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Microbially induced carbonate precipitation (MICP) mimics the natural
cementation process that occurs in various geological settings by using the
bicarbonate minerals resulting from various bacterial metabolic pathways as
cementing agents. This bio-technique can be used to manufacture so-called
"bio-bricks,” which rival regular bricks in strength and durability. In the last
two decades, MICP has been increasingly utilized for the maintenance and
repair of infrastructure. More recently, this process has also been shown to
have great potential as an energy-saving and cost-effective means of in situ
resource utilization (ISUR) to produce construction materials; these can be utilized
for extraterrestrial human settlements for space programs such as lunar
exploration. We thus review the description of natural cementation, the
anaerobic and aerobic bacterial metabolic activities leading to calcium
carbonate precipitation, the properties of the lunar regolith, the production of
bio-bricks, and potential research needs.
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1 Introduction

Space exploration has been making great efforts to develop extraterrestrial human
settlements. However, as estimated by the US National Aeronautics and Space
Administration (NASA), it costs about $10,000 USD to put only one pound of material
in Earth orbit. Thus, the in situ utilization of raw materials, also known as in situ resource
utilization (ISRU), is an economic imperative. ISRU covers a wide range of production
techniques, including the production of propellant, gases, and water for sustainable life
support, and the production of construction materials for shelter (Pickett et al., 2020;
Schliiter and Cowley, 2020). Scientists have considered and studied various techniques to
transform ingredients (i.e., regolith/mined ores) to a construction phase on our Moon
(Anand et al., 2012; Wilhelm and Curbach, 2014). Naser (2019) gave a detailed review of the
main extraterrestrial processing methods, including melting/sintering, combustion, dry-
mix/steam injection, and cold pressing.

The energy consumption of the aforementioned processing methods is daunting (Kara and
Li, 2011; Qureshi et al,, 2012). However, bio-cementation is being progressively recognized as a
green solution for the application of bonding in construction materials. Bio-cementation uses
microorganisms to induce the precipitation of carbonate minerals for construction. In the last
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FIGURE 1

Factors that induce carbonate precipitation by different
metabolisms. BP, byproduct; DIC, dissolved inorganic carbon. (A)
Photosynthesis: (B) Ureolysis; (C) Ammonification; (D) Sulfate
reduction; (E) Denitrification; (F) Aerobic methane oxidation; (G)
Anaerobic methane oxidation.

two decades, microbially induced carbonate precipitation (MICP) has
been increasingly utilized to maintain and repair infrastructures and
has particularly been used to produce biological cement for sandstone
bricks. More recently, numerous research articles have been published
on the application of MICP to produce “bio-bricks” (Bernardi et al.,
2014; Li et al.,, 2020b; Cheng et al., 2020; Nething et al., 2020; Zhao
et al., 2020; Arab et al.,, 2021; Liu et al., 2021). This review focuses
specifically on the metabolism of the MICP process, the properties of
lunar regolith particles, and the characteristics of artificial bio-bricks.

2 Microbial carbonate precipitation by
different metabolic activities

Anaerobic microbes should surpass aerobic ones in respiration, given
the fact that the moon lacks oxygen. In this review, the metabolic
activities that induce carbonate precipitation are classified into aerobic
and anaerobic groups. Microorganisms induce carbonate precipitation
either by increasing pH, increasing dissolved inorganic carbon (DIC), or
both. The process can be classified into several metabolic
pathways—photosynthesis, ureolysis, ammonification, denitrification,
sulfate reduction, denitrification, and methane oxidation (Jain, 2021).
The major metabolism involved in microbial carbonate precipitation can
be either aerobic (photosynthesis, ureolysis, and ammonification) or
anerobic (sulfate reduction and denitrification). For anaerobic processes,
the inorganic compounds sulfate (SO,>) and nitrate (NO;") serve as

electron acceptors for bacteria (Ersan, 2019). Methane oxidation is a
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metabolic process that can occur aerobically or anaerobically. Among
these microbial metabolisms, ureolysis is the most studied MICP process
due to its less complex and higher calcite precipitation (Wang et al., 2014;
Castro-Alonso et al.,, 2019).

