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Artificial structures known as phononic crystals and acousticmetamaterials can be
designed by spatially arranging one or more materials to obtain desired wave
manipulation characteristics. The combination of various materials in complex
composites is also a common feature of biological systems, which have been
shaped in the course of evolution to achieve excellent properties in various
requisites, both static and dynamic, thus suggesting that bioinspired concepts
may present useful opportunities to design artificial systemswith superior dynamic
properties. In this work, a set of biological systems (nacre composites, spiderwebs,
fractals, cochlear structures, and moth wings) and corresponding bioinspired
metamaterials are presented, highlighting their main features and applications.
Although the literature on some systems is vast (e.g., fractals), spanning multiple
length scales for both structural and acoustic applications, much work remains to
be explored concerning other biological structures (e.g., moth wings). Especially,
bioinspired systems achieved by considering diverse objectives seem to be a
promising yet relatively unexplored field of research.
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1 Introduction

Phononic crystals (PCs) and acoustic metamaterials (MMs) are artificially architected
structures obtained by spatially arranging one or more different materials to design systems
with specific frequency-dependent characteristics (Lu et al., 2009; Deymier, 2013; Hussein
et al., 2014; Khelif and Adibi, 2016). The resulting superior control over mechanical waves
allows a wide range of applications over several length scales such as wave filtering (Vadalà
et al., 2018), waveguiding and splitting (Wang Y-F et al., 2018), non-destructive evaluation
(Gliozzi et al., 2019), seismic vibration shielding (Miniaci et al., 2016a), and subwavelength
imaging (Sukhovich et al., 2009).

The combination of different materials to design composites, however, is not only
observable in synthetic structures, but also commonly occurring in biological systems.
Although the single components that form such structures usually present extremely
concurrent performance in antagonistic aspects (e.g., stiffness vs. damping), the interplay
between distinct components can result in an excellent compromise between these
characteristics (Wegst and Ashby, 2004; Chen et al., 2009). Some examples of biological
systems where this concept can be observed include spider silk (Cranford et al., 2012), nacre
shells (Huang et al., 2014), bone and teeth (Davies et al., 2014), and fish scales (Ikoma et al.,
2003). Biological systems often also display hierarchical structuring, in which elements with
different characteristic lengths are combined, thus contributing to the enhancement of their
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mechanical properties (Lakes, 1993). Furthermore, biological
systems often display excellent wave attenuation properties, thus
indicating that the evolutionary processes found in nature can
suggest prompt candidates for the investigation and design of
bioinspired systems (Bosia et al., 2022).

Although commonly considered for the design of novel
structures in the static and quasi-static regime (Wegst et al.,
2015), the concepts observed in biological systems may present
inspiration opportunities that can also be used in the design of
artificial systems with superior dynamic properties, such as PCs and
acoustic MMs. Recent examples include nacre-like composites
(Chen and Wang, 2015), spider web-inspired MMs (Miniaci
et al., 2016b), diatom- and hub-spoke-inspired hierarchical
materials (Miniaci et al., 2018), and cochlea-inspired graded
structures (Zhao and Zhou, 2019). Some other noticeable
examples include MMs able to manipulate acoustic waves based
on bioinspired concepts drawn from aquatic animals, such as
sharkskin-inspired MMs that use magnetic stimuli to enable the
active switching of acoustic transmission and waveguiding (Lee
et al., 2020) and hybrid MMs inspired on the porpoise’s biosonar
system designed using composite structures able to achieve
underwater broadband transmission directivity (Dong et al., 2019).

Due to the extreme versatility shown by biological systems, the
number of design possibilities stemming from different material
combinations and spatial distributions becomes endless. Also,
additional complications are expected, such as the consideration
of simultaneous concurrent properties in the static and dynamic
domains (e.g., stiffness and wave attenuation), structures which span
multiple length scales due to their hierarchical configuration, and
damping owed to the presence of viscosity in many biological
components. Such virtually infinite design freedom makes the
creation of bioinspired solutions not always obvious since the
favorable organization of biological structures is achieved over
millions of years through the evolution process. Thus, the design
of bioinspired systems envisaging practical applications may require
the use of optimization techniques to properly select configurations
and parameters that yield the best possible designs, balancing the
trade-off between conflicting objectives and incorporating diverse
factors.

This literature review provides an overview of the recent
advances in the field of bioinspired PCs and acoustic MMs. A
brief introduction on the basic concepts regarding wave
propagation in periodic lattices is given in Section 2. Specific
bioinspired structures are then presented in Section 3, including
example systems such as nacre, spider webs, fractals, cochlea, and
moth wings. Conclusions and further comments are presented in
Section 4.

2 Phononic crystals and acoustic
metamaterials

2.1 Bragg scattering and one-
dimensional PCs

Mechanical waves (i.e., elastic and acoustic) can propagate while
exhibiting typical behaviors of motion (e.g., longitudinal, shear, and
flexural), which also depend on the characteristics of the medium in

which the wave propagates. The interaction between a wave that is
incident upon a boundary or a region of non-uniformity enables
diverse phenomena, including scattering, which can be defined as
the redirection of energy flux, usually in various directions, due to
the presence of non-uniformities (Fahy and Gardonio, 2007). The
result of including scatterers is the modification of the dispersion
relations between the frequencies (ω) and wave vectors (k) which
characterize the mechanical waves propagating in the system.

The analysis of the dispersion relations of mechanical waves
propagating in periodic structures dates back to the work of Sigalas
and Economou (1992). Later on, the term “phononic band gap” was
used by Kushwaha et al. (1993) to refer to frequency regions where
no elastic waves are allowed to propagate freely in PCs (i.e., all waves
become evanescent), using a terminology derived from analogies
with photonic crystals (Yablonovitch, 1994). This seminal work led
to the exploitation of the subject of PCs in diverse configurations,
such as two-dimensional periodic arrangements of metallic rods
(Kushwaha et al., 1994; Kushwaha and Halevi, 1994) and three-
dimensional arrays of spherical inclusions (Kushwaha and Djafari-
Rouhani, 1996; Kushwaha and Halevi, 1997). Importantly, many
complete band gaps (i.e., independent of both the wave polarization
and its propagation direction) could be achieved by employing these
systems. Complete band gaps may be of particular importance for
the manipulation of waves in mechanical systems, where non-trivial
polarization characteristics combining distinct behaviors of motion
are commonly observed.

The most significant mechanism responsible for the
formation of band gaps in PCs is Bragg scattering, which is
generated by the destructive interference of waves due to
periodically arranged scatterers (Deymier, 2013). Although
other mechanisms may also be observed, such as 1) the
hybridization between the resonant modes of individual
scatterers and the propagating modes of the hosting material
and 2) the weak coupling between the resonant states of
neighboring scatterers, Bragg scattering remains the
fundamental mechanism responsible for the formation of band
gaps (Sigalas et al., 2005; Croënne et al., 2011).

An example of a one-dimensional PC with distributed
scatterers whose periodicity is given by the unit cell length a
is shown in Figure 1A. Consider, for the sake of simplicity, that a
one-dimensional propagating wave described as ei(kx−ωt), where
k = 2π/λ is the wavenumber for a given wavelength λ, x is the
spatial coordinate, ω is the circular frequency of the wave, and t is
the time, impinges on a scatterer. The rate at which this wave
propagates is given by the phase velocity, c = ω/k. After being
excited by the impinging wave, the scatterer radiates waves in
both directions (+x and −x) with a phase difference φ (Figure 1B).
If this process is repeated for contiguous scatterers with a
distance a from each other, the sum of the waves excited by
these scatterers can be written as

ei kx−ωt+φ( ) + ei kx−ωt+φ+ka( ) � ei kx−ωt+φ( ) 1 + eika( ), (1)

which presents its maxima (minima) corresponding to the
(constructive) destructive interference conditions for eika = +1
(eika = −1). These relations lead to the Bragg condition nλ = 2a,
n ∈ N , yielding a = λ/2 as the first minimal spacing capable of
resulting in destructive interference.
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The dynamic behavior of periodic systems can be described
using partial differential equations with periodic coefficients, whose
solutions date back to (Floquet, 1883). The analysis of wave
propagation in such media can be performed by employing the
Bloch-Floquet theory (Bloch, 1929) to consider periodicity
conditions on a representative unit cell, restricting the analyzed
wave vectors to the first Brillouin zone (Brillouin, 1953) and
analyzing a single unit cell. An example of a dispersion relation
(k × ω) is illustrated by the band diagram shown in Figure 1C, with
high-symmetry points labeled as Γ (k = 0) and X (k = π/a). The band
diagram is divided into the real and imaginary parts of the
wavenumber, respectively Re(k) and Im(k), describing the
propagating and evanescent behaviors of the wave. The band gap
opened due to the Bragg scattering mechanism is also indicated,
where only purely evanescent waves exist.

