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Tissue engineering represents a promising approach for impaired articular
cartilage tissue regeneration. 3D printed hydrogels have become an emerging
tissue engineering strategy because they closely mimic the physical and
biochemical characteristics of the extracellular matrix. The formulation of
hydrogel ink holds significant importance in attaining a precisely defined
scaffold, which could exhibit excellent shape fidelity post-printing. Natural
polysaccharide-based hydrogels are a highly promising class of scaffold
biomaterials for articular cartilage regeneration in the field of material science
and tissue engineering. These hydrogels are particularly advantageous due to their
exceptional water absorption capacity, biodegradability, adjustable porosity, and
biocompatibility, which closely resemble those of the natural extracellular matrix.
This review aims to provide a comprehensive overview of the key characteristics,
functions, and research progress in 3D printing technology for natural
polysaccharide-based hydrogels. Specifically, this review categorizes the
commonly used natural polysaccharide-based hydrogel materials in cartilage
tissue engineering, and summarizes the classic literature in this area. In the
end, we provide a comprehensive analysis of the challenges and potential
applications of natural polysaccharide-based hydrogels in cartilage tissue
engineering.
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1 Introduction

Cartilage, a remarkable viscoelastic connective tissue, undergoes formation during the
embryonic phase of human development, preceding the initiation of bone formation
(Camarero-Espinosa et al., 2016). In the realm of mammals, this resilient cartilaginous
framework plays a crucial role as a blueprint for bone maturation, beginning in the
embryonic stage and persisting throughout skeletal development in select regions of the body.
Cartilage exhibits remarkable variations in its structural characteristics throughout its depth,
showcasing divergent orientations of its constituents, unique compositions of the extracellular
matrix (ECM), and intricate arrangements of chondrocytes. Moreover, chondrocytes residing in
different zones exhibit distinct morphological features and selectively express markers that are
inherently characteristic of each specific zone. The development of this stratified architecture
occurs duringmaturation, arising from the interplay of externally applied and internally generated
hydrostatic forces within the tissue. Consequently, the articular cartilage can be classified into
distinct zones, namely: 1) the uppermost layer, often referred to as the superficial or tangential
zone, 2) the intermediate or transitional zone, 3) the deep or radial zone, and 4) the calcified zone
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(Temenoff and Mikos, 2000; Williams et al., 2008). These zones have
been extensively studied and characterized. Furthermore, articular
cartilage exhibits a secondary microstructure that varies in relation to
the radial distance from the chondrocytes. Hyaline cartilage is a crucial
nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective
tissue, which is usually referred to as articular cartilage. It plays a
pivotal role as a friction-reducing and load-bearing cushion within
synovial joints, facilitating smooth skeletal movements in mammal.
Following the process of maturation, hyaline cartilage undergoes
structural and compositional changes that establish it as a crucial
component of articular joints, offering a remarkable interface with
low friction while effectively supporting and transferring loads. The
predominant constituents of hyaline cartilage include water (comprising
approximately 70%–80% of its weight) that interacts synergistically with
essential ECM components, such as proteoglycans, collagens, and other
minor proteins and macromolecules. This intricate interplay of
constituents contributes to the unique properties and functionality of
hyaline cartilage.

The effective management of articular cartilage defects remains a
significant and enduring clinical hurdle for orthopaedic surgeons.
Articular cartilage is a highly specialized and structurally intricate
tissue characterized by remarkable durability. However, owing to its
avascular and aneural properties, it exhibits a limited intrinsic ability
to self-repair (Setton et al., 1999; Jackson et al., 2001; Makris et al.,
2015; Antich et al., 2020; Sang et al., 2023). Chronic joint pain and
functional impairment are commonly observed in individuals who
have experienced tissue damage due to either traumatic injury or
degenerative pathology. Such conditions often give rise to a gradual
deterioration of tissue, ultimately resulting in reduced joint function
and mobility (Lories and Luyten, 2011). Failure to repair extensive
focal chondral lesions and other cartilage injuries can result in the
deterioration of the entire tissue, thus increasing an individual’s
susceptibility to developing osteoarthritis (OA), a debilitating
condition that is a major contributor to global disability (Hunter
and Bierma-Zeinstra, 2019). Due to the simultaneous impact of
population ageing, rising obesity rates, and an upsurge in joint
injuries, the prevalence of this syndrome, which is already
burdensome, is on the rise. Global estimates indicate that
approximately 250 million individuals are currently affected by this
condition. OA is a chronic condition that frequently manifests in
individuals with untreated traumatic osteochondral lesions (Glyn-
Jones et al., 2015). The manifestation of OA can be observed through
various clinical indicators such as joint stiffness, pain, swelling, and
restricted range of motion (Lespasio et al., 2017). Due to the limited
availability of effective repair treatments, individuals with end-stage
OA frequently undergo joint replacement procedures (Kloppenburg
and Berenbaum, 2020). Thus, the timely management of articular
cartilage lesions is imperative in order to mitigate or postpone the
onset and progression of OA. The primary reparative approaches,
namely microfracture, osteochondral transplantation, and autologous
chondrocyte implantation, are associated with significant limitations,
including the formation of fibrocartilage (Bae et al., 2006; Kreuz et al.,
2006), limited donor sources, two operations required, etc.
Consequently, it is imperative to expedite the development of a
viable alternative approach to facilitate the regeneration of articular
cartilage (Zhang et al., 2019).

