 s. Subsequently,
photoresist-patterned Si/SiO2 substrates were dipped in AZ
300 MIF developer (supplied by Az Electronic Materials Co. Ltd.,
United States) for 19 s to remove the photoresist with the source/
drain patterned. To deposit the source/drain electrodes, the
photoresist-patterned Si/SiO2 substrates were mounted in a
vacuum evaporation equipment (SHE-8T-500, Samhan Vacuum
Development, South Korea). The 20 nm of titanium (Ti) for the
adhesion layer was deposited by electron-beam evaporation method
in a vacuum condition of 3 × 10−6 mTorr. Then. Subsequently,
100 nm of gold (Au) was deposited on the entire surface of
photoresist-patterned Si/SiO2 substrates using the thermal
evaporation method. Ti/Au-deposited Si/SiO2 substrates were
immersed in 60°C of acetone and the source and drain electrodes
were patterned using the lift-off method. At last, the fabricatedMoS2
FET was dried using nitrogen gas. The length and width of the
fabricated MoS2 FET were 10.7 and 12.9 μm, respectively. The
proposed device consisted of a bottom-gate/top-contact structure.

2.2 Remote n-type doping process

The dopant solution was prepared by dissolving P(VDF-TrFE)
in acetonitrile (anhydrous, 99.8%) at a concentration of 7 mg mL−1.
The as-prepared solution was aged for 24 h for stabilization. The
dopant solution was spin-coated on MoS2 FETs at 500 rpm and 30 s
conditions. The doped MoS2 FETs were annealed at 60°C on a
hotplate for 10 min after spin coating to remove the residual solvent.
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The effects of P(VDF-TrFE) phase transition were examined by
sequential annealing of the as-doped devices at 100, 200, and 300°C.
In addition, the P(VDF-TrFE)-doped MoS2 FETs with 10 min
annealed had slowly cooling to 60°C.

2.3 Characterization methods

The phase transition of dopant P(VDF-TrFE) and lattice
vibration of the MoS2 flakes were observed by Raman and PL
spectroscopy with an in-house-built, combined spectroscopy
system at room temperature. Both Raman and PL spectroscopy
measurements were performed using a SYCERITY 1024 × 256-OE
TE cooled CCD detector (HORIBA Scientific, Japan) for UV-VIS-
NIR regimes and a HORIBA Jobin Yvon NanoLog equipped with a
laser excitation wavelength of 532 nm. All spectra were collected
with an optical microscope (BX43-32P01HAL, Olympus, Japan)
with the ×100 objective lens (N.A. 0.9). Water contact angles of
P(VDF-TrFE) films annealed at different conditions were measured
with the Contact angle meter (DSA100, KRÜSS Scientific
Instruments Inc., Germany) All electrical characterization of
MoS2 FETs in this work was measured in air-ambient condition

(RH = 21% and temperature = 23.6°C) using a Keithley
4,200 parameter analyzer (Keithley Instruments Inc.,
United States) installed in a probe station (MS-Tech, South
Korea). In addition, the thermal stability of the P(VDF-TrFE)-
doped MoS2 FET was measured using a probe station chamber
connected to a Keithley 4,200 parameter. A hot chuck mounted in
the probe station chamber applies a temperature of up to 100°C to
the devices.

3 Result and discussion

3.1 Characterization of n-type doping
effects on MoS2 FETs

First, the changes in morphological and optical properties of the
MoS2 FET according to the remote n-type doping process were
examined. Figure 1A illustrates the n-type doping process and
molecular structure of the components. Optical microscopy
photographs according to n-type doping states (Figures 1B, C)
showed no observable decomposition in MoS2 flakes, proving
that the proposed solution coating method is an appropriate

FIGURE 1
(A) Schematic diagram of dopant, MoS2, and doping process. Optical micrographs of the MoS2 FETs: (B) pristine MoS2 FET and (C) P(VDF-TrFE)-
doped MoS2 FETs. (D) Raman spectroscopic analysis results of n-type doped and pristine MoS2 flakes. The Lorentzian fits are represented with solid lines.
(E) PL emission spectra of MoS2 flakes according to the n-type doping states under 532 nm excitation.
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n-type doping approach without causing significant damage to the
thin MoS2 semiconductor. The optical characterization of the MoS2
region revealed the effect of the n-type doping process. The optical
characterization of the MoS2 region revealed the effect of the doping
process with Raman spectroscopy (Figure 1D). To clearly observe
the shape and shift in A1g and E2g