An important characteristic that can also be observed in band
diagrams is material damping, which is typically present at the
interfaces of the constituents forming biological systems (Barthelat
et al., 2016), such as soft proteins in bones (Rho et al., 1998) and the
organic phase of nacre (Levi-Kalisman et al., 2001). Figure 1D
illustrates the typical effect of increasing the viscosity of one
component of the system (η), showing that the previous band
gap is no longer distinguishable since there is no region of purely

evanescent waves, but rather, all waves present some spatial
attenuation, as described by Im(k).

The band diagram shown in Figure 1C can also be used to
characterize the propagation velocity of an envelope of combined
waves, named group velocity, given by the derivative of each branch
with respect to the wavenumber, cg � zω

zk (Brillouin, 2013). For the
first branch represented in the band diagram (P1 in Figure 1C), one
obtains zω

zk > 0, thus indicating a positive group velocity. This result is
illustrated in Figure 1E, where the white region presents a forward-
moving (+x direction) propagation, as highlighted by the dashed
line. Inside the band gap (E in Figure 1C), all waves present a spatial
decay, thus not being able to propagate, as shown in Figure 1E.
Finally, in the second branch (P2 in Figure 1C), the obtained group
velocity is characterized by zω

zk < 0, thus representing backward-
moving waves (−x direction), as indicated by the white region
and highlighted by the dashed line in Figure 1E.

An immediate application of PCs is the use of the evanescent
behavior of waves in the frequency ranges identified as band gaps to
achieve a significant spatial attenuation (Laude et al., 2009). Less
obvious applications include, for instance, 1) wave guiding obtained
using PCs by confining waves in a core or by coupling defects along a
given direction (Laude, 2021) and 2) demultiplexing of acoustic
waves achieved by combining scatterers with different properties to

FIGURE 1
One-dimensional PC and Bragg scattering phenomenon. (A) Example of one-dimensional PC composed of scatterers (grey circles) with a unit cell
with length a in a matrix material (blue area). (B) Incident wave (black line) on scatterer and subsequent radiated wave (blue line), which is combined with
the wave radiated by the contiguous scatterer (red line). (C) Dispersion relation (curves) and Bragg band gap (highlighted region), with distinct branches
marked as P1, E, and P2. (D) Example of the effect of increasing values of damping (η) on the dispersion curves. (E) Examples of (P1) positive phase and
group velocities (E) spatial decay of waves excited inside the band gap, and (P2) positive phase velocity and negative group velocity. The colorbar indicates
normalized displacements.
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selectively transport waves at various frequencies (Pennec et al.,
2004).

2.2 Local resonance and two-
dimensional MMs

Acoustic MMs, on the other hand, are typically characterized
by locally resonant phenomena, as proposed in the seminal work
of Liu et al. (2000), with many examples found in the literature,
including one-dimensional systems based on rods (Xiao et al.,
2012c; Nobrega et al., 2016), beams (Xiao et al., 2012a; 2013; Beli
et al., 2018), two-dimensional plates with spring-mass resonators
(Xiao et al., 2012b; Miranda Jr et al., 2019) or coated inclusions
(Xiao et al., 2008; Dal Poggetto and Serpa, 2021), and three-
dimensional structures (Mitchell et al., 2014; Dal Poggetto and
Serpa, 2020). The use of unit cells with locally resonant structures
also justifies the alternative denomination of locally resonant
PCs. In this type of structure, Fano-like interference is employed
to open band gaps in the sub-wavelength regime (Goffaux et al.,
2002), thus yielding band gaps at much lower frequencies (even
orders of magnitude) than those compared to the expected when
using Bragg scattering band gaps, which are associated with the
lattice constant. The resulting local resonance-based band gaps
also present as a noticeable characteristic a low group velocity
(i.e., zω

zk ≈ 0), thus leading to a practically wavelength-
independent behavior.

The possible effects stemming from the use of locally resonant
PCs are not restricted to energy trapping in the sub-wavelength
elements (Colombi et al., 2014), and can be used to yield unusual
effects such as negative refraction (Pendry, 2000) and double-
negative effective properties (Li and Chan, 2004). When
strategically placed on plates or surfaces, the locally resonant
elements can be used to design metasurfaces (Colombi et al.,
2017b) and metalenses (Colombi, 2016). The use of locally
resonant structures is also characterized by a superior degree of
tunability, thus leading to excellent wave control capabilities (Aguzzi
et al., 2022) and a wide range of applications, ranging from the
ultrasonic range (Colombi et al., 2017a) to large-scale seismic
applications (Krödel et al., 2015; Miniaci et al., 2016a).

In the case of waves propagating in two-dimensional media,
dispersion relations become more intricate when compared to the
one-dimensional case, since the wave vector presents a second order
dimension, thus resulting in relations that represent dispersion
surfaces. Consider, for instance, a two-dimensional medium with
distributed scatterers whose periodicity is described by the lattice
vectors a1 and a2, shown in Figure 2A as a square lattice for
illustration purposes (i.e., a1 � âi and a2 � âj, where î and ĵ
denote the x- and y-direction unit vectors). An example of a
dispersion surface is shown in Figure 2B, represented by contour
lines restricted to {kx, ky} ∈ [−π/a, π/a], where kx and ky represent the
Cartesian components of k. In this case, the group velocity is defined
as cg � zω

zkx
î + zω

zky
ĵ, which represents the gradient of the dispersion

surface.

FIGURE 2
Two-dimensional periodic media and typical dispersion relations. (A) Example of a PC with direct lattice vectors a1 and a2, with (B) its first dispersion
surface spanning the first Brillouin zone for a square lattice, {kx, ky}∈[−π/a, π/a], showing the high-symmetry points given by Γ (0,0), X (π/a,0), and M (π/a, π/
a), and (C) the corresponding band diagram obtained using the contour of the irreducible Brillouin zone (ΓXMΓ path). (D) Locally resonant structures
(pillars) embedded in a square lattice with the (E) corresponding band diagram showing propagating waves (blue lines), evanescent waves in specific
direction (red lines), and a highlighted local resonance band gap.
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Notice also that, due to the symmetry of the dispersion surface, it is
a common practice to characterize the dispersion relations by
considering the lines connecting the high-symmetry points which
form the contour of the irreducible Brillouin zone (Γ (0,0), X (π/a,
0), and M (π/a, π/a), in the case of a square lattice), thus considerably
reducing the computational effort required to calculate the dispersion
relation of the periodic medium for various types of lattices (Maurin
et al., 2018). This procedure leads to band diagrams as shown in
Figure 2C. Alternatively, an example of a two-dimensional square lattice
with embedded locally resonant structures is illustrated in Figure 2D. In
this case, a typical band diagram is shown in Figure 2E, for both real and
imaginary parts (for the specific directions ΓX and ΓM) of the wave
vector, with a highlighted local resonance band gap indicating a low
group velocity (flat band) for a large portion of the wave vector.

Although the literature on the mechanisms for wave
manipulation using PCs and acoustic MMs is vast, including
examples of wave conversion (Chaplain et al., 2020; De Ponti
et al., 2021), scattering (Yang et al., 2016; Cao et al., 2021),
cloaking (Farhat et al., 2008; 2009), and topological effects
(Mousavi et al., 2015; Foehr et al., 2018), the literature on
bioinspired structures concerning their dynamic properties, and
in special, wavemanipulation and the effects of viscoelasticity, which
are certainly relevant for biological structures, is considerably more
restrict. Thus, in the next section, a literature review is presented on
different bioinspired PCs and acoustic MMs.