Over the past few decades, substantial endeavors have been directed
towards devising cartilage tissue engineering (CTE)methods as alternative

therapeutic modalities to address the limitations of conventional clinical
approaches. CTE techniques exhibit considerable promise for clinical
implementation (Vinatier and Guicheux, 2016). CTE represents a
highly encouraging avenue for restoring and rehabilitating articular
cartilage, as it has the potential to stimulate tissue formation at the
subchondral bone interface, thereby ameliorating the clinical
manifestations of OA patients. Scaffolds constitute a fundamental
constituent of CTE and exert a crucial impact on the regenerative
potential of cartilage. Numerous scaffolding methodologies have been
devised in the realm of tissue engineering (TE) (Ma et al., 1995; Mooney
et al., 1996; Yang et al., 2002; Wu et al., 2006). The application of 3D
bioprinting technology has emerged as a potent modality for fabricating
scaffolds capable of providing cells with the necessarymicroenvironmental
condition for TE (Murphy and Atala, 2014a; Patel et al., 2017). The
hallmark of 3D bioprinting technologies is the generation of intricate
structures through a process of layer-by-layer deposition, facilitated by
computer-aided design (CAD). This method provides precise regulation
over the shape and configuration of the scaffold, enabling the production
of scaffolds with multiple layers, as well as the customized design of
anatomically tailored implants (Lafuente-Merchan et al., 2022). The layer-
by-layer deposition process facilitated by 3D bioprinting technology allows
for the swift fabrication of scaffolds used in TE applications (Li et al., 2022).
The material for deposition is commonly referred to as bio-ink, which
comprises of cells and biomaterials. It has the potential to be supplemented
with additional compounds such as medications, proteins, genetic matter,
or growth factors (Ruiz-Alonso et al., 2021). These bio-inks have to meet
certain requirements, such as biocompatility, biodegradability, printability,
bioactivity and proper mechanical properties (Gungor-Ozkerim et al.,
2018; Abdollahiyan et al., 2020). The mechanical properties of articular
cartilage are mainly manifested in compressive properties, tensile and
shear properties. The compressive aggregate modulus of articular cartilage
in joint structures spans a range of 0.08–2MPa, exhibiting depth-
dependent variations within the tissue (Athanasiou et al., 1991;
Schinagl et al., 1997). The Young’s modulus of articular cartilage
displays zone-dependent variations within the tissue, with values
ranging from 5 to 25MPa. Notably, the superficial zone exhibits
higher modulus values compared to the middle and deep zones
(Kempson et al., 1968; Woo et al., 1979; Akizuki et al., 1986). Articular
cartilage experiences shear stresses resulting from the translational and
rotational movements of bones, relying predominantly on the solid phase
of the tissue for support. Experimentalmeasurements have determined the
equilibrium shear modulus to range from 0.05 to 0.25MPa. Moreover,
calculations have indicated that the dynamic shear modulus varies from
0.1 to 4MPa, while the loss angle is approximately 10° (Zhu et al., 1993;
Wong and Sah, 2010).

In addition to the aforementioned requirements, it is essential for
bioprinting ink demonstrate the capability to imitate the architecture
and composition of the articular cartilage ECM to enable chondrogenic
cell adhesion, migration, proliferation, and differentiation (Yang et al.,
2017). Several investigations have demonstrated that hydrogel is
regarded as a highly suitable material for addressing cartilage defects
(Hunt et al., 2014; Xue et al., 2021). Hydrogels are polymer materials
that exhibit water-swelling behavior and possess a 3D network
structure. The formation of this structure is achieved through
crosslinking reactions among hydrophilic polymers. Due to their
ability to mimic the inner environment of the ECM, hydrogels have
gained significant attention for their biomimetic properties (Grande
et al., 1997; Chen et al., 2021). The excellent biocompatibility and