2.1 Aerobic processes: Photosynthesis,
ureolysis, and ammonification

Photosynthesis is an autotrophic aerobic metabolic process that is
reported to be feasible for MICP. Altermann et al. (2006) proposed
that cyanobacteria can store Ca”" and Mg** ions in organic envelopes
and precipitate carbonate minerals within their sheaths, as well as
polymeric However, to satisfy the
oversaturation status of Ca** and CO;> in aquatic environments,

extracellular substances.
heterotrophic bacteria such as sulfate reducers must help remove
sulfate and raise carbonate alkalinity. The interplay of cyanobacteria
and heterotrophic bacteria are believed to have contributed to the
Earth’s carbonate factory for the last 3 billion years. This mechanism
has contributed to increased pH through photosynthesis by
microalgae, resulting in the exchange of HCO;™ and OH" across
the membrane (Figure 1A). With pH of up to 10.329 (Pedersen et al.,
2013), CO3* dominates the solution to reach supersaturation in the
microenvironment around the cells. With calcium ions present in the
microenvironment, carbonate minerals precipitate out of solution,
inducing MICP. Photosynthesis utilizes HCO;~ and decreases DIC
but increases pH and CO5* concentration to induce MICP.

Ureolysis is the enzymatic degradation of urea by ureases,
producing carbonic acids and ammonia. The carbonic acid
produced increases the concentration of DIC. Ammonia increases
the pH of the environment by ammonia hydrolysis. In this case,
ureolysis simultaneously influences the concentration of DIC and
the pH of the environment (Figure 1B), leading to the precipitation
of carbonate minerals along with the presence of calcium ions in the
environment. The genus Bacillus harbors the most species currently
used in MICP biotechnology. A prime example of this is Sporosarcina
pasteurii, formerly Bacillus pasteurii, which is one of many species
highly efficient in ureolysis due to its high levels of secreted urease; it is
used repeatedly as a study model for MICP. Bacillus is known to harbor
many urea hydrolyzing species, so this factor is often exploited and
manipulated for biotechnological application (Table 1). B. sphaericus
appears in numerous papers in use as another model organism for
MICP via urea hydrolysis (Table 1) (Hammes et al, 2003; Van
Tittelboom et al., 2010; Achal et al, 2011; De Muynck et al., 2011;
Cheng et al., 2013; Wang et al., 2014; Ersan et al., 2016; Kim et al., 2017;
Sharma et al., 2021). Other species of this genus are applied in a variety
of biotechnological applications, including B. cereus in soil stability
(Oualha et al, 2020), B. licheniformis in the cementation of sand
(Saricicek et al., 2019; Sovljanski et al,, 2021) and B. pseudofirmus in
self-healing concrete (Jonkers et al., 2010). The availability of whole-
genome sequence data for several of the many species within this genus
makes Bacillus ideal for future MICP genetic bioengineering.

The ammonification of amino acids is a metabolic process similar
to ureolysis, in which microbes increase the DIC concentration as well
as the pH of an environment. Amino acids contain both nitrogen and
carbon, which are oxidized by heterogenic microbes under aerobic
conditions to form NH; and CO5> (Figure 1C). The hydrolysis process
of ammonia product generates OH™ around cells and creates a high
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TABLE 1 Mechanism of precipitation induced by Bacillus species recorded in literature and capable of MICP.

Mechanism of
precipitation

Microorganism

Nutrient

Reference

B. sphaericus

B. sphaericus

Urea, calcium nitrate, and yeast extract

Urea and calcium chloride

Wang et al. (2014)

Achal et al. (2011)

B. sphaericus

Urea, calcium chloride, calcium nitrate, and yeast extract

Van Tittelboom et al.
(2010)

B. cereus

Urea, glucose, sodium chloride, potassium phosphate, peptone,
and calcium chloride

Qualha et al. (2020)

B. muralis, B. lentus, B. simplex, B. firmus, B.
licheniformis

B. sphaericus

Urea and calcium chloride

Urea, calcium chloride, sodium carbonate, ammonium

Sovljanski et al. (2021)

Kim et al. (2017)

Ureolysis chloride, and yeast extract
B. subtilis and B. sphaericus Urea, calcium chloride dihydrate, ammonium chloride, sodium | Sharma et al. (2021)
bicarbonate, and yeast extract
B. pseudofirmus Calcium lactate, calcium glutamate, yeast extract, and peptone = Jonkers et al. (2010)
B. licheniformis Urea, ammonium chloride, sodium bicarbonate, and nutrient | Saricicek et al. (2019)
broth
B. sphaericus Urea, calcium chloride, nutrient broth, and sodium bicarbonate | Hammes et al. (2003)
B. sphaericus Urea and calcium chloride dihydrate De Muynck et al.
(2011)
B. sphaericus Urea and calcium chloride Cheng et al. (2013)
Denitrification B. sphaericus Urea, calcium formate, calcium nitrate, and yeast extract Ersan et al. (2016)