1 peaks, we have performed
Lorentzian function fitting for each raw data point. As shown in
Figure 1D, the A1g and E2g

1 modes provide information on the out-
of-plane strain and in-plane vibration, respectively (Zhou et al.,
2014). The A1g and E2g

1 peaks are both red-shifted in the n-type
doped MoS2 sample compared to the pristine MoS2. The specific
positions of A1g peak in the fitted line were 406.8 cm-1 and 407.7 cm-

1 at n-type doped MoS2 and pristine MoS2, respectively. The E2g
1

peak positions were extracted with the values of 380.9 cm-1 and
382.1 cm-1 for n-type doped and bare MoS2 films. As reported in
previous studies, heavy n-type doping shifts the Fermi level near the
conduction band, causing interactions between the continuum of
electronic states and optical phonons (Sahoo and Kale, 2019;
Schauble et al., 2020; Tanwar et al., 2022). The above electron-
phonon interaction (i.e., Fano interaction) arises owing to
appropriate matching between discrete phonon energy and
electron continuum energy by heavy doping and photoexcited
carriers. Resonance of the two energies leads to constructive or
destructive interference and results in perturbed line shapes at
Raman spectral parameters (Tanwar et al., 2022). In the case of
A1g mode, peak shift is the main indicator of the n-type doing of
MoS2 (Chakraborty et al., 2012; Miller et al., 2015; Manamel et al.,
2020; Krishnan K et al., 2021). Furthermore, the increased
asymmetric ratio in Raman peaks provide the quantitative
information of doping induced Fano interaction (Sahoo and
Kale, 2019; Schauble et al., 2020; Tanwar et al., 2022). To
quantitatively compare the MoS2 E2g

1 peak asymmetric ratios
depending on the n-type doping procedure, we extracted the
peak parameters such as full width at half maximum (FWHM,
Γ), Half-width in pre-maximum side (γL), and Half-width in post-
maximum side (γR) by fitting the raw data points with bi-Gaussian
function. As shown in Supplementary Figure S1, the asymmetric
ratio (γL/γR) of pristine MoS2 was 1.01, which is almost close to
1 and reveals the peak is symmetric. In contrast, the asymmetric
ratio of the n-type doped MoS2 was calculated to be 0.95, suggesting
that the peak asymmetry increased through the electron-phonon
interaction (i.e., Fano interaction) with the doped state. The above-
mentioned asymmetry in E2g

1 Raman peaks were further
investigated through Fano fitting which defined by the following
Eq. 1 (Schauble et al., 2020).

a ω( ) � ao q + 2 ω − ωp( )/γ( )2/ 1 + 2 ω − ωp( )/γ( )2( ) (1)

Where ao is the prefactor, ω is frequency, ωp is bare phonon
frequency, γ is the linewidth, and q is the symmetry parameter
depends on electron-phonon coupling strength. As previously
reported in literatures, a lower absolute value |q| indicates greater
asymmetry and heavier doping (Nickel et al., 2000; Schauble et al.,
2020). The calculated q values in the Fano profiles for pristine and
n-type doped MoS2 were 29.89 and 12.25, respectively
(Supplementary Figure S2). The lower q value for the n-type
doped MoS2 suggests a greater asymmetry and a heavier doped
state compared to the pristine MoS2.

The changes in the electronic states of the MoS2 region after
n-type doping were also discovered in the PL spectrum (Figure 1E).
The PL emission peak of doped MoS2 was red-shifted by 12 nm
compared to the pristine MoS2. The PL emission of MoS2 was
attributed to exciton (X, peak at ~ 690 nm) and trion (X−1, peak at ~
702 nm) recombination (Brill et al., 2021). Because trions are more
negatively charged than excitons, an increase in trion-related PL
emission shows that the MoS2 region is more negatively charged
(n-doped). The PL peak was red-shifted towards the trion PL
emission direction when the P(VDF-TrFE) film was fabricated on
the MoS2. This result confirms the n-type doping effect through
dopant fabrication. The effect of n-type doping onMoS2 observed in
the PL measurements was verified through the electrical
characterization of the device.