3 Bioinspired structures

3.1 Nacre

Nacre (or mother-of-pearl) is an organic-inorganic platelet-
reinforced composite material whose mechanical properties are

fundamental for the toughness of mollusk shells (Jackson et al.,
1988). The nacre structure is composed of a ceramic mineral
(calcium carbonate) in the form of aragonite platelets separated
by elastic biopolymer interfaces, forming a brittle structure
connected by thin organic layers (Gim et al., 2019) (see
Figure 3A). The resulting brick-and-mortar structure (see
Figure 3B) can be arranged in a variety of microstructures
(Barthelat, 2010), with an interplay between components
resulting in superior energy dissipation when subjected to
dynamic loadings (Huang et al., 2014).

Yin et al. (2014) have demonstrated the existence of wide low-
frequency band gaps in nacreous composites using a one-
dimensional tension-shear chain model for the brick and mortar
structure, considering aluminum (brick) and silicone rubber
(mortar) material properties, computing the band diagrams with
the transfer matrix method. The nth band gap relative width was
used to quantify a normalized metric, defined as

Δ�ωn � wn,u − wn,l

wn,u + wn,l( )/2, (2)

where wn,l and wn,u denote, respectively, the lower and upper
frequencies of the nth complete band gap. Using this metric, the
authors have calculated a relative band gap width of 0.486 for the
first band gap (301.95–495.79 Hz), thus indicating a significantly
wide frequency region. These results were later used in (Yin et al.,
2015) to design two- and three-dimensional nacreous PCs which can
be tuned to manipulate the opening of band gaps, demonstrating a
relative band gap width of 1.388 (84.42–467.57 Hz) for the 3D case,
with a strong reduction in the transmission coefficient for both
longitudinal and transverse excitation directions. The robustness of
the obtained band gaps in these systems was also assessed in (Yin
et al., 2016) against various types of defects. Point and line defects
were modeled by considering smaller specific mass density and

FIGURE 3
Nacre structure and associated bioinspired PC applications. (A)Cross-section of nacre showing the brick-and-mortarmicrostructure [adapted from
(Ferrand, 2022)]. (B) Example of a brick-and-mortar periodic structure with an inset representing the hexagonal lattice unit cell (angle α between the basis
vectors) with both inorganic (hard, in grey) and organic (soft, in blue) phases. (C) Transmittance profile for a hierarchical PC (first row) and corresponding
homogenized structures (second to fourth rows), with l0≫ l1≫ l2 [adapted from (Lee and Jeon, 2020)]. (D) Attenuation relative to a finite structure
obtained by combining lattices with different orientations [adapted from (Chen and Wang, 2015)].
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elastic constants in selected “brick” (hard phase) elements, showing
that the first computed band gap is relatively insensitive to both
types of defects. On the other hand, a considerable narrowing of the
existing band gaps was observed when cracks are introduced by
removing “mortar” (soft phase) elements, thus highlighting the
fundamental role of the soft matrix connecting the hard phase
elements.

Zhang and To (2013) have demonstrated that a multilayered
hierarchical bioinspired PC obtained by alternating a hard material
with soft layers in one dimension (considered, respectively, as
hydroxyapatite and protein) is able to achieve a broadband wave
filtering effect. The reflectance spectra of incident P-waves
(longitudinal) was evaluated for increasing levels of hierarchy (n),
using the nth level unit cell as a building block for the (n + 1)-th level.
Reflectance levels close to 1 (and thus, corresponding to band gap
regions) were computed for n = 1 in the 4 × 1010–2 × 1011 rad/s
frequency region, while for n = 2 the lower edge is set at 5 × 109 rad/s,
and for n = 3, at 6 × 108 rad/s. The resulting superposition of
adjacent band gaps is able to attenuate incident waves over two
decades, ranging from ~ 109 rad/s to ~ 1012 rad/s, thus
demonstrating the broadband effect achieved using hierarchical
structuring. Later, Lee and Jeon (2020) investigated these findings
with the support of a homogenization theory to consider
wavelengths at diverse hierarchical levels in a one-dimensional
PC composed of aluminum (hard phase) and
polydimethylsiloxane (soft phase). The authors confirmed that
the band gaps emerging from the non-homogenized structure
can be regarded as the union of band gaps stemming from each
hierarchical level, corresponding to different wavelengths. The
superposition of band gaps, however, cannot be observed if the
homogenization of structures with smaller features are considered
(see Figure 3C, where l0 ≫ l1 ≫ l2 represent the unit cell lengths at
each hierarchical level), thus representing a significant computation
limitation for the investigation of hierarchical structures.

Chen and Wang (2014) have proposed a periodic composite
considering a two-dimensional rhombic lattice formed by staggered
mineral platelets embedded in an organic matrix. Complete band
gaps due to both Bragg scattering and local resonances are observed,
leading to multiple band gaps, which can be tuned by engineering
the length scale and arrangement of the mineral platelets. For a fixed
90% volume fraction of the platelets, multiple band gaps exist for
unit cells with small lattice angles (i.e., the angle between the lattice
vectors, α in Figure 3B), while wide single band gaps exist for large
lattice angles. A remarkable band gap with a normalized width of
1.11 is obtained for α = 30o. The combination of platelet layers in an
organic matrix following distinct orientations relative to each other
(see Figure 3D) was also shown to yield broadband effects (Chen and
Wang, 2015) due to the superposition of wide attenuation zones in
three regions (46–96 MHz, 104–179 MHz, and 207–285 MHz)
obtained from the combination of attenuation regions associated
with layers having distinct orientations (46–179 MHz and
104–285 MHz). In this case, local resonance band gaps dominate
the band diagrams, with a high degree of localization in the organic
phase.

The effect of matrix viscosity on the wave attenuation of nacre-
like composites was investigated by Liu et al. (2020) using a dynamic
shear-lag model. By defining a dimensionless frequency �ω � ω/λc,
where λ � �������

2G/Ehb
√

relates the shear modulus G, Young’s modulus

E, and geometric parameters bh, and c � ���
E/ρ

√
is the longitudinal

wave velocity for a specific mass density ρ, the authors indicate that
the viscosity present in the elastic matrix materials may be used to
enhance the wave attenuation in the low-frequency regime, �ω< 1,
but hinders wave attenuation for excessively large viscosity values. A
viscoelastic model was used in (Lu et al., 2022) to consider the
sacrificial bond behavior for the organic matrix phase and
investigate longitudinal elastic waves propagating in nacre-like
materials. The shear-lag model was used to simulate the
deformation of the brick-and-mortar structure, revealing that the
attenuation in the low-frequency range is given by the combined
effects of both shear stiffness and viscosity, while in the high-
frequency range it is dominated by viscosity, with a transition
between these regimes occurring around a cut-off frequency.

3.2 Spider webs

Spider webs are natural structures able to transmit vibrations
efficiently (Masters and Markl, 1981) and have long been the subject
of investigation in many fields of knowledge (Greco et al., 2021). Orb
webs, in particular, help the spider to discriminate vibration sources
and localize prey impacts (Dal Poggetto et al., 2022a; Lott et al.,
2022), acting as an outsourced hearing structure in orb-weaving
spiders (Zhou et al., 2022). The prey localization objective is
concurrent with other requisites, such as the absorption of
kinetic energy (Sensenig et al., 2012), thus suggesting that spider
webs are natural multifunctional structures. The diversity in the
composition of the different types of silk used by the spiders to build
webs also allows a wide range of mechanical properties (Arakawa
et al., 2022). Their resulting versatility has led to the emergence of
many spider web-based applications in the past years, such as stress-
sensitive silk for soft robotics (Spizzo et al., 2022) and hybrid
biomaterials for bone tissue engineering applications (Dellaquila
et al., 2020). Spider dragline silk has also been shown to possess an
indirect hypersonic phononic band gap and a negative group
velocity region (Schneider et al., 2016), thus suggesting that this
type of material can also be used as a means to control the flow of
phonons, serving as tunable heat management devices (Su and
Buehler, 2016).