Bacterial metabolic conversion of
organic acid

B. pseudofirmus Calcium lactate, calcium glutamate, yeast extract, and peptone = Jonkers et al. (2010)

Note: Sporosarcina pasteurii, formerly known as B. pasteurii, is not included in this table.

xanthus involves the production of NH; and CO, by means of the

A Localized acidification : B ATP-dependent calcium pumps: oxidative deamination of amino acids. Apart from the modification of

physical chemistry, both live and dead M. xanthus play a passive role in

H* :  Organic matter
* : calcium carbonate precipitation by acting as a template for
ca® Passive influx heterogeneous nucleation (Chekroun et al.,, 2004).
a " 24 +
Ca”'/2H

2.2 Anaerobic process: Sulfate reduction and
denitrification

Active extrusion

Ca®/2H" Sulfate reduction refers to reducing sulfate to sulfide coupled

with anaerobic oxidizing organic carbon to bicarbonate, during
H which DIC and calcium concentrations increase Figure 1D).
: Specifically, the oxidation of organic acids increases the DIC
concentration. More importantly, the release of calcium ions
from gypsum (CaSO,) Ca**  concentration
(Figure 2). Sulfate-reducing bacteria (SRB) have been reported to

increases local

p—
D Carbonate precipitation Ca* + HCO, -> CaCO, + H'

FIGURE 2

Schematic presentation of bacterial calcium metabolism and
subsequent CaCOs precipitation under high-Ca®* extracellular
conditions. Revised from Hammes et al. (2002). (A) Localized
acidification; (B) ATP-dependent calcium pumps; (C) Localized
alkalisation:(D) Carbonate precipitation.

produce a copious amount of exopolymeric substances (EPSs) with
buffering and Mg-Ca binding capacity, which controls the
precipitation of the carbonate minerals by acting as templates for
different carbonate minerals (Braissant et al., 2007; Bontognali et al.,
2014; Qian et al., 2019). In addition, the nucleation of carbonate
minerals occurs on the cell surface, as well as bacterial nanoglobules
(Van Lith et al., 2003; Aloisi et al., 2006). Both their cell surface and

local supersaturated environment of calcium carbonate. Rodriguez-
Navarro et al. (2003) reported that the metabolic activity of Myxococcus
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EPS carry a net negative electric charge and have the capacity to bind
Mg** and Ca®* ions. Thus, SRB have been recognized as key to the
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FIGURE 3

Distribution of cement under various environments. Revised from Scholle and Ulmer-Scholle, 1978.

precipitation of calcium carbonate, resulting in lithifying microbial
communities (Baumgartner et al., 2006; Braissant et al., 2007).
However, the application of sulfate reduction by SRB in concrete
restoration has the problem of side-product H,S, which could cause
corrosion of the concrete structure by its reaction with oxygen (Mori
etal, 1991; Li et al,, 2019). Many efforts have been made to control
H,S production in anaerobic environments, such as using iron salts
(Fe** + S,~ — FeS) (Mufioz et al., 2015). More economically, the
magnetite-assisted in situ microbial oxidation of H,S to S° has been
recently reported (Jung et al., 2020). Furthermore, elemental sulfur
S° can reduce CO, into formic acid under ultraviolet light below
280 nm (Li et al., 2020a). Thus, state-of-the-art of physical/chemical
and biological technology requires more research on the application
of sulfate reduction in bioconcrete.

Denitrification, like sulfate reduction, utilizes a highly oxidized-
phase nitrate as the electron acceptor under anaerobic conditions,
coupled with the oxidization of organic compounds. The
denitrification process increases the pH in the microenvironment
by consuming H* and producing CO, by oxidizing organic
compounds, favoring carbonate precipitation (Figure 1E) (Lin
et al., 2021). Recent research has demonstrated the potential of
denitrification for improving the mechanical and hydraulic
properties of soils (Pham et al, 2016; Hamdan et al, 2017;
Keykha et al., 2018; Cheng and Shahin, 2019; Lin et al., 2021).
The reduction of nitrate should produce the harmless terminal side-
product N,. However, producing N, requires four different enzymes
involved in the denitrification process, or toxic nitrite and nitrous
oxide might accumulate (Van Paassen et al., 2010). Denitrification
has been evaluated as the most suitable MICP method for soil
reinforcement by defeating ureolysis and sulfate reduction, based on
four factors: substrate solubility, precipitation rate, carbonate yield,
and the amount and type of by-product (Van Paassen et al., 2010).