As mentioned in the introduction, certain organic materials,
such as self-assembled monolayers (SAMs), and polar polymers, can
provide n-type doping effects to control the electrical characteristics
of MoS2 FETs (Li et al., 2013; Kang et al., 2015; Maity et al., 2017).
The dipole effect could change the electrical characteristics of a
MoS2 FET in the case of the P(VDF-TrFE) film coated with the
surface of the MoS2 semiconductor. Figures 2A, B present 3D
schematic diagrams of pristine and MoS2 FETs doped with a
P(VDF-TrFE) solution. An as-coated P(VDF-TrFE) thin film was
formed after 10-min annealing to evaporate the solvent.
Subsequently, annealing was performed at 100, 200, and 300°C
using a hotplate for 10 min. The electrical characteristics of the
MoS2 FETs were measured to assess the n-type doping effect of
P(VDF-TrFE). Figure 2C shows the transfer curves of a pristine
MoS2 FET and P(VDF-TrFE)-doped MoS2 FET. The drain voltage
of 1 V and the gate voltage range of −40 V–40 V were applied to two
types of MoS2 FETs to collect the transfer curve. The pristine MoS2
FET with typical n-type behavior showed an on-current of 8.7 μA,
and a field effect mobility of 26.9 cm2 V−1s–1. In addition, the
P(VDF-TrFE) doping effect was maximized according to the
annealing temperature. The on-current and field effect mobility
of the P(VDF-TrFE)-doped MoS2 FET (100°C) increased
significantly to 12 μA and 30.7 cm2 V−1s–1, respectively. The
P(VDF-TrFE)-doped MoS2 FET (200°C) with the most improved
n-type operation has a 21 μA on-current and 34.4 cm2 V−1s–1 of
mobility. The crystal structure of P(VDF-TrFE) has α, β, and γ
phases and can be controlled by annealing temperature. The P(VDF-
TrFE) annealed at 200°C has high alignment due to the formation of
the ß phase. The ß phase of P(VDF-TrFE) induces a strong dipole
moment and enhances the n-type operation of the MoS2 FET. On
the other hand, the electrical characteristics of the P(VDF-TrFE)-
doped MoS2 FET (300°C) are deteriorating, with an on-current of
1.6 μA and a field effect mobility of 12.4 cm2 V−1s–1, respectively. The
dipole moment of P(VDF-TrFE) induced on the surface of the MoS2
semiconductor was weakened because the alignment of the P(VDF-
TrFE) was lower. Figure 2D shows the output curves of pristine
MoS2 FET and doped MoS2 FET (200°C). The output curves of the
MoS2 FETs were measured by applying a drain voltage of 0 V–10 V
and a gate voltage of −10 V–40 V. The P(VDF-TrFE) has the effect
of increasing the on-current of MoS2 FETs with increased drain
current in the same gate voltage range. Figure 2E presents the
contact resistance and channel resistance of a pristine MoS2 FET
and a P(VDF-TrFE) doped MoS2 FET extracted by the G-function
method (Liu et al., 2015; Jiang et al., 2019). The channel resistance
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and contact resistance of the extracted MoS2 FET decrease as the
annealing temperature increases. The channel resistance and contact
resistances of the pristine MoS2 FET are 0.14 MΩ and 7.4 kΩ,
respectively. When MoS2 FET is doped with P(VDF-TrFE) and
subsequently to an annealing process at 100°C, the channel
resistance (0.55 MΩ) and contact resistance (5.8 kΩ) are
significantly reduced. The P(VDF-TrFE)-doped pristine MoS2
FET (200°C) exhibits the lowest channel resistance (0.51 MΩ)
and contact resistance (2.9 kΩ). Low channel resistance and
contact resistance increase the field effect mobility, on-current
and, lower the operating voltage of MoS2 FET. On the other
hand, the channel resistance (1.04 MΩ) and contact resistance
(8.6 kΩ) of the P(VDF-TrFE)-doped pristine MoS2 FET (300°C)
increased compared to pristine MoS2 FET. The P(VDF-TrFE)
doping effect lowers the Schottky barrier in the MoS2 FET and
induces a low contact resistance. Owing to the dipole effect of
P(VDF-TrFE), the n-type behavior of the doped MoS2 FET was
enhanced. Figure 2F shows the energy band diagram of a pristine
MoS2 FET. The energy band of pristine MoS2 makes it difficult to
tunnel electrons into the electrode. On the other hand, P(VDF-

TrFE) brings the conduction band and Fermi level of MoS2 closer
(Figure 2G). Hence, the dipole moment of P(VDF-TrFE) shifts the
energy band of MoS2 downward, facilitating electron tunneling.