Spider orb webs have shown to be a fruitful source of inspiration
to design structures able to achieve wave controlling characteristics.
Miniaci et al. (2016b) have numerically designed a spider web-
inspired structure using a beam square lattice based on the Nephila
orb web architecture (Klärner and Barth, 1982). The proposed
structure (see Figure 4A) considers a square lattice with length a,
size of square joints b, thickness of ligaments c, and radius of theNth
ring resonator given by RN, made of a supporting frame (primary,
radial elements) and concentric secondary circular elements. For a
10/1 ratio between the Young’s modulus values of the primary
(radial) and secondary (circular) frame elements and a unit cell
length of 1 m, locally resonant band gaps are opened below 400 Hz
for the in-plane (longitudinal and shear behaviors), regardless of the
material properties (larger or smaller Young’s modulus) assigned for
the circular elements, suggesting a high degree of tunability to
achieve localized modes. Preferred directions of propagation (θ =
0 and θ = 90o, i.e., +x and +y directions of the square lattice) are also
revealed, thus indicating a strong anisotropic behavior.
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Sepehri et al. (2020) have expanded this concept by introducing
spider web-inspired hierarchical structures in hexagonal lattices,
thus facilitating the opening of locally resonant band gaps in close
frequency ranges, with a second band gap opened in the frequency
range equal to 1.39–1.51 times the fundamental resonant frequency
of the considered beams. Also based on the exploitation of locally
resonant band gaps, Zhao et al. (2022) have proposed tunable spider
web-inspired resonators, showing that multiple locally resonant
band gaps can be achieved by increasing the fractal order of the
structure. In this case, however, an increase in the fractal order
simply corresponds to an increase in the number of elements
attached to the radial structures (similar to the circumferential
elements in Figure 4A), in which case, locally resonant features
are introduced. Ruan and Li (2022) have also considered the role of
hierarchy for octagonal, hexagonal, and quadrilateral unit cells,
investigating the influence of temperature in a unit cell
containing two materials with contrasting thermal expansion
coefficients. In this case, the band gaps relative to the first and
second modes, which lie respectively in the ranges
322.79–1,026.90 Hz and 321.91–1,025.97 Hz for an ambient
temperature of 20°C, shift to 302.78–913.84 Hz and
304.29–934.20 Hz, respectively, for 200°C. Examples of
applications of spider web-inspired PCs can also be found in
reduced length scales. Bao et al. (2019) presented a spider web-
inspired single-phase system with a complete band gap having a
normalized band gap width of 20.9% able to reduce the energy
dissipation in micro-electro-mechanical resonator systems,
increasing its Q-factor by a 12.2-fold with the application of the
bioinspired solution.

A systematic approach for the design of spider web-inspired PCs
was also proposed by Dal Poggetto et al. (2021). In this case,
hexagonal periodic lattices were developed considering a single
material in two distinct dispositions, namely, radial and viscid
threads (represented as the red and blue lines, respectively, in
Figure 4B). The unit cell was tuned by considering the variation
of the circular cross section of the threads and the inclusion of point
masses in the crossings between radial and viscid threads (red inset,
Figure 4B), obtaining a system with a rich dynamic behavior which
presents both Bragg scattering and local resonance band gaps.
Optimization processes were employed to obtain various
resulting structures considering distinct optimization objectives
such as 1) maximizing the normalized band gap width, 2)
attenuating a fundamental frequency and/or its harmonics, 3)
maximizing the decoupling between in- and out-of-plane modes,
and 4) creating isolated Dirac cones (Miniaci and Pal, 2021). The
objective 1) was used to validate the approach, obtaining a
normalized band gap width of 38.5%; objective 2) was used to
either achieve a band gap at the fundamental frequency of 2000 Hz
or at the fundamental frequency and its harmonics, {2000, 4,000,
6,000} Hz, respectively, thus demonstrating that multiple band gaps
can be opened at will; objective 3) was used to fully decouple distinct
polarization modes in the 350–1750 Hz, 2,100–4,550 Hz, and
6,300 Hz–7000 Hz frequency ranges; finally, isolated Dirac cones
were created considering two distinct bands, at approximately
3,000 and 4,500 Hz, to verify the validity of objective iv).
Importantly, the proposed objective functions are general and in
theory can be applied to any periodic system with a sufficient degree
of tunability.

FIGURE 4
Spider web-inspired PCs and MMs. (A) MM with an external frame supporting radial and circumferential ligaments [reprinted from (Miniaci et al.,
2016b), with the permission of AIP Publishing]. (B) Spider web-inspired hexagonal lattice obtained from the repetition from the unit cell, highlighted by
dashed red lines, with radial (red continuous lines) and spiral-like elements (blue lines); the inset represents the possibilities of tuning in the unit cell,
i.e., the cross-section of elements and included point masses [adapted from (Dal Poggetto et al., 2021) with permission from Elsevier]. (C)
Labyrinthine acoustic MM composed of solid aluminum walls and air, respectively shown in blue and purple [adapted from (Krushynska et al., 2017)]. (D)
Membrane-type acoustic MMs with a thin film fixed to a circumferential substrate and additional fixed elements [adapted from Huang et al. (2021)].
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Finally, spider web-inspired MMs have also been explored for
sound control applications. In (Krushynska et al., 2017),
labyrinthine acoustic MMs (Zhang and Hu, 2016) were proposed
to achieve efficient subwavelength sound control stemming from
multiple resonant modes associated with the characteristic
architecture of a spider web-inspired configuration. A typical unit
cell is proposed (see Figure 4C, where solid aluminum walls and air
are represented in blue and purple, respectively), with parameters
given by the unit cell length a, wall thickness d, wall spacing h,
internal radius r, external wall length l, and radius of the nth wall
given by rn. The obtained dispersion diagrams present
subwavelength band gaps with flat bands (near-zero group
velocity) associated with pressure distributions typical of Mie
monopole and multipole resonances. The normalized frequency
(Ω = ωa/2πc, where a is the lattice length and c is the speed of sound
in air) is used to indicate typical resonances of the monopole and
dipole pressure distributions, found in the 0.168–0.186 and
0.331–0.379 normalized frequency ranges, with a normalized
absolute pressure reduction of up to 10–5 for a configuration of
5 contiguous unit cells.

Membrane-type acoustic MMs were also proposed by Huang
et al. (2021) as an alternative to achieve low-frequency sound
attenuation in wide frequency ranges. Two models for the
bioinspired resonators were proposed using polyimide thin films
as a substrate fixed to a circumferential boundary, with additional
elements attached to the membrane to represent the crossings of
radial and circumferential elements typical of spider orb webs (see
Figure 4D). The proposed models, namely, I and II, present a
different number of inclusions in the membrane, with model II
showing a larger number of elements when compared to I.
Experimental tests for the sound isolation performance are
conducted up to 3,000 Hz using an acoustic impedance tube to
confirm the numerical predictions, showing that the computed anti-
resonance modes can localize the vibration energy and thus yield
significant sound transmission loss levels over a relatively broad
bandwidth. Although model I presents a slight decrease in the peak
sound transmission loss (45.4 dB) when compared to the reference
solution (46.5 dB), a significant weight reduction (47%) is also
reported when compared to the reference model weight. In the
case of model II, a slight increase in the sound transmission loss peak
is reported (49.2 dB), showing also a 305 Hz increase in the low-
frequency bandwidth (within 1,600 HZ) where an attenuation of at
least 10 dB is achieved, and a slight weight reduction (19%) when
compared to the reference model. The applications the concerning
use of spider web-inspired membranes are not only restricted to
sound attenuation, as Rostam-Alilou et al. (2021) have
demonstrated using a structure which consists of a composite
hydrogel substrate with embedded filaments with silk properties.
The resulting microscale structure, whose pressure-induced motion
are compared against those of a humane tympanic membrane, show
a generally good correlation below 1,000 Hz, suggesting its potential
applications as tympanic membrane grafts.

3.3 Fractals

Fractal structures are a recurrent feature found in nature
(Mandelbrot, 1982), which typically exhibits self-similar topology

at various length scales (Meakin, 1990), thus characterizing
themselves as hierarchical structures. Fractals have long been
under investigation in diverse fields of knowledge, such as non-
linear dynamics (Aguirre et al., 2009), granular materials (McDowell
et al., 1996), and telecommunications (Gianvittorio and Rahmat-
Samii, 2002). Also, fractals have been widely explored for the
development of photonic crystal subwavelength phenomena
(Wen et al., 2002), waveguides (Monsoriu et al., 2005), and
topological insulators (Yang et al., 2020), thus motivating its
exploitation in PC structures.