Frontiers in Materials frontiersin.org02

Wu et al. 10.3389/fmats.2023.1204318

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1204318


biodegradability exhibited by hydrogels have made them a popular
choice for the fabrication of in vitro tissues and organs (Correia et al.,
2012; Gao et al., 2018). In addition, the hydrogel’s distinct properties of
elevated moisture levels and porosity confer a significant advantage by
creating a 3D crosslinking network that facilitates cellular retention,
differentiation, migration, adhesion, and proliferation (Zhang et al.,
2009). Hydrogels promote chondrocyte attachment similarly to the way
cartilage ECM does, and unlike chondrocytes in other monolayer
culture, chondrocytes embedded in hydrogels maintain their
phenotype (Yamaoka et al., 2006; Aisenbrey and Bryant, 2016). The
viscoelasticity of hydrogels allows transferring load effectively to
chondrocytes, thereby ensuring their survival and controlling
chondrogenic differentiation (Li J. et al., 2019a). Thus far, significant
advancements have been made in the use of hydrogels and their
composites for the repair of cartilage injuries, indicating promising
prospects for potential clinical applications (Zhang et al., 2009).

Hydrogels can be classified as either natural or synthetic. Over the
past several years, significant advancements have beenmade in the design
of both types of hydrogels, with the specific goal of facilitating cartilage
restoration. Such advancements involve the creation of 3D
microenvironments that can effectively support the growth and
proliferation of chondrocytes or stem cells (Bose et al., 2013). The
natural hydrogel is primarily composed of proteins and
polysaccharides derived from the ECM. This type of hydrogel exhibits
properties that are similar to the ECM, including high water content,
porosity, and softness (Gunatillake et al., 2003; Stoppel et al., 2015). The
widespread usage of synthetic hydrogels in CTE can be attributed to
several advantageous features they possess, whichmake them suitable for
cartilage regeneration. These benefits include their ease of processing,
high mechanical properties, and their ability to be controlled in terms of
shape, porous structure, and degradation rate (Dang and Leong, 2006;
Yao et al., 2015; Rao et al., 2018). Synthetic hydrogels possess certain
properties that are unsuitable for the purpose of cartilage regeneration.
These properties include inferior biocompatibility, low bioactivity, and
the induction of aseptic inflammation due to the degradation products
they release upon implantation into immunocompetent large animal
models and human subjects. In light of recent research, synthetic
hydrogels have been deemed suboptimal for the purpose of cartilage
regeneration. In contrast, natural hydrogels are gaining favor as
biomimetic scaffolds due to their exceptional biocompatibility, notable
biological activity, minimal immunogenicity, and low cytotoxicity
associated with their degradation byproducts (Diekjürgen and
Grainger, 2017; Liu et al., 2017). Currently, natural hydrogel materials
comprise polysaccharide-based hydrogels such as chitosan, hyaluronic
acid, alginate, chondroitin sulfate and agarose, as well as protein-based
hydrogels including gelatin, fibrin, elastin, silk fibroin, and collagen in
addition to other materials derived from the extracellular matrix. Within
the repertoire of biopolymers capable of constructing natural hydrogels,
polysaccharides and their derivatives have gained increasing popularity
for utilization in 3D bioprinting (Li N. et al., 2021a). Polysaccharides
belong to the category of biopolymers that consist of monomeric units
linked together via glycosidic bonds (Dai et al., 2019). Various
polysaccharides, like chitosan, hyaluronic acid, alginate, chondroitin
sulfate, and agarose have gained significant attention in the scientific
community due to their wide availability, cost-effectiveness, and
renewable nature. These polysaccharides have been extensively utilized
in various applications, and their diverse physicochemical properties
make them highly versatile and suitable for different uses (Teixeira et al.,

2022). Polysaccharides are regarded as unique scaffoldmaterials, owing to
their beneficial characteristics such as biocompatibility, biodegradability,
and customizable functionality, which position them among the most
desirable choices for scaffold development. Moreover, these materials
possess several appealing characteristics, such as facile derivatization/
functionalization capabilities, a vast array of chemical structures with high
diversity, and favorable rheological and mechanical properties (Oliveira
and Reis, 2011). In addition, hydrogels based on natural polysaccharide-
based hydrogels (NP-hydrogels) exhibit notable resemblances to the
ECM of cartilage, thereby presenting them as a promising option for
scaffold material in the context of CTE (Li P. et al., 2021b).