Given the lack of oxygen on the moon or in space, anaerobic
metabolic microbes should surpass aerobic ones when applied to
MICP in space. Microbes that can use in situ minerals directly as the
energy source to grow should generate considerable savings.

Frontiers in Materials

2.3 Aerobic and anaerobic methane
oxidation process

Methane oxidation drives the concentration of carbon dioxide in
marine and freshwater sediments due to its aerobic and anaerobic
oxidation. Methane serves as the electron donor; for methane
oxidation, the type of electron acceptor determines its aerobic or
anaerobic process. In aerobic conditions, methane mono-oxygenase
converts methane to methanol, which is further converted into
formate by another cell enzymatic activity (Jain, 2021). Oxygen seems
to be the electron acceptor in this process. Formate must then be further
oxidized to CO,. The increase of DIC concentration favors the
precipitation of carbonate mineral around the microbial cell in the
alkaline environment (Figure 1F). However, the aerobic oxidation of
methane may lead to the dissolution of carbonates if the environment is
not alkaline due to consequent increasing acidity from this process
(Reeburgh, 2007). The anerobic oxidation of methane can use sulfate as
the final electron acceptor. This process increases DIC concentration and
the byproduct HS™ (Figure 1G). Caesar et al. (2019) proposed that the
MICP has potential application in the mitigation of methane release into
the atmosphere due to anaerobic methane oxidation.

3 Properties of sand-sized material on
the moon

Microbes may form minerals authigenically or diagenetically.
Microbial-induced carbonate mineral formation is passive in the
environment to “cement” sand-sized material. Geologically, the
distribution of cement varies with the degree of water filled in the pore
spaces between the material particles (Figure 3). When completely filled
with water, cements present as homogeneous fringes around material
particles. The properties of sand-sized material on the moon should be
considered because it determines the characteristic of pore spaces.

On the lunar surface, regolith refers to fragmental and
unconsolidated rock material—also known as lunar soil. The
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https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1155643

Zuo et al.

10.3389/fmats.2023.1155643

TABLE 2 From sand to artificially “bio-bricks” and comparable unconfined compressive strength.

Material Dso

(mm)

G G G

Mineralogy

Unconfined Reference
compressive

strength (MPa)

Microbe/organic/
inorganic

Masonry sand, Chico, 0.42 2,60 120 2.60 Quartz Sporosarcina pasteurii (ATCC 1.0-2.2, Ave.1.6 + 26.4% Bernardi et al.
California 11859), 0.2 M urea and 0.1 M @28 days (2014)
CaCl,
Graded silica sand, Cook 0.42 S. pasteurii, 1 M urea and 1 M ~9 Cheng et al.
Industrial Mineral Pty Ltd., CaCl, (2020)
Western Australia
Poorly graded Ottawa silica 0.51 99.0% quartz S. pasteurii, 30 g/L urea and ~3.5 Li et al. (2020a)
sand 73.6 g/L CaCl,®H,0, 0.3% fiber,
triple treatment
Silica sand, Holcim Kies und S. pasteurii (DSM 33), 0.4 M urea 5-23 Mpa Nething et al.
Beton GmbH, Germany and 0.4 M CaCl,, 3D printing (2020)
Poorly graded sand, China 0.73 519 173 98.0% Silica S. pasteurii (CGMCC 1.3687), 1.08-7 Zhao et al.
standard sand 1 M urea, 1 M Ca(CH;COO0),, (2020)
various fibers
Graded silica sand, Société 0.36 2.00 128 265 Urea 2 mol, CaCl2, urease ~1.8@7" title = "mailto:~1.8@ Arab et al.
Nouvelle du Littoral, France enzyme. Non-fat powdered milk, 7">~1.8@7 days (2021)
sodium alginate 1.5%

thickness of this layered regolith is estimated at about 2-15 m thick
with a specific gravity ranging 2.9-3.5g/cm’ (Shkuratov and
Bondarenko, 2001; Taylor et al, 2003; Lin et al, 2020).
Contributing to the formation of the lunar regolith are meteoroid
impacts on the moon for over 4 billion years; furthermore, the lunar
regolith may be recycled by unceasing impacts of large and small
meteoroids (Lucey et al., 2006; Lin et al., 2020).