Kuo and Piazza (2011) presented the design and numerical
testing of a microscale fractal structure in aluminum nitride. The
proposed design (Figure 5A, where the unit cell has a length a,
thickness d, the central square has a side length c, and the additional
squares have a side length s) extends the frequency of operation of
the phononic band gaps for a fixed unit cell length and minimum
feature size (a = 5 μm, d = 1 μm, c = 2 μm, and s = 1.5 μm). Two band
gaps were obtained for the ΓX direction in the high-frequency range,
centered at 900 MHz and 1.10 GHz, with normalized band gap
widths of 11.1% and 9.1% and a maximum attenuation of 40 dB.
Norris et al. (2008) considered the effect of periodic fractal-shaped
inclusions in two-dimensional PCs composed of a solid matrix with
either solid or fluid inclusions, comparing distinct fractal structures
with increasing fractal dimensionalities. In the case of solid-fluid
systems (aluminum matrix and mercury inclusions), the frequency
response presented an increase in the number of attenuation bands
upon an increasing fractal dimensionality. In the case of solid-solid
systems (silicon matrix, tungsten or nickel inclusions), changes in
the fractal dimensionality did not result in significant changes in
lower frequencies, with subtle variations in higher frequencies.

Sierpinski fractals (Sierpinski, 1916) have also been explored as
possible self-similar fractal solutions for the design of PCs. In (Wang
et al., 2016; Wang K et al., 2018), Sierpinski equilateral and isosceles
triangles (see Figure 5B, where n is the fractal order) were used to
investigate the effects of fractal hierarchy and porosity in the band
structures of the resulting porous PCs. Using an aluminum solid
phase and considering in-plane behavior, the authors showed that
when compared to the ordinary case, fractal structuring increases
the critical porosity (area ratio of vacuum/solid phase) necessary for
the opening of complete band gaps, also decreasing their central
frequencies; on the other hand, an increase in the order of hierarchy
for the same porosity increases the band gap central frequency.

In (Huang et al., 2017a), periodic structure waveguides were
designed using Sierpinski carpet unit cells (see Figure 5C, where a is
the unit cell length, and elements included in the nth hierarchical
order have a side length of a/3n+1) considering the in-plane behavior
in periodic media composed by square lead cylinders in a rubber
matrix. Using the normalized frequency Ω = ωa/2πct, where ct is the
speed of transverse waves in the matrix material, the authors have
demonstrated band gaps in the normalized frequency ranges of
0.753–0.825 for the first hierarchical level (single inclusion per unit
cell), 2.300–2.653 and 3.706–3.882 for the second hierarchical level,
and 2.288–2.350 and 2.434–2.508 for the third hierarchical level,
thus revealing that the interplay between the increasing number of
scatterers and the matrix leads to a complex band gap formation
pattern, which is counter-intuitive with the notion of larger band
gaps for larger filling fractions. Also, the directional propagation
characteristics in this type of structure were analyzed through the

Frontiers in Materials frontiersin.org08

Dal Poggetto 10.3389/fmats.2023.1176457

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1176457


computation of group velocities. The authors have shown, for
instance, that in the frequency Ω = 0.580, the wave propagation
is confined to the x- and y-directions for the first and third
hierarchical orders, thus indicating the use of these structures as
waveguides, while a strong reflection was observed for the second
hierarchical order, due to a negative group velocity. The tunability of
this type of structure was later on investigated in (Huang et al.,
2017b), with the relaxation of the initial Sierpinski carpets to quasi-
Sierpinski carpets by varying the filling fraction of the scatterers. The
authors have demonstrated that quasi-Sierpinski structures present
a higher degree of tunability, being able to open band gaps in the
low-frequency range for the first hierarchical order, and multiple
wide band gaps in higher frequency ranges for the second and third
hierarchical orders. Interestingly, for some specific configurations,
only low group velocity bands appear forΩ > 3 in second- and third-
order fractals.

In (Dal Poggetto et al., 2022b), the authors have used Sierpinski
carpets to compute the out-of-plane wave propagation in plate
structures considering the Mindlin-Reissner theory (Bathe and
Dvorkin, 1985) and the presence of viscoelastic components
using a Kelvin-Voigt model (Ferry, 1980; Lakes, 2009;
Krushynska et al., 2021). Increasing levels of hierarchy were
evaluated, combining a pixel-based approach to describe the plate
geometry and the extended plane wave expansion method (Miranda
Jr et al., 2022) to consider a frequency-dependent viscoelastic
behavior. The evanescent behavior of waves was investigated for
media composed of hard elastic (lead) and soft viscoelastic (rubber)
phases, with constituents arranged as either 1) a hard elastic matrix
with soft viscoelastic inclusions or 2) a soft viscoelastic matrix with
hard elastic inclusions. Locally resonant modes are typically noticed
in 1), whose associated flat bands remain practically unchanged
upon an increase in the hierarchical order, which can then be

regarded as a weight reduction approach (since dense matrix
material is substituted by light inclusions). Also, in this case, an
increase in the considered viscosity of the soft inclusions indicate a
reduction in the attenuation peaks associated with the locally
resonant modes. On the other hand, Bragg scattering band gaps
are noticed in 2), which are drastically changed upon an increase in
the considered hierarchical order, although not in a monotonic
trend (i.e., previously opened band gaps may disappear). For this
configuration, an increase in the viscosity of the components
indicates a general increase in wave attenuation.

Fractal structures have also been successfully used in acoustic
applications. Liu et al. (2018) have proposed labyrinthine
acoustic MMs using planar structures containing self-similar
zigzag channels (see Figure 5D for a representation of a
quarter of each unit cell), considering a hierarchical
structuring scheme where the zero-th order structure (n = 0)
shows a unit cell with a side length of b = 90 mm, thickness t =
2 mm, and dimensions l1 = 32 mm and d1 = 14 mm, with the solid
parts made of lead. In the first (n = 1) and second (n = 2)
hierarchical orders, structures with dimensions of l2 = 12.8 mm
and l3 = 4.8 mm are introduced, respectively (indicated in red and
yellow in the schematic), thus introducing a coiled path in which
sound waves must propagate. Several types of lattices are
considered, namely, 1) square, 2) centered square, 3)
triangular, 4) hexagonal, and 5) Kagomé lattices. Considering
frequencies in the 0–2000 Hz range, the total proportion of the
band gaps can be summarized, for the hierarchical orders n = 0,
n = 1, and n = 2, respectively as 1) 15.8%, 31.3%, and 17.6%, 2)
18.7%, 29.9%, and 34.6%, 3) 29.2%, 40.9%, and 41.1%, 4) 17.6%,
43.6%, and 42.1%, 5) 21.4%, 51.7%, and 62.3%, indicating that, in
general, an increase in the fractal hierarchical order widens the
band gaps in the considered frequency range. The first band gap,

FIGURE 5
Fractal-like PCs and MMs. (A) Fractal-like square unit cell with a length of a, thickness d, and square features of dimensions c and s [reprinted from
(Kuo and Piazza, 2011), with the permission of AIP Publishing]. (B) Sierpinski equilateral triangles with increasing fractal orders n. (C) Sierpinski carpet with
increasing fractal orders n and unit cell length a, where the squares included in each new hierarchical order have a side length of a/3n+1. (D) Labyrinthine
acoustic MM unit cell (one-quarter represented, F indicates the rotational symmetry of the unit cell), with light blue parts representing solid plates
with a unit cell length b and thickness t, while white regions represent air; for the regular structure (n =0) the characteristic lengths are given by d1 and l1;
for the first (second) hierarchical order n =1 (n =2), structures with a length l2 (l3) are included, as shown in red (yellow) [adapted from Liu et al. (2018)].
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in each case, is opened, for increasing hierarchical orders n = 0,
n = 1, and n = 2, respectively at 1) 658.8 Hz, 305.2 Hz, and
146.3 Hz, 2) 653.1 Hz, 307.9 Hz, and 133.8 Hz, 3) 637.9 Hz,
309.6 Hz, and 150.6 Hz, 4) 799.6 Hz, 305.6 Hz, and 150.7 Hz,
5) 472.4 Hz, 293.1 Hz, and 149.7 Hz, thus indicating that an
increase in the hierarchical order leads to the opening of band
gaps in decreasing frequencies.