The electrical parameters were extracted to investigate the
n-type doping effect of P(VDF-TrFE) induced on MoS2 FETs.
The uniform n-type doping effects of the proposed approach
were observed in terms of field effect mobility, on-current, and
negatively shifted threshold voltage with 8 different MoS2 FETs.
Figure 3A presents the average and maximum field effect mobility of
pristine MoS2 FETs and P(VDF-TrFE)-doped MoS2 FETs. The
average field effect mobility of 8 MoS2 FETs was extracted as a
histogram and an error bar of standard error was added. In this
work, the transfer curve of 8 MoS2 FETs for extracting electrical
parameters was reported in Supplementary Figure S2. The electrical
characteristics of MoS2 FETs are significantly impacted by various
process factors. Chemical vapor deposition (CVD) and mechanical
exfoliation with two common synthesis methods influenced the
quality of MoS2 due to process variations (Kim et al., 2014, 2016;
Choi et al., 2022). In addition, the contact resistance between the
electrodes and channel of MoS2 FETs is changed based on the

FIGURE 2
3D schematic diagram of the (A) pristine and (B) P(VDF-TrFE)-doped MoS2 FET. (C) Transfer curves of the pristine MoS2 FET and the P(VDF-TrFE)-
doped MoS2 FETs (100, 200, and 300°C). (D) Output curves of the pristine MoS2 FET and P(VDF-TrFE)-doped MoS2 FET (200°C). (C) Contact resistance
and channel resistance of the pristine MoS2 FET and the P (VDF-TrFE)-doped MoS2 FETs (100, 200, and 300°C) extracted by the G-function method. (F)
Energy band diagram of the pristine MoS2 FET. (G) Energy band diagram of the P(VDF-TrFE)-doped MoS2 FETs.
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deposition method for metal, annealing temperature, and metal/
MoS2 interface, resulting in variations in carrier mobility. Also, the
performance of MoS2 FET is affected by the photolithography
conditions that affected the surface morphology and quality of
MoS2 (Plechinger et al., 2014; Wang et al., 2019; Yang et al.,
2021). The average field effect mobility of the 8 pristine MoS2
FETs was 12.4 cm2 V−1s–1 and increased slightly to
12.5 cm2 V−1s–1 when the P(VDF-TrFE) annealing temperature
was 100°C. The average field mobility of MoS2 FETs in the
optimized P(VDF-TrFE) annealing (200°C) process was
15.1 cm2 V−1s–1. On the other hand, the field effect mobility of
P(VDF-TrFE)-doped MoS2 FETs (300°C) was 6.7 cm2 V−1s–1,
which is lower than pristine MoS2 FET. In addition, the MoS2
FET with the highest mobility was 26.9 cm2 V−1s–1 for the pristine
sample, while it was 34.4 cm2 V−1s–1 under optimized annealing
conditions. Also, the negative shifts in threshold voltage were
observed at n-type doped MoS2 FETs. The dipole effect of top
P(VDF-TrFE) region induces the conduction band and Fermi level
of MoS2 closer. The downward energy band promotes rapid
inversion due to enhanced electron tunneling, resulting in the
threshold voltage shifting negatively. Supplementary Figure S3
shows the threshold voltages of pristine MoS2 FET and P(VDF-

TrFE)-doped MoS2 FETs. The pristine MoS2 FET has a threshold
voltage of 16.7 V. The P(VDF-TrFE)-dopedMoS2 FET (100°C) has a
negatively shifted threshold voltage of 9.8 V due to relatively weak
n-type doping effect from the large fraction of non-polar α-phase
P(VDF-TrFE). The P(VDF-TrFE)-doped MoS2 FET (200°C) under
the optimized conditions with strong n-type doping effect
had −8.9 V of threshold voltage due to the enlarged fraction of
the polar ß phase P(VDF-TrFE). However, the threshold voltage of
P(VDF-TrFE)-doped MoS2 FET (300°C) was shifted in the positive
gate voltage direction (Vth = 30.6 V). This phenomenon is related
with the Mo-O bonds generated in MoS2 during the high-
temperature annealing. The Mo-O bonding created by adsorbed
oxygen and water molecules causes a p-type doping effect in MoS2
(Wei et al., 2014). As a result, the n-type doping effect on P(VDF-
TrFE)-doped MoS2 FET (300°C) was reduced owing to the Mo-O
bonding induced p-type doping effect. Statistical analysis of
8 P(VDF-TrFE)-doped MoS2 FETs (200°C) was performed to
investigate the uniformity of the P(VDF-TrFE) doping effect. The
field effect mobility of the P(VDF-TrFE)-doped MoS2 FETs (200°C)
increased by an average of 132% compared to the pristine MoS2 FET
(Figure 3B). Figure 3C shows the enhancement ratio of on-current
with the P(VDF-TrFE)-doped MoS2 FETs (200°C) compared to the