The chemistry of the lunar soil shows Si, Al, Fe, Mg, Ca, Ti, Na,
K, Mn, and Cr as the major and minor abundant elements in bulk
and size fractions (Papike et al., 1982). The chemical composition
varies with grain size. In most cases, the smallest fraction (<10 um) is
enriched in Al, Ca, Na, K, light rare earth elements, and Th and is
depleted in Mg, Fe, Mn, and Sc. Moreover, the soils of the lunar
maria are chemically distinct from highland soils.

The particle size of the lunar soil is consistently and broadly
distributed (Morrison et al., 1970; Mitchell et al, 1972; Graf, 1993;
Jolliff et al., 2000; Carrier, 2003; McCubbin et al., 2010). The size of
143 different lunar samples collected during the Apollo and Luna
missions are cataloged by Graf (1993) and vary from 0.002 to 4 mm.
Carrier (2003), the director of the Lunar Geotechnical Institute,
describes the particle size of lunar soil to be sandy silt/silty sand,
well-graded in geotechnical terms. The geotechnical particle size
parameters are published with average mean particle size Ds, =
72 um, average coefficient of uniformity C, = 16, and average
coefficient of curvature C. = 1.2 (Carrier, 2003). These parameters
indicate that the Moon’s soil may be internally erodible and susceptible
to “segregation piping” (Carrier, 2003). On the other hand, the lunar soil
is characterized as very fine sand, very poorly sorted, nearly
symmetrical, and geologically mesokurtic. These geological terms
describe not merely particle size but also reflect the depositional
environment. Obviously, meteorite impact is a very dynamic
process, producing poorly sorted particles. Duke et al. (1970)
proposed that it is caused by melting and consequent consolidation
into clumps of finer particles on the Moon so that material finer than
15 um is less abundant. In this review, we tend to include both terms
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since the cementation process relates to geotechnical application and
geological properties.

The mineralogy of the lunar soil is not very complicated and
includes plagioclase (typical formula Ca,Al,Si,0g), pyroxene
((Ca,Mg,Fe),S81,0¢), ilmenite (FeTiOs;), olivine ((Mg,Fe),SiOy),
and impact glass as major phases (Smith and Steele, 1976; Taylor
et al,, 2003). The simple mineralogy is produced in a very reducing
environment. The remarkably distinct grain boundaries indicate no
real alteration. Impact glass is apparently a product of frequent
meteorite impacts on the lunar surface and can fuse minerals and
rock fragments together (Taylor and Liu, 2010). Notably, all
agglutinitic glasses contain myriads of nanophase Fe particles
distributed in glass without touching each other, resulting in a
relatively high magnetic susceptibility to agglutinitic glass (Taylor
and Liu, 2010). Troilite is the only sulfide in the lunar regolith.

4 Characteristics of artificial bio-bricks

The grain-size property of the starting materials is the main factor
to consider in laboratory experiments of artificially forming bio-
bricks. Previous studies of the properties of artificial bio-bricks have
tested their unconfined compressive strength to better establish the
validity and feasibility of MICP biotechnology (Table 2). The grain
sizes used to produce bio-bricks are normally with D5 in the range of
042-0.73mm (Table 2). However, it is difficult to report a
relationship between the grain size and the compressive strength
of the correspondently produced bio-bricks since the same grain size
might result in a different unconfined compressive strength under
different saturation conditions (Bernardi et al.,, 2014; Cheng et al.,
2020). Sporosarcina pasteurii—known as Bacillus pasteurii under
older taxonomies (Yoon et al, 2001)—is a widely used model
organism for making bio-bricks via MICP because it is highly
productive in its secretion of extracellular urease. Arab et al.
(2021) reported a hybrid technique to produce bio-bricks using
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enzyme-induced carbonate precipitation and sodium alginate
biopolymer. This shows that carbonate precipitation without
microorganisms can also produce bio-bricks.

