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Although the structural design of composite structures has already been carried
out on a virtual level, composite mechanical properties remain sensitive to fiber
orientation and therefore to the quality and reliability of the production process.
Considering both manual single-unit manufacturing and advanced mass-unit
fabrication, requirements on the production quality may differ, but certainty on
the achieved result is crucial. A digital twin model, deterministically derived from
produced parts, can be transferred into a virtual simulation environment to check
for potential deviations of fiber alignment, resulting from variations in source
material or composite production. Transferring that deterministic information into
a virtual simulation environment allows for an estimation of the part's structural
potential despite any possible deviations by carrying out numerical simulation
predictions on that model. This step of quality assessment can help reduce scrap
parts by relying on simulation data that may demonstrate the feasibility of parts
despite the containment of deviations with an otherwise uncertain impact.
Therefore, further steps toward digitalization of the composite production
process chain, especially on the characterization of the production quality, are
aspired. In this contribution, a vision system based on a Microsoft Azure Kinect
RGB-D camera is introduced which is used to digitalize the composite preform
configuration from machine vision data by evaluating the achieved local fiber
orientation as result of the complex preform draping process by digital image
processing. A digital workflow is introduced that enables to feed the captured real-
world data back into a digital environment where numerical simulations with the
“as-built” fiber orientation can be carried out. The obtained results are used for
assessing production quality and composite performance in the presence of
possible deviations. The system, which consists of a camera array of consumer
grade, can acquire real-world data and then transfer the data into a virtual
environment.

KEYWORDS

machine vision, composite, digital twin, modeling, finite element analysis

1 Introduction

Composite components have excellent mechanical properties at a low specific density
compared to conventional construction materials such as metals. This combination results in
a wide range of applications for components in the high-performance sector. For fiber-based
composite components, the orientation of the fiber is crucial for the exploitation of the
mechanical potential.
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Schematic deviation from aspired production results depending on the production method. (A) Automated production. (B) Manual manufacturing.

Since the manufacturing of complex-shaped parts from
composite materials is a sequential process characterized by
either manual or automated handling of unstable and flexible
reinforcement fabrics, deviations from an ideal “as-planned”
configuration are likely to be observed. The deviations can vary
depending on the robustness of the process, as shown in Figure 1.

The designing of composite parts is regularly carried out with
only small reserves in mechanical capacity due to the general
lightweight motivation and high material costs when using fiber-
reinforced composites. Deviations in fiber orientation and defects
from the manufacturing process may result in reduced structural
stiffness or unpredicted failure due to reduced strength. Therefore,
the use of machine vision to digitalize the quality assessment of
composite production is aspired.

Nevertheless, due to the high cost and effort, fiber orientation is
rarely digitally verified in practice. In this paper, a system that
determines the fiber orientation at the ply level of a complex-shaped
textile-reinforced composite part during preforming processes using
an inexpensive RGB-D camera is presented. The Azure Kinect
camera, initially launched by Microsoft for entertainment
purposes, can provide both depth measurement for obtaining
geometry data and texture information using an RGB sensor. A
point cloud captured by the time-of-flight (TOF) IR camera is used
to detect positioning of the structural geometry to identify the
position in space and allocate location-based data such as fiber
orientation. Based on the color image taken by the camera, the local
texture is projected onto the component geometry, and the
orientation of the fiber is determined using open-source image
analysis. The system presented in this paper is characterized by
low investment costs and a high degree of automation as well as
open-source Python libraries, which allows a customization of the
system and enhances the system flexibility and usability.

2 State of the art

Optical evaluation systems are already being used in composite
research, as well as in the composite industry. Algorithms for image
analysis are applied at the material level to analyze geometrical
features, such as voids, or at the structural level to observe
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macroscopic features such as fiber orientation or global defects
like wrinkles.

Early computational evaluation methods were based on camera
images where edge detection algorithms were applied on fast Fourier
transformed images of technical reinforcement braids (Lian et al., 2000;
Mersmann, 2011). Stationary cameras were used on these steady
production processes where no geometrical information was
required. The obtained values were used for quality assessment
(Lian et al., 2000) and process control (Mersmann, 2011; Lekanidis
and Vosniakos, 2020), simple damage detection (Wilhelmsen and
Ostrom, 2016), and for importing material relevant input data (fiber
orientation) into a virtual environment finite element analysis (FEA)
models for further use in numerical simulation (Stender et al., 2019;
Dabrich et al,, 2021). Studies on using composite machine vision in
material research to study the fatigue behavior of glass—fiber-reinforced
composites are also found in the literature (Song et al, 2022). In
addition, studies on using machine vision systems to investigate
wrinkling caused by shearing in dry textile drape processes are
found (Ddbrich et al., 2013; Pasco et al., 2019).