Another type of fractal structure successfully applied to acoustic
MMs is the Hilbert curve (Hilbert, 1891). Song et al. (2016) have
demonstrated, both numerically and experimentally, that Hilbert
fractal acoustic MM absorbers with hierarchical orders ranging from
1 to 4 are able to attenuate low-frequency sounds. The largest
characteristic dimension of each hierarchical level is given,
respectively, by 4.4 mm, 12.4 mm, 28.4 mm, and 60.4 mm,
presenting sound transmission loss levels above 10 dB for the
225 Hz–1,175 Hz frequency range in a planar waveguide
experiment. In (Zhao et al., 2018), the authors showed that
transmission coefficient at the resonant frequencies in this type
of structure is greatly weakened due to viscothermal losses, thus
indicating Hilbert-based fractal acoustic MMs as broadband sound
insulation devices.

3.4 Cochlea

The cochlea is a coiled structure present in the auditory system
of mammalians that acts as a sensing organ capable of distinguishing
wide frequency (nearly ten octaves) and amplitude ranges (up to
120 dB) (Robles and Ruggero, 2001; Dallos and Fay, 2012). One of

the most fascinating features of the cochlea is its tonotopic
organization, which enables the detection of sound waves based
on their frequency content due to its mechanotransduction
characteristic responsible for converting sound energy into neural
impulses depending on the different locations of excitation
(Lighthill, 1991; LeMasurier and Gillespie, 2005). As a
consequence, the spatial discrimination of waves based on their
spectral content may present an opportunity as a paradigm for
sensing applications (Pennec et al., 2019).

The cochlea can be regarded as a coiled long tube filled with fluid
and divided into two cavities by the cochlear partition, which
supports the basilar and tectorial membranes. Impinging sound
waves elicit acoustic waves in the fluid, which in turn excites the
basilar membrane, stimulating motion receptor cells (Reichenbach
and Hudspeth, 2014). Ma et al. (2014) have designed a spiral
structure with 2.7 turns (similar to the human cochlea) to mimic
the behavior of the complex cochlea structure, which acts as a spiral
locally resonant structure. The proposed structure (see Figure 6A)
presents a radius of 2 mm at the apex (top) and 4 mm at the base
(bottom), a width of 1.8 mm at the apex and 3 mm at the base, with
an internal membrane having a thickness of 10 μm at the apex and
30 μm at the base, and an overall length of 32 mm, presenting
resonant frequencies ranging from approximately 20 Hz, close to
the base, to approximately 20 kHz at the apex. The resulting
structure also presents a negative dynamic effective mass
characteristic. In another study, Ma et al. (2016) proposed a
bioinspired MM based on the outer hair cells of the mammalian
cochlea. Unlike the usual approach of developing materials with a
tonotopic configuration, the objective of the proposed structure is to

FIGURE 6
Systems mimicking cochleas and tonotopic properties. (A) Spiral locally resonant structure mimicking the cochlea (left), with a highlighted region
corresponding to themaximum vibration in themembrane for a given frequency excitation (right) [reprinted from (Ma et al., 2014), with the permission of
AIP publishing]. (B) Cochlea-inspired resonator with controlled curvature, width, and thickness variations (left). The out-of-plane vibration modes of this
structure present a shift in their maxima from the outer to the inner region of the spiral along the centerline for increasing excitation signal
frequencies (right) (Dal Poggetto et al., 2023). (C) Spiral array of graded Helmholtz resonators [adapted from (Zhao and Zhou, 2019)]. (D) Line array of
graded quarter-wavelength resonators [adapted from (Rupin et al., 2019)]. (E) Array of graded resonators along the x direction with varying properties
contrasting with the background (medium) properties.
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act as an acoustic MM with negative effective dynamic properties
(Fang et al., 2006; Yang et al., 2008), presenting low-frequency
bending wave band gaps in the 21–76 Hz and 57–173 Hz ranges.

In (Dal Poggetto et al., 2023), the authors have proposed the
systematic design of a cochlea-inspired structure that acts as a
tonotopic resonator (see Figure 6B). A logarithmic spiral model
is employed to yield a curved structure that presents prescribed
values of coiling, width, and thickness variations. Through an
optimization procedure that maximizes the spatial separation of
the maxima of out-of-plane vibration modes along the spiral
centerline, the authors have demonstrated the tonotopic features
of the structure using both numerical simulations and experiments.
By attaching the proposed structure to a small platform to which
out-of-plane excitations were applied through a piezoelectric
actuator, the tonotopy of the structure was verified by scanning
the vibrations at the centerline of the structure with a laser
vibrometer, showing that for a range of nearly 2 decades (from
~ 100 Hz to ~ 10 kHz), the maxima of out-of-plane vibration modes
increasingly move from the outer position to the center of the
cochlea as the excitation frequency increases. Examples of sensing
applications were also discussed, demonstrating the detection of
single- and multiple-frequency excitation signals through the
monitoring of distinct points in the structure.

The use of graded arrays of subwavelength resonators is
common in the context of MMs to produce the rainbow trapping
effect (Zhu et al., 2013), which is able to spatially separate impinging
waves based on their frequency content (Bennetts et al., 2018). In
(Zhao and Zhou, 2019), the authors have proposed a cochlea-
inspired spiral tube with a series of Helmholtz resonators
arranged at subwavelength intervals (see Figure 6C). The spiral
curve is described mathematically using the polar coordinates (r, θ)
as x = rθ cos(θ) and y = rθ sin(θ), with r = 20 mm, and θ in the 0–2.1π
range, yielding a total length of 0.3 m, coiled within an area of 0.1 ×
0.1 m2. The resonators are periodically placed every 7 cm, with a
neck of 0.7 mm radius and 4 mm length, and a cavity of 2.5 mm
radius and an increasing length, starting from 1 mm (first cylinder)
to 15 mm (40-th cylinder). Locally resonant band gaps are opened
between the first and second branches of each respective resonator,
which produce a gradient in the group velocity due to the increasing
height of the resonators. Numerical analyses were performed to
show that the number of elements with significant acoustic pressure
decrease with an increase in the frequency of the excited pressure
wave in the 1–10 kHz range. The proposed MM was experimentally
tested to confirm the numerical calculations, demonstrating the
expected behavior for the frequencies of 1, 2, 3, and 4 kHz.

Later on, Karlos and Elliott (2020) proposed a bio-inspired
design using Helmholtz resonators following a design strategy
with the objective of achieving a smoothly varying response,
yielding an exponential frequency distribution along the
resonators. A sufficient number of elements per wavelength must
be considered in the direction of propagation for the discrete system
to accurately approximate the desired continuous waveguide. In this
case, 6 elements were considered for the smallest wavelength. A
tonotopic mapping of the form fn(x) = fB e

−x/l, where fB is the natural
frequency of the base, x is the waveguide longitudinal coordinate,
and l is the lengthscale of the exponential decrease in frequency,
which can be approximated as f1(n) � fBe−(n−1)lD/l, where f1(n) is
the first natural frequency of the nth element and lD is the element

length, which estimates the distribution of elements per octave. An
example system is designed in the 300–3,400 Hz frequency range
(width of 3.5 octaves), using a total of 50 elements, with a variation
in the quality factor from 5.2 to 17.5. Numerical computations were
used to predict the variation of the acoustic pressure along the
waveguide for three different frequencies (0.5, 1, and 2 kHz), with
the pressure increasing along the waveguide until a peak is reached
for a specific resonator, rapidly decaying after this maximum. The
design of rainbow sensors consisting of an array of Helmholtz
resonators with distinct resonant frequencies was later shown to
be, in the limit case of small elements, equivalent in form to the
cochlear wave equation, for which analytical solutions have been
derived (Marrocchio et al., 2021).