As previously discussed, 3D bioprinting offers a rapid means of
manufacturing scaffolds used in CTE applications, utilizing a material
known as bioprinting ink. Among the various options available in the
realm of CTE, hydrogels have emerged as the most promising choice.
Their injectability facilitates the delivery of stem cells, while their
advantages in terms ofminimally invasive surgery further bolster their
appeal. As a result, hydrogels have found extensive application as
bioprinting ink in the realm of 3D bioprinting. The procedure of 3D
bioprinting can be typically classified into a tripartite process. Firstly,
it involves acquiring relevant data pertaining to the characteristics of
biological tissues or organs and creating 3D models through
techniques such as CT and MRI. Subsequently, bioink must be
prepared to facilitate tissue or organ repair. Lastly, 3D structures
of natural tissues or organs are created through the application of a
bio-printer (Heinrich et al., 2019). Categorized by their operational
mechanisms, 3D bioprintingmethodologies can be grouped into three
types: extrusion-based, inkjet-based, and light-based 3D printing.
Each of them has its own advantages and disadvantages (Table 1).

The application of 3D bioprinting technology enables the attainment
of meticulous regulation over both the external shape and internal pore
architecture of scaffolds (Jungst et al., 2016; Lai et al., 2019). Its capability
to position cells and biomaterials with precision in a stratified manner
enables the fabrication of constructs that possess controlled porosity, thus
facilitating optimal diffusion of essential nutrients, oxygen, andmetabolic
waste products for the embedded cells (Murphy and Atala, 2014b;
Turnbull et al., 2018). Furthermore, bioprinting methodologies enable
the incorporation of elevated cell densities, which is unattainable by
alternative techniques or necessitates the sequential inclusion of cells post-
scaffold fabrication (Yang et al., 2022). Thus, 3D printing surpasses
conventional techniques in the fields of TE. (Figure 1).

This article presents a comprehensive overview of the properties,
roles, and recent advancements in NP-hydrogels and their composites
for 3D printing of articular cartilage. The NP-hydrogel materials that
are frequently utilized in CTE are systematically classified. We also
present a detailed exposition of the benefits and limitations associated
with each type of NP-hydrogel, with the aim of providing valuable
guidance for the development of articular cartilage scaffolds. Finally,
the article explores the existing obstacles and future prospects of NP-
hydrogels in the context of CTE.

2 Common bio-inks and their
application in articular cartilage

The principal NP-hydrogels employed in 3D printing for the
regeneration of articular cartilage tissue comprise chitosan,
hyaluronic acid, alginate, and chondroitin sulfate (Table 2).
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2.1 Chitosan-based bio-ink

Chitosan is a positively charged polysaccharide that is synthesized
via alkaline N-deacetylation of chitin, a compound that is widely

available in nature (Zhao et al., 2011). Sources of chitin encompass a
broad range of materials, including crustacean shells, insect cuticles
(particularly those derived from shrimps and crabs), and fungi cell walls
(Martínez-Camacho et al., 2010). Chitosan is a natural linear

TABLE 1 Different types of 3D printing and their advantages and disadvantages.

Printer Category Advantages Disadvantages

Inkjet-based 3D
printing

Thermal inkjet 3D
printing

Has a higher printing speed and lower cost of parts (Murphy
and Atala, 2014a)

Exposing the binder to thermal stress, droplets with low
directionality and nonuniform sizes (Shirazi et al., 2015)

Piezoelectric inkjet
3D printing

Generate and control uniform droplet size and ejection
directionality and prevent heat stress on the binder (Rahmati
et al., 2009)

Leakage and mist formation during printing would blur the
pattern, which is not suitable for adhesives with low viscosity (Xu
et al., 2005; Kim et al., 2010)

Extrusion-based
3D printing

FDM Low cost, high speed and simplicity of the process (Ngo et al.,
2018)

Weak mechanical properties, layer-by-layer appearance, low
surface quality (Chohan et al., 2017) and only a few thermoplastic
materials available (Mohamed et al., 2015)

Pneumatic Suitable for a wide range of ink viscosities (Ali et al., 2020) Has difficulty in precisely controlling the deposited mass (Ali
et al., 2020)

Mechanical Provides better spatial control over the material flow, and inks
with even higher viscosities can be printed

The dispensing process may cause damage to the cell membranes
due to the screw’s configuration and powerful driving forces
(Dababneh et al., 2014)

Light-based 3D
printing

SLA Could print large size models (Quan et al., 2020) Low printing rate and low resolution (Cho et al., 2005). Only a
few resins can be used for cationic photopolymerization. (Wang
et al., 2016)

DLP High resolution (Wu et al., 2018) Could only print small size objects (Quan et al., 2020), very
expensive

2 PP Produce 3D structures with greater depth, spatial resolution,
and precision (Zhu et al., 2016)

Multiphoton ionization may occur, leading to a dielectric
breakdown. Fabricating mesoscale constructs that are
appropriate for biological applications is challenging (Nguyen
and Narayan, 2017)

Abbreviations: FDM, fused deposition modelling; SLA, stereolithography; DLP, digital light processing; 2 PP, two photon polymerization.