The field of view for those applications is rather small and is
limited to a specific section of composite parts or composite
production processes. The digital image evaluation at the
component level of composite structures is carried out by hand-
guided or robot-guided camera systems (Kunze et al., 2020; Dobrich
et al, 2021). Commercially available systems are provided by
Hexagon (Sweden, formerly Apodius) [hand-guided inspection
system (Stender et al., 2019; Antoniou et al., 2020; Débrich et al.,
2021)] or CIKONI (Germany) [robot-guided Hexagon system
(Pasco et al,, 2019)]. These systems can easily adapt to the shape
of the structural part (Malhan et al., 2018). However, the process is
time-consuming and requires either manual guidance or a
geometry-specific teaching of the robotic guidance system.
Another setback is that generally only the visible top layer is
evaluable. This requires a sequential examination of every single
layer that is draped over or added to a stack of reinforcement layers.
Time- and labor-consuming semi-automated evaluation methods
directly increase the assessment time when they must be carried out
multiple times. However, common RGB camera images have been
proved to be sufficient for the evaluation of fiber orientation features
(Lian et al., 2000; Mersmann, 2011; Stender et al., 2019).
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The introduced systems mostly rely on expensive hardware and
specific software packages and are vulnerable to changes in
environmental conditions. The general requirement for a diffuse
illumination system is pointed out by most of the authors from the
relevant literature due to the reflecting nature of technical
reinforcement fibers, especially mandatory for analyzing carbon
fibers. To address this particular challenge, novel inspection
systems have been introduced that make use of the polarization
effects found in carbon fibers (Ernst et al., 2016). By using this effect,
fiber trace and thus fiber orientation can be determined not only on
the dry textile or unconsolidated prepreg but also on the composite
parts, since the polarization effect only affects the fiber and not the
matrix (Atkinson et al., 2021; Schommer et al., 2023).

However, it is also not possible to analyze layers within the
composite, since here, too, only the surface of reinforcement textiles
and composites can be considered. Systems that can evaluate a stack
of reinforcement layers are known as well. Micro-CT scans
(Desplentere et al, 2005), as well as X-ray micro-CT scans
(Bernardini et al., 1999a), have been used to build composite unit
cell models to predict the mechanical properties. An application of
this technique at the structural level is difficult to carry out and
generally limited by the sample size, the duration of the method, and
the costs. The eddy current sensor data can be used to evaluate the
result of the preforming process (Bardl et al., 2016). Unfortunately,
this technique is limited to carbon or metal fibers due to the need of
electrical conductivity within the material.

In the summary of the already existing systems, it can be stated
that the extraction of composite-related data is possible by simple
RGB image evaluation. Composite materials are suitable for such an
optical evaluation due to their heterogeneous structure, where the
most important features can be determined at the mesoscopic level
(yarn level). However, currently, image analysis is only used in
stationary cameras for simple and continuous processes, such as
braiding, where information on the positioning in space is not
important, and relevant information can be extracted by
observing a planar field of interest or by systems that apply an
extended effort in terms of camera guidance for capturing complex
geometries along with local features like fiber orientation. Methods
that allow an analysis of the entire reinforcement stack are only
applicable with advanced analysis methods and expensive
technology, whereas sequential ply-by-ply analyses are only
implemented with non-stationary systems, for which the
high and industrial
implementation is unlikely.

evaluation time is therefore an

Therefore, a system is introduced that does not rely on manual
or guided camera/sensor movement but offers an environmental
observing stationary camera array that is able to capture the
geometry and the texture information in a single shot. The
system is fast enough that a sequential evaluation of multiple
layers can be carried out without additional expenses in process
time and therefore be applicable in mass consumer industries,
whereas the open-source software libraries and the use of
consumer hardware make it suitable for small manufacturing
enterprises and research institutes. The mutual determination of
structural geometry and composite relevant features derived from
image processing along with adaptable open-source algorithms
characterizes the novelty of the introduced system.
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3 Hardware and approach

3.1 Material

A twill woven fabric prepreg system composed of 200 tex carbon
HT-3k multifilament yarns and epoxy resin produced by Krempel
Group (Fa. Krempel GmbH, Vaihingen, Germany) was studied. The
characteristics of the material are shown in Table 1 along with an
image of the material.