Rupin et al. (2019) have proposed an active one-dimensional
acoustic MM to mimic the behavior of a cochlea. An initial passive
structure is designed considering a 33 mm long one-dimensional
waveguide with evenly spaced graded subwavelength resonators
every 8 μm, which can reproduce the behavior of a cochlea by
modeling the individual transmission and reflection of each
resonator inside the waveguide, showing a correlation between
the location of the pressure maximum and its corresponding
excitation frequency. The resulting structure is scaled for an
experimental realization (see Figure 6D) using a 10 cm diameter
pipe with embedded quarter-wavelength resonators made of 2.8 cm
pipes, evenly spaced every 4.3 cm, limiting the resonant frequencies
to the 300–800 Hz interval. Small microphones were placed inside
each resonator, and the response envelope was measured for several
distinct monochromatic excitations with different phases, showing
the enhancement of the amplitude of the envelope at a frequency-
dependent position, thus confirming numerical simulations. Finally,
the cochlear amplification at low-level sounds is reproduced by
incorporating active acoustic resonators, which provide an
analogous function to that of the hair cells of the cochlea. These
elements can obtain an amplified response over small variations in
the input signal (amplitude and frequency), which is partially owed
to their non-linear behavior, operating at a regime named Hopf
bifurcation (Eguíluz et al., 2000). The operation at this regime was
demonstrated for very small amplitudes, ensuring a zero gain for
large amplitudes. Due to experimental limitations, only a reduced
number of resonators were considered active. Nevertheless, high-
amplitude incoming waves were demonstrated to reproduce the
behavior observed for the passive configuration, while for low-
amplitude sounds, the tonotopic effect becomes enhanced,
focusing the envelope of the incoming traveling waves and thus
revealing an increased sensitivity to low-level waves.

In (Ammari and Davies, 2020), the authors presented the design
of an acoustic MM to mimic the active behavior of the cochlea. The
proposed design is endowed with an array of size-graded cylindrical
subwavelength resonators (see Figure 6E) to represent the variation
of parameters such as stiffness and width, which present a grading
along the cochlea structure, thus leading to a tonotopic
configuration. The proposed set of resonators is obtained by
considering a line array of elements with material properties
(e.g., bulk modulus and specific mass density) contrasting with
the background (matrix) in which they are embedded and
producing resonant frequencies corresponding to wavelengths
much larger than the dimensions of the resonator (Ammari and
Davies, 2019). The response of each resonator is modeled as a
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differential equation with a cubic non-linearity presenting an
enhanced response for frequencies close to the resonant
frequency. Using a set of 22 resonators forming a 32 mm long
structure with the largest width of 0.28 mm, the authors showed that
each elicited mode presents a position of maximum amplitude
varying with the resonant frequency, in the 1,290–13900 Hz
range, thus representing a range of audible frequencies
(20 Hz–20 kHz). After introducing non-linearity to account for
the cubic amplification mechanism of the model, the response
amplitude was shown to be consistently excited in the vicinity of
each associated resonant frequency, with a considerable decay away
from these frequencies. Later on, this device was demonstrated to be
robust against small imperfections in the positions and sizes of the
resonators (Davies and Herren, 2022), revealing mechanisms that
may enable sufficiently large structures to be robust against large
perturbations.

3.5 Moth wings

Among the countless number of structural and behavioral
adaptations shaped by nature along the course of evolution, anti-
predator defense mechanisms are certainly among the most
intriguing. Through these features, prey organisms are endowed
with structures that enable avoiding detection, fighting, or escaping
predators, thus maximizing their survival rate. One typical example
is the interaction between nocturnal bats and their prey. Bats use a
biosonar that acts as an echolocating device, a known and well-
studied mechanism (Simmons, 1979; Simmons and Stein, 1980). As
an evolutionary response, some moth species have developed

various strategies to avoid being found by bats, such as detecting
the ultrasound frequency emitted by bats and then performing
evasive maneuvers (Miller and Surlykke, 2001) or producing
ultrasonic sounds which effectively confuse the predatory
biosonar (Corcoran et al., 2009). An alternative mechanism has
been proposed by Shen et al. (2018), who demonstrated that the
wings of moths act as ultrasound absorbers, thus not reflecting the
sounds emitted by the predators and troubling their efforts to
localize prey. This functionality is achieved by a series of
overlapping scales which are fixed to the wings and made of a
thin chitinous membrane. Apart from possessing a highly porous
and hierarchical structure, each scale displays a leaf-like shape that
starts as a narrow region, which is connected to the wing surface,
ending in several elongated extensions (see Figure 7A). Using laser
Doppler vibrometry measurements, the authors have shown that the
resonant frequencies of the scales, measured as 27.6, 90.8, and
152.3 kHz, and corresponding to flexural and twisting modes, fall
within the same frequency range as the echolocation system
frequencies of bats (20–150 kHz range). An ultrasonic absorption
model showed also that an absorption coefficient of 0.50 is achieved
for a rectangular grid covered by a single type of scale, thus
indicating a mechanism that enables moths to be undetected by bats.

Later, Neil et al. (2020) noted that moth wings can be regarded as
acoustic MMs, highlighting the correlation between moth wing
scales and the role they play as locally resonant structures. The
layer formed by the scales, with a 0.3 mm thickness, is 111 (5) times
thinner than the longest (shortest) absorbed wavelength, at 160 (20)
kHz, thus indicating these elements act in the deep-subwavelength
regime. After quantifying the wave reflection for normal sound
incidence with and without the presence of scales in two different

FIGURE 7
Moth wing scales and related bioinspired systems. (A) Individual scale observed using scanning electron microscopy [adapted from (Zeng et al.,
2011)]. (B) Numerical testing using an arrangement of scales with varying resonant frequencies in a unit cell (Neil et al., 2020). (C) Cross section of wing
membrane (red, middle) with scales (blue, top and bottom regions) and configurations for testing of reflectance using a circular metal disc (grey), wing
membrane (red), and scales at specific regions (blue) [adapted from (Neil et al., 2022)]. (D)Model of awingmembrane covered by scales, represented
by a plate with locally resonant elements with masses mt (mb) connected to the top (bottom) surface by a stiffness St (Sb) (Wang et al., 2022). (E)
Representations of proposed panel solutions, considering either a space-dependent thickness panel (PC solution) or a unit cell with a set of distributed
spring-mass resonators presenting four-fold symmetry (MM solution) (Dal Poggetto et al., 2022c).
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areas of the wings (leading and trailing edges), the authors found
that the wings of two different moth species reduced the reflected
waves in the 20–60 kHz range by −3.51 ± 1.02 dB and −4.80 ±
0.61 dB, for the first species, and −3.03 ± 0.69 dB and −5.02 ± 1.09
dB, for the second species, respectively. As each scale acts as a locally
resonant element, their absorption is restricted to a narrow
frequency range. This drawback can be overcome by associating
resonators with different resonant frequencies (Yang et al., 2017).
The authors also used a numerical model of a 4 × 4 array of scales
fixed to a single membrane (see the simplified schematic in
Figure 7B) to reveal that the interaction between scales with
contrasting tuned resonant frequencies gives rise to a broadband
acoustic absorption property. The scales were selected to show
resonant frequencies in the 30–45 kHz frequency range (1 kHz
interval) with a constant damping loss factor of 0.045, which also
serves to diminish the gaps between individual resonant peaks. The
resulting structure was numerically tested considering an infinite
number of unit cells, showing an asymmetric broadband absorption
coefficient with a peak of 0.47 at approximately 40 kHz and rapidly
decaying after this frequency, demonstrating also that the
vibroacoustic response of the resulting structure is affected by the
disposition of individual scales.

The reduced thickness-to-wavelength ratio in the considered
frequency range of absorbed acoustic waves suggests that moth
wings can act as efficient sound-absorbing metasurfaces. In (Neil
et al., 2022), the authors have tested this hypothesis utilizing sound
reflection tests, assessing the reflection coefficient (ratio between the
returned sound intensity at a 0.1 m distance and the incident sound
intensity) by performing measurements in the 20–160 kHz
frequency range. The samples were laid on an 8 mm diameter
aluminum disc in different configurations, initially considering
the wing membrane covered with scales, the wing covered with
membranes only at one side (both facing the microphone and in
contact with the substrate), and without scales, sonifying either the
dorsal or ventral faces (see Figure 7C). For the case where the dorsal
surface (bare wing side) is facing the incident sound (bottom scales),
the reflection coefficient is slightly larger than in the case with scales
on both sides and considerably smaller when compared to the case
with no scales. In the case where the ventral surface (with wings) is
facing the incident sound (top scales), the reflection coefficient is
similar to the case with no scales, and considerably larger when
compared to the case with scales on both sides. The authors have
explained the differences in the observed configuration stating that
the coupling between the resonating scales and the wing membrane
leads to the correct energy dissipation mechanism, which could not
be achieved if the membrane was regarded as a fixed substrate.