FIGURE 3
Electrical parameters of the pristine MoS2 FET and the P(VDF-TrFE)-doped MoS2 FETs (100 200, and 300°C) (A) Average and maximum field-effect
mobilities. The enhancement ratio of 8 different P(VDF-TrFE)-doped MoS2 FETs (200°C): (B) Field-effect mobility, (C) on-current, and (D) changes in the
threshold voltage values compared to pristine devices.
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pristine MoS2 FET. The n-type doping effect of P(VDF-TrFE) on
MoS2 FETs increased the on-current of the 8 devices by an average
of 201.8%. Supplementary Figure S4 represents the output curves of
8 P(VDF-TrFE)-doped MoS2 FETs (200°C). As shown in
Supplementary Figure S4, 8P (VDF-TrFE)-doped MoS2 FETs
(200°C) achieved increased drain current compared to pristine
MoS2 FETs. In addition, the average threshold voltage of 19.6 V
has been shifted negatively (Figure 3D).

We further validated the robust n-type doping effect of the
proposed method through a thermal stability characterization.
Figure 4A shows a 3D schematic description of the experimental
environment with P(VDF-TrFE)-doped MoS2 FET (200°C). More
specifically, the P(VDF-TrFE)-doped MoS2 FET (200°C) was placed
in the hot-chuck mounted probe station chamber. The temperature
was increased from room temperature (RT, 20°C) to 100°C and
maintained for 1 h. After 1 h, the chamber was naturally cooled to
20°C. The electrical characterization of the device was measured
during the whole thermal sequence at specific points. Figure 4B
displays the threshold voltage variation of the P(VDF-TrFE)-doped
MoS2 FETs (200°C) during the heating-up condition range of
20–100°C. The threshold voltage before the thermal stability test
was measured to 17.4 V (at 20°C condition). While increasing the

thermal condition of the chamber up to 100°C, the threshold voltage
values were varied with the lowest value of 14.6 V (at 60°C) and the
highest value of 18.4 V (at 100°C). The average threshold voltage
measured during the 5 steps is 16.9 V, which represents a negligible
difference of 0.5 V compared to the pristine value (17.4 V).
Furthermore, the above-mentioned stable threshold voltage
retention was demonstrated even under continuous thermal
conditions (100°C for 1 h). As shown in Figure 4C, the threshold
voltage values measured at each of the 10 min cycles were almost
maintained without any sudden degradation or fluctuation, which
proves the good thermal stability of the proposed device at 100°C
environments. Figure 4D shows the comparison of transfer curves
before and after the thermal stability test. Compared to the initial
characteristics, only slight changes were observed with an increase in
off-current and on-current with the values of 14.7 nA and 28.9 µA.

3.2 Effect of phase transition on n-type
doping states

Next, to understand the optimized n-type doping condition
(200°C annealing temperature), we investigated the change in the

FIGURE 4
(A) 3D schematic description of the thermal stability characterization environment. Threshold voltage change according to the experimental
conditions: (B) during the chamber temperature increasement from 20 to 100°C, (C) continuous 100 °C environment condition for 1 h. (D) Transfer
curves of the P(VDF-TrFE)-doped MoS2 FET (200°C) before and after the thermal stability characterization.
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dopant P(VDF-TrFE) film according to the annealing variation. As
discussed previously, the main mechanism of n-type doping on
MoS2 by P(VDF-TrFE) is based on the dipole moment in the dopant
film. Depending on the molecular arrangement, P(VDF-TrFE) has
three different crystalline structures: α, β, and γ phases. Among
them, the ß and γ phases exhibited polar dipole moments owing to
their geometric configuration, as shown in Figure 5A (Shepelin et al.,
2019; Arrigoni et al., 2020). The crystalline phases of P(VDF-TrFE)
mentioned above can be obtained through a sequential melting and
recrystallization process (García-Gutiérrez et al., 2013; Arifin and
Ruan, 2018). The non-polar α phase, however, is the most
thermodynamically stable form, so the P(VDF-TrFE) polymer
crystallizes preferentially into it during melting and
recrystallization. Based on this phenomenon, it was predicted
that different ratios of the polar phases (β and γ) and non-polar
(α) phase would be formed according to the annealing conditions.
As a result of the phase variation, the higher polar phase ratio leads
to strong n-type doping effects on MoS2 FETs observed during
electrical characterization.