3.2 Utilizable camera hardware

The approach presented in this contribution introduces a fiber
orientation evaluation system based on the Microsoft Azure Kinect
camera (Figure 2A). Recently, the third-generation Kinect cameras
have been introduced not only for entertainment and gaming
purposes but also for industrial applications. The current
generation Kinect camera is equipped with a 1-MP depth sensor
(IR-TOF) and a 12-MP camera for RGB image capturing. The Azure
cameras are especially low-priced compared to existing composite
evaluation products and come with a sync port to set up a camera
array, as shown in Figure 2B.

3.3 Stationary machine vision approach

The developed method for the detection of fiber orientation
using the Microsoft Azure Kinect camera is shown in Figure 3. The
camera array a) captures a single RGB image and a single point cloud
per camera b) which is merged in regards to the positioning of the
cameras by performing a rigid body transformation of the point
clouds related to the designated master camera’s position (Figure 5),
according to Eq. (1). The combined point cloud contains all points
captured by the camera array. These are points captured not only
from the composite part itself but also related to the surroundings
(mounting, positioning table, etc.) and the environment (opposite
cameras, respective tripods, other objects in the lab/tool shop, etc.).
By the definition of a space of interest, that is, related to the
composite part size and position within the camera array,
captured points outside the designated space can be removed
from the merged point cloud. The remaining point cloud is still
very dense and must be used for meshing of the surface of composite
parts. The number of points within the point cloud exceeds the
number of points required for a useful mesh. A relevant mesh size
can be derived from the textile characteristics, such as yarn density
and yarn count, as the fiber orientation will be evaluated using the
captured RGB image locally cropped onto the mesh element size.
The captured point cloud density depends on the object distance
from the camera. Related values are shown in Table 2.

Therefore, MeshLabs open API accessible by Python library
PyMeshLab (Muntoni and Cignoni, 2021) was used to reduce the
number of points to meet the desired mesh size (10 mm for the
material introduced in Section 3.1). The simplified cloud was
meshed using ball pivot meshing algorithms c), as shown in
Figure 6. The meshing was performed using Python’s Open3D
library (Zhou et al.,, 2018).
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TABLE 1 Krempel KGBX 2508 prepreg system.

Material property Image

Fabric Weft density ~6/cm i
material: Warp density ~6/cm 3
Twill 2/2 weave 245 g/m*
Areal density
Prepreg system Prepreg thickness 0.28 mm
44 m%

Mass content resin
440 g/m’

Areal density

Utilizable camera hardware.

Microsoft Azure Kinect Microsoft Azure Kinect camera array

FIGURE 2
(A) Microsoft Azure Kinect. (B) Microsoft Azure Kinect camera array [image source: Microsoft].

FIGURE 3
Procedure to evaluate local fiber orientation by stationary machine vision (A) camera array arrangement, (B) point cloud capture, (C) point cloud
cleaning and meshing, (D) UV texture mapping, (E) evaluation of fiber orientation, and (F) assignment of fiber orientation to object mesh.

TABLE 2 Distance-related point cloud density.

Object distance from the camera (m) Average distance between captured points (mm)

1.0 1.7
15 2.8
2.0 3.8
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RGB camera
Depth WFOV

Depth NFOV

Azure Kinect capture modes and
minimal distance to object

(A) Azure Kinect capture modes. (B) Azure Kinect capture modes and minimal distance to the object [image source: Microsoft].

By using UV-transformation, the texture image related to every
element of the generated mesh is taken from the captured RGB color
image and cropped to the size of interest related to the mesh element
size d). For these images, the main orientations, not in regard to fiber
orientation, but in regard to color gradients within the picture, are
determined e) using image processing methods, like the histogram
of oriented gradients (HOG) (Lindeberg, 1998) and edge detection
algorithms (Dalal and Triggs, 2005) available in Python’s Open-
Source Computer Vision (OpenCV) library (Bradski, 2000).
Particularly, for continuous fiber surface textures, the color
gradient and the main trace of the edges correlate with the main
fiber orientations (Lian et al., 2000). The established orientation
vector (or several vectors when observing biaxial reinforcement
textiles) must be transformed considering the positioning of the
surface element toward the camera to account for tilted surfaces
causing distortions in the captured image f).