Wang et al. (2022) have proposed an analytical model to
describe the interaction between the wing membrane, attached
scales, and the surrounding fluid. Each scale is considered a flat
rigid rectangle with a mass mt or mb, connected to the wing
membrane by a spring with stiffness St or Sb, where the
subscripts t and b refer to the top and bottom surfaces of the
wing membrane, respectively (see Figure 7D). Each scale is assumed
to be sufficiently close to the wing so that the gap between these
elements is negligible. The wing is idealized as a thin elastic plate that
interacts with the surrounding fluid. The proposed theory is
investigated considering an isotropic plate (specific mass density
1,300 kg/m3, Young’s modulus 65 GPa, Poisson’s ratio 0.35, and

thickness 3 μm) immersed in air (specific mass density 1.21 kg/m3

and sound speed 343 m/s); the mass of the scales are taken as mt =
mb = 2.56 × 10−11, with the stiffness of springs equal to 1.2 N/m
(estimated size of 44 × 44 μm2), and an additional dynamical loss
impedance correction. The corresponding idealized model,
considered as a periodic lattice with a square unit cell with
dimensions 185 × 185 μm2, was shown to correctly represent the
reflection, transmission, and absorption coefficients previously
simulated for the biological system for a 20–50 kHz frequency
range. Also, the model is used to evaluate the broadband
behavior considering a unit cell with a 4 × 4 array of spring-
mass resonators obtained by introducing a randomness factor to
each element mass, with each resonator corresponding to a unit cell
area of 50 × 50 μm2. The broadening of the absorption bandwidth
was shown to increase with a larger mass randomness factor,
accompanied by a flattening in the absorption peak.

Although the use of absorptive materials to dissipate acoustic
energy is a common sound insulation engineering solution (Doutres
et al., 2007), another possible approach consists in the use of systems
able to reflect sound energy through the use of barriers with a
sufficient impedance mismatch, such as single- and double-leaf
panels (Tadeu et al., 2004). The design of optimized bioinspired
systems was then proposed in (Dal Poggetto et al., 2022c), where the
performance in terms of sound transmission loss of panels consisting
of either 1) a constant-thickness plate with resonant elements (MM
solution), 2) a thickness-varying plate (PC solution, see (Dal Poggetto
and Arruda, 2021)), or a combination of both 1) and 2), are evaluated
for both the single- and double-leaf configurations (see Figure 7E). By
using spring-mass resonators attached to a thin plate substrate,
analogous to scales fixed in the wing membrane, the authors have
proposed an optimization approach that maximizes the sound
transmission loss over a given frequency range while keeping a
constant unit cell mass. The characterization of the resonators is
given by a fixed mass, equally distributed to all resonators, and a
theoretical surface with four-fold symmetry from which specific
points are sampled to acquire a stiffness value, and consequently
the resonant frequency of each resonator, thus yielding a process that
can be used for a large number of resonant elements. Although the PC
solution is shown to possess partial band gaps which impede the
acoustic waves from being fully transmitted (zero sound transmission
loss condition), these do not guarantee a good diffuse field
performance. On the other hand, the wavelength-independent
behavior observed in the dispersion relation, owed to the presence
of locally resonant elements (see Figure 2), ensures the existence of a
non-zero sound transmission loss regardless of the orientation of
impinging acoustic waves. Also, the performance of several
distributed resonators with smaller masses and contrasting
resonant frequencies is shown to be preferable to obtain a
broadband sound transmission loss increase, thus confirming that
concepts present in moth wings are not only worth investigating for
acoustic absorbers, but also for panels and possibly other bioinspired
solutions.

4 Conclusion

In this work, biological systems and corresponding
bioinspired structures were presented, highlighting their
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typical features in varying length scales and distinct domains,
such as structural and acoustic. After briefly introducing the
main concepts related to wave propagation in periodic materials,
a set of systems of interest is presented.

Nacre-based PCs can yield wide band gaps, which may be
opened due to either Bragg scattering or local resonances
(concentrated in the soft phase), with relative robustness
against defects in the hard phase, but sensitive to crack
defects in the soft phase. When hierarchical structuring is
considered, this type of system is able to achieve broadband
filtering effects, which can be demonstrated if no
homogenization procedures are employed. Viscosity also
plays an important role in this type of structure, with the
most noticeable effects in higher frequencies.

Spider orb webs can be a source of inspiration for both
structural and acoustic applications. In the context of two-
dimensional elastic wave manipulation, the creation of
periodic media with a unit cell consisting in the basic spider
web geometry (i.e., the combination of radial and circumferential
elements with contrasting properties) leads to a strong
anisotropic behavior and a multitude of band gaps which can
be tuned through the variation of geometric features to achieve
diverse objectives. The use of spider web-inspired acoustic
devices for sound control can also be performed using either
labyrinthine or membrane MMs, which offer significant control
over vibration modes and resonant frequencies.

Fractal systems have been widely explored in the field of PCs and
MMs. Examples can be found in diverse length scales, ranging from
micro to centimeter scales. In the structural domain, self-similar
architectures (e.g., Sierpinski triangles and carpets) can be used to
manipulate dispersion relations, although not in an obvious manner,
since an increase in the hierarchical order can open new band gaps,
but may also close previously existing ones. Although broadband
effects can be achieved, the change in hierarchical orders is likely
more associated with the variation of other characteristics, such as
weight reduction of the unit cell. Viscosity can also be an important
factor to achieve broadband attenuation, especially when
considering the effect of multiple local resonances. In the
acoustic domain, labyrinthine MMs (e.g., using Hilbert fractals)
are a common choice, leading to low-frequency band gaps, although
not necessarily broadband.

Cochlea-inspired structures can be used to harness the feature of
tonotopy, thus presenting a correlation between the spatial localization
of waves and their frequency content, revealing unique sensing
properties. The rainbow trapping effect is typically used to achieve
such spatial separation for acoustic waveguides with an array of graded
resonators (e.g., quarter-wavelength or Helmholtz) or a series of
resonators in a background fluid. Other examples include bi-
partitioned cavities with a separating membrane featuring a
tonotopic organization or curved plate structures with variations of
width and thickness along the spiral centerline, thus leading to a tailored
spatial separation of the maxima of out-of-plane vibration modes
according to their resonant frequencies. Although the spiral
architecture seems beneficial in terms of compactness, it is not
necessary in cases where locally resonant elements are employed.
Also, the Hopf bifurcation regime is an important feature to be
included in the locally resonant elements, which must present a
considerable gain for low-amplitude excitations.

Moth wings are natural structures that evolved to act as broadband
sound absorbers, constituted by flexible wing membranes with a
multitude of attached scales. Although each scale acts as a locally
resonant structure, thus operating, for each resonant frequency, within a
narrow frequency range, the ensemble of scales with various resonant
frequencies leads to a broadband characteristic with significant
absorption of impinging acoustic waves. The resonant behavior of
separate scales, however, is not sufficient to provide a significant sound
absorption efficiency, which is achieved by the interaction between
different scales and the substrate itself. The resulting system provides a
fruitful source of inspiration for acoustic application devices. Systems
consisting of spring-mass resonators attached to both faces of host
plates can be used to faithfully model the desired behavior, and
bioinspired panels can be designed following the concept of multiple
resonators to achieve optimal sound transmission loss levels within
target frequency ranges.

Although many examples of bioinspired systems can be found
concerning diverse biological systems, current studies are typically
limited to designs that consider single objectives and specific
applications. On the other hand, nature seems to produce
systems that present a compromise between simultaneous
objectives, such as stiffness, fatigue resistance, and wave
attenuation. The immense design freedom associated with these
systems suggests that a multi-disciplinary approach, concatenating
various objectives, might be a fruitful opportunity offered by
bioinspired artificial systems. When combined with the ever-
present challenge of achieving lightweight solutions to reduce the
environmental impact of manufactured solutions, the investigation
of bioinspired optimized systems still presents many open questions
which may be explored in the future.
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