Raman spectroscopy was performed to observe the crystalline
phases of the P(VDF-TrFE) films varied with annealing conditions
(Figure 5B). Specific peaks according to the α, β, and γ phases of
P(VDF-TrFE) were identified. The non-polar α phase appeared in all
samples with the peak range at 775 cm−1 to 795 cm−1 (black dashed box)

(Riosbaas et al., 2014). The peak indicated a high polar ß phase
(510 cm−1, orange dashed box) (Viswanath and Yoshimura, 2019)
was observed only in the sample (annealed at 200°C), which
exhibited the most n-doped characteristic. Furthermore, the intensity
of peaks at 810 cm−1 to 840 cm−1 (violet dashed box, mixed phases of
polar ß and γ) (Singh et al., 2014) tended to increase in the order of
efficiency of the n-type doping effect in electrical characterization results
(Figures 2C, 3A). Themost n-doped 200°C annealed sample exhibited a
clear polar ß phase. The intensity ratio of α phase/β and γmixed phase
were reduced after 300°C annealing. The polar phase increase according
to the recrystallizing condition in P(VDF-TrFE) film was cross-
validated through contact angle measurements. As reported in
previous studies, the enrichment of crystallization domains on the
surface of the PVDF-based polymer films also can promote the
hydrophilicity (low water contact angle) (Chen and Hong, 2002;
Zhao et al., 2012). The increased polar crystalline phases enhance
the surface polarity of the films, and results in the reduced water
contact angle. As shown in Supplementary Figure S6, the water contact
angle change according to the annealing condition is consistent with the
ß phase intensity ratio change from Raman analysis. The contact angle
showed the lowest value at 200°C annealing conditionwhere the ß phase
peak intensity and n-type doping effect on MoS2 FET were maximum,
and slightly increased at 300°C when the n-type doping effect was
weakened. The above results are well-matched with the relationship

FIGURE 5
(A) Schematic description of different crystalline phases of P(VDF-TrFE) polymer with geometric configurations. (B) Raman spectra of P(VDF-TrFE)
films varied with different annealing conditions. Specific peak ranges for α, β, and γ phases are highlighted with black, orange, and violet color dashed
boxes. (C) PL spectra of MoS2 flakes according to n-type doping conditions. The red arrows indicate the direction of the peak shift compared to the
pristine sample.
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between polar phase formation and n-type doping efficiency. PL
characterization supports the variation of n-type doping effects
according to the dopant film phases. As shown in Figure 5C, the PL
emission peaks were red-shifted for all doped samples, representing
increased trion-related emissions in n-doped states. Nevertheless, the
shifted values varied with the n-type doping conditions. The peak shifts
were 10, 12, and 6 nm for the 100, 200, and 300°C annealed samples,
which agree well with the n-type doping efficiency trends discussed
above. Through the above characterization, it was confirmed that the
P(VDF-TrFE) dopant film provides a strong n-type doping effect on
MoS2 FETs by forming polar crystalline phases.

4 Conclusion

In summary, we proposed the dipole-induced n-type doping
approach for MoS2 FET with the P(VDF-TrFE) polymer dopant.
The n-type doping effects on MoS2 FETs were varied with the
phase transition of the top P(VDF-TrFE) region by controlling
recrystallization conditions. The controllable doping states according
to the phase transition of P(VDF-TrFE) layers were investigated with
Raman and PL spectroscopies. The increased polar phases of P(VDF-
TrFE) dopant layer provide the enhanced n-type operation to MoS2
FET by reducing the contact resistance. At the optimized condition, the
field effect mobility, and the on-current values of the P(VDF-TrFE)
doped MoS2 FET were achieved 34.4 cm2 V−1s–1 and 21 μA,
respectively. The n-type doping effects observed at 8 different MoS2
FETs and operation in a harsh environment imply that the proposed
doping methods stable and reliable. We hope that the proposed
approach could be utilized for further applications in the field of 2D
semiconductor-based transistors and related research fields.
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