With regard to the positioning of the investigable composite
part, the distance to the camera is dependent on the camera’s
capturing mode, narrow field of view (NFOV) or wide field of view
(WFQOV), as shown in Figure 4. A minimum distance of 25 cm is
achievable in WFOV. However, better results have been achieved in
NFOV, which also corresponds to the RGB camera’s field of view.
The TOF sensor shows different sensitivities in NFOV, as shown in
Figure 4B. Therefore, a distance of 50 cm from the camera has
proven to be recommendable by several trial studies. The size of the
structural part that is to be investigated does not necessarily need to
fit in this field of view as this field can be extended by another
camera. A recommendation related to a minimum size cannot be
made as this has not been investigated. However, the point cloud
density shown in Table 2 can be used as orientation as it indicates the
sensitivity of the camera.

This general approach is applicable to a single RGB-D camera
only. However, when pursuing a stationary camera system, an
increasing number of cameras forming the array improves the
level of detail in the captured point cloud and increases the
possibility to capture the whole structural geometry in a single
shot. The low investment costs for consumer hardware cameras
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make this upscale considerable. Depending on the composite
structural geometry, the number of cameras required for
capturing all surfaces and details may vary. For very complex
geometries containing undercuts or surfaces not visible to an
observer from outside, this stationary approach may even be
insufficient. The number of cameras may be reduced for complex
geometries by using a rotatable mounting for the composite
structure. This allows for captures from multiple angles by a
single camera, which is ruled out in this study.

4 Experiments
4.1 Capturing of structural geometry

To use Microsoft Azure Kinect cameras as a camera array, a rigid
transformation matrix must be set up for every slave camera to
transform the captured information into the master camera
coordinate system, according to Eq. (1). The rotation matrix and
the transformation vector can be found by using a least-square
fitting method (Arun et al., 1987). For this, a calibration pattern
needs to be captured for every camera, and the specific parameters 7
(transformation vector) and R (rotation matrix) can be determined
from three points observed using every individual slave camera and
the master camera itself. Afterward, the points captured by every
slave camera can be transformed into the master camera coordinate
system, resulting in a single cloud containing every point captured
by all cameras in the array (within the space of interest), as shown in
Figure 5.t

T(¥) =RV +1. (1)

For converting the point cloud into a surface mesh, ball pivoting
(Bernardini et al., 1999b) is used as part of the Open3D library (Zhou
etal., 2018). The meshing can be adjusted by parameters to regulate the
point distance and element size. An example of the result obtained from
this step is shown in Figure 6.
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Azure Kinect array calibration pattern

FIGURE 5

&

Calibration pattern captured by
every camera after transformation

Determination of a rigid transformation matrix from the slave camera to the master camera. (A) Azure Kinect array calibration pattern. (B) Calibration

pattern captured by every camera after transformation.

Captured point cloud

FIGURE 6

Meshed surface

Point cloud and meshed surface derived from ball pivot meshing algorithms (Bernardini et al.,, 1999b). (A) Captured point cloud. (B) Meshed surface.

Green q(ﬁelement' ﬁcamera) <20°

Yellow 200< &« (ﬁelementr ﬁcamera)
< 30°

Red 30° <« (ﬁelementr ﬁcamera)

FIGURE 7
Evaluation of element orientation toward the camera.

4.2 UV-transformation of the surface texture

To map the surface texture captured by the RGB camera onto
the corresponding mesh element, a pre-evaluation is conducted to
determine the alignment of the elements toward the camera. The
texture that is to be evaluated must not be tilted too much to
guarantee a successful examination and assignment of the fiber

Frontiers in Materials

< 40°

orientation. Therefore, the element normal vector 7 is calculated
from the element node coordinates. The angle toward the specific
camera that captured the respective image is calculated, and the
“element quality” is evaluated by ranking the elements, as shown in
Figure 7. Depending on the category obtained for every element, an
assignment of fiber orientation is carried out only on the respective
element which has not been captured by another camera in the
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view plane

pinhole

screen

Center of element (red dot)
and size of texture derived
from UV-image (red square)

FIGURE 8
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= similar triang]es u/f,=x/z

Determination of UV-coordinates by use of
intrinsic camera specific parameters [26]

Basic parameters used in UV-transformation. (A) Center of element (red dot) and size of texture derived from the UV image (red square). (B)
Determination of UV-coordinates using intrinsic camera-specific parameters (From depth map to point cloud, 2020).

A
Cells (3x3), Blocks
(4x4)

FIGURE 9

Test image

HOG Visualization

Histogram of oriented gradients. (A) Cells (3 x 3) and blocks (4 x 4). (B) Test image. (C) HOG visualization

array. If the elements’ normal vector is too far off the camera’s
normal vector, it is not evaluated at all.