The unconfined compressive strength of bio-bricks shows that
they can have strengths of 1 MPa to 23 MPa (Table 2). The variation
in unconfined compressive strength in different studies may be due
to different reaction conditions. However, Nething et al. (2020)
found a variation in strength between samples produced with the
same parameters, which still requires further investigation of the
cementation process. Regardless, bio-bricks have stress comparable
to bricks prepared with more conventional cement and hydraulic
lime additives (Bernardi et al., 2014). Previous studies have shown
that the bio-bricks produced are comparable to cement-treated
beams in terms of their mechanical properties and can also be
considered an eco-friendly alternative to conventional bricks
(Bernardi et al., 2014; Li et al, 2020b; Cheng et al, 2020;
Nething et al., 2020; Zhao et al., 2020; Arab et al., 2021).

5 Research needs and future directions

The recent surge in lunar exploration by several nations and
continuing research on lunar samples have encouraged scientists to
think more about ISRU. Regolith generated by meteoroid impacts is
the most accessible resource on the Moon’s surface. By reviewing its
properties, lunar regolith is the most suitable material with
applicable grain size and mineralogy. Inspired by the natural
geological cementation process by carbonate minerals, the
artificial production of bricks on the Moon using in situ sand-
sized regolith and mimicking MICP process shows promise. The
mineralogy of material used in the artificial bio-brick experiments
was mostly quartz or silica, and 0.4-1.0 M CaCl, was added to serve
as a Ca® source for the precipitation of carbonate minerals
(Table 2). Minerals such as plagioclase and pyroxene in regolith
on the Moon happen to contain Ca, which can be used as a Ca**
source. Artificially cemented bio-bricks made out of sands closely
resemble their natural counterparts with respect to the failure
mechanism at micro-scale (Table 2). Few studies, in fact, have
tested the idea of consolidating lunar simulant soil in the form of
a brick with non-trivial strength properties (Dikshit et al., 2020;
Kumar et al., 2020; Dikshit et al., 2022). However, the average mean
particle size for regolith (D5, = 72 um) is approximately one order
smaller than those sands (0.36-0.73 mm) used to produce artificially
cemented bio-bricks in Table 2. Sizing down the particles in
laboratory conditions might help future field application.

Although MICP has been successfully demonstrated in the
laboratory for many cases, its real application in the field of ISRU
faces huge challenges. Since the conditions on the Moon cannot be
controlled as in a laboratory, microorganisms are likely to suffer from
harsh environments. Therefore, it is essential to establish a qualitative and
quantitative simulation to manufacture bio-bricks by selecting a suitable
and effective microbial species for the Moon’s extreme conditions.
Microbes must overcome various stresses that suppress their ability to
grow or their basic survival. Microbes have developed strategies such as
the formation of cysts and spores, expression of repair enzymes for
damage, changes in cellular membranes, and synthesis of molecules for
relieving stresses for better survivability (Haruta and Kanno, 2015). The
same species might present different microbial survivability under
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different conditions. Survival strategies can change from normal to
micro-gravity, which may change microbial survivability. We must
consider the fact that most microbial cells that provide nucleation
sites for carbonate formation on Earth might change on the Moon,
affecting dynamic cementation. In order to test the promise of MICP
enabled bio-consolidation in extra-terrestrial conditions, it is essential to
conduct low-gravity tests. Moreover, the generation of undesired by-
products must be avoided. The upscaling of MICP from the laboratory to
lunar application might present technical difficulties in obtaining
homogeneous treatment. Finally, a substantial amount of water is
needed for the bio-cementation process. Interestingly, water ice (H,O)
and hydroxyl radicals (OH-) have been recently identified on the lunar
surface (Li et al,, 2018; Rubanenko et al,, 2019). Although the source of
water ice accumulating in permanently shaded regions on airless bodies
in the inner Solar System still remains undetermined, the existence of
water on the lunar surface would save in situ bio-cementation
considerable costs. Urea is another indispensable component of
ureolysis-based MICP, and is the primary choice of bio-brick
production. Lambert and Randall (2019) have successfully used
human urine as a sole source of urea for manufacturing bio-bricks.
This could thus provide a potentially critical solution for obtaining urea
in situ. Alternative cell-free systems should also be considered to
completely avoid these technical challenges associated with culturing
microbes for cell-based MICP. The cell-free urease system reported by
Arab et al. (2021) serves as a good starting point in this direction. If
successful, such catalysts with active enzymes could even be
manufactured on Earth and cost-effectively shipped to the field of ISRU.
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