The texture that corresponds to the location of every element
must be determined by UV-transformation. In general, the
captured color image is 2D, containing texture information in
a UV system. The point cloud and the derived mesh exist in an
XYZ-Cartesian system. By performing UV-
transformation, every location in XYZ-space becomes related

coordinate

to the specific area in the UV image. For this, the center of the
elements is used as a reference. By using the intrinsic parameters
and the focal length of the camera setting (specific for every
camera), the position of every point in XYZ-space can be

Frontiers in Materials 07

observed on the UV image on the camera’s digital sensor, as
shown in Figure 8 and explained in Eq. (2).

uz
With: x = —,u =

7. gf, andvz%f. (2)

4.3 Histogram of oriented gradient
descriptor

The histogram of oriented gradients (HOG) is formed from
feature vectors of images or image sections. In contrast to pure edge
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Detection of fiber orientation with an HOG descriptor. (A) Simple line. (B) Weave sketch. (C) Clear image. (D) Fuzzy image.

Azure Kinect color image

FIGURE 11

Evaluation result

Results of the established machine vision system for assessing the composite fiber orientation. (A) Azure Kinect color image. (B) Evaluation result.

detection methods, the feature vector of the HOG primarily contains
information about the color gradient in discrete directions within a
certain evaluation cell. These direction vectors are displayed in a
histogram or by plotting them onto the specific area of the image
(Figure 9C). The HOG plot represents the main orientation of lines
in the test image (Figure 9B) for every evaluation cell (Figure 9A).
For textile textures, the main orientation of surface texture gradients
is assumed to be in correlation with the trace of the reinforcement
yarns, namely, the local fiber orientations. The orientation gradients
are classified into a defined number of angles. Therefore, the number
of existing main orientations can be evaluated by investigating the
histogram’s local maxima. The number of local maxima corresponds
to the number of local fiber systems (1—UD reinforcement,
2—weave, and 3—open reed weave). The algorithms used for the
presented results are part of the OpenCV library (Bradski, 2000).
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5 Results

The evaluation of image sections captured by the Microsoft
Azure Kinect camera is shown in Figures 10C, D. The quality of data
that is provided by applying HOG algorithm depends significantly
on the image quality. Therefore, adequate illumination (strong,
diffuse) and a certain maximal distance (depending on the
reinforcement rapport and yarn count) for capturing texture
images are required. However, the main orientations could be
evaluated successfully even for fuzzy images, but the system is
also flexible in this regard that Microsoft Azure Kinect embedded
RGB camera may be substituted with an even better camera to
capture more detailed images of the texture in the first place. The
main orientations have been determined by finding the local
maxima along the histogram of orientation vectors. For the test
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image (Figure 10A), one main direction is assigned, whereas two
directions have been found for the images showing weave textures
(Figures 10B-D).

Figure 11 shows the result of the evaluation system. The sample
geometry prepared from twill woven carbon fiber prepregs in a
manual and sequential preform draping process is determined using
the infrared depth sensor, and a meshed surface topology could be
generated. Texture evaluation is only carried out for elements that
are oriented toward the camera within the introduced tolerances.
The local fiber orientations are determined by the HOG algorithm
and mapped onto the discrete elements of the meshed surface. The
result presented is created with a single shot and covers most of the
structural surface parts visible for a single camera. The introduced
algorithm has been executed on a local personal computer, although
the Azure Kinect camera can be used for Microsoft Azure cloud
computing services. The average duration for evaluation of a single
shot performed by one camera (including all the steps shown in
Figure 3) was 45 < tcompute <8 5.

6 Conclusion

A novel machine vision approach is introduced that enables the
evaluation of composite material local fiber orientation along with
the corresponding location on the structure by scanning the surface
texture and the geometry by utilizing RGB-D camera of consumer-
grade that is capable of examining composite parts at the structural
level by a single shot. The utilized cameras can be built up as a
camera array that allows for a multi-shot evaluation within the same
time frame as a single shot. The introduced methods are efficient for
the quantification of the orientation values. The element-wise
evaluation can be used directly as input for FEA simulation to
carry out “as-built” numerical simulations, digitalize processes,
assess the production quality, and archive production data. The
low investment costs and the availability of the introduced methods
by relying on open-source libraries can boost the application in the
composite industry, especially for small- and middle-scale
businesses, and help increase the digitalization by enabling the
digital twin pre-processing of composite materials and structures.
The simple, fast, and supervision-free method is suitable for mass
consumer production since production processes can be observed
without the handling of cameras or manually initiating the scanning
process. The system mainly targets the sequential processes found in
draping of complex composite structures or the stacking of
reinforcement layers. In future, continuous production processes
are targeted, for which the fast evaluation algorithms and the
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