FIGURE 1
Diagram of articular cartilage regeneration using 3D printed hydrogel. Adapted with permission from Yang et al. (2022).
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polysaccharide composed of β-linked d-glucosamine residues, which
may contain a variable number of randomly situated
N-acetylglucosamine groups (Jeuken et al., 2016). Its structural
similarity to glycosaminoglycans (GAGs) of the ECM has been
noted, as well as its vital function in promoting cell-to-cell adhesion
(Costa-Pinto et al., 2011; Levengood and Zhang, 2014; LogithKumar
et al., 2016). Chitosan, owing to its chemical structural similarity with
various GAGs such as those found in cartilage and meniscus, the
predominant ECM molecules, imitates the native microenvironment
for chondrocytes andmeniscus cells, thus fostering chondrogenic activity
and expression of cartilage-specific proteins (Chen and Cheng, 2009;
Park et al., 2009; Neves et al., 2011). As a result, chitosan, with its
advantageous characteristics of bioactivity, biocompatibility, and
biodegradability, has emerged as a promising natural biomaterial
scaffold for the repair of cartilage defects (Comblain et al., 2017). It
has found wide application in TE, particularly for articular cartilage
regeneration (Rodriguez-Vazquez et al., 2015; LogithKumar et al., 2016).
Synovial mesenchymal stem cells (SMSCs), possessing exceptional
chondrogenic potential and exhibiting a strong correlation with
cartilage repair, are deemed optimal seed cells for articular cartilage
tissue engineering. Li P. et al. (2021b) used chitosan hydrogel as a cell
scaffold and improved the mechanical properties of the hydrogel by
adding 3D printed PCL, while introducing the tetrahedral framework

nucleic acid (TFNA) to improve the regenerative microenvironment,
which can be absorbed into SMSCs and promote the proliferation and
cartilage differentiation of SMSC. The scaffold synthesized demonstrates
a Young’s modulus of up to 4.37MPa, with the main contributor to its
mechanical properties being PCL. Here, chitosan acts as a cationic
polysaccharide that binds to DNA and recruits free TFNA by
electrostatic interaction after intraarticular injection in vivo. The
implementation of the entire system resulted in a deceleration of the
long-term progression of osteoarthritis following the occurrence of
articular cartilage defects, and developed a new strategy for cartilage
regeneration. Chitosan-based cryogels are a promising scaffold for
application in TE. Nonetheless, the crosslinked network generated in
the hydrogel matrix can hinder the growth of ice crystals and impede the
development of a cryogel with a macroporous structure at low
temperatures. Consequently, the production of a cryogel scaffold
through 3D printing has seldom been documented. Chen et al.
(2022) used polyurethane nanoparticles as a crosslinker to react with
chitosan, and then froze the product at −20°C to develop a 3D printable
chitosan cryogel, which has injectability and shape-restoring properties
that provide goodmechanical integrity for the proliferation and cartilage
formation differentiation of adult stem cells derived from human
adipocy (hADSCs) (Figure 2). The synthesized bulk cryogel exhibits
a compressive modulus of 5.8 kPa and a tensile strength of up to

TABLE 2 The categorization of 3D-printed NP-hydrogel for the regeneration of articular cartilage.

NP- hydrogels Printer Other materials Cells Model Main features Reference

Chitosan-based
hydrogel

Extrusion-
based

PCL, TFNA SMSCs Rabbit Enhances cell proliferation and cartilage
regeneration

Li et al. (2021b)

Extrusion-
based

Polyurethane
nanoparticles

Human adipose-
derived adult stem cells

(hADSCs)

N/A The effective seeding of hADSCs was
encouraged, resulting in their chondrogenic

differentiation

Chen et al.
(2022)

Hyaluronic acid-
based hydrogel

Extrusion-
based

PLA, alginate Chondrocytes N/A Good printability, biocompatibility, and
biodegradability, improved cell functionality

Antich et al.
(2020)

Extrusion-
based

Gelatin AdMSCs Mouse Good shear thinning and anti-oxidative
properties

Shi et al. (2022)

Extrusion-
based

P(AGE-co-G), hmHA hMSCs N/A Merge the 3D printability facilitated by PCL
with uniform distribution of ECM and

enhanced rigidity following chondrogenic
differentiation

Hauptstein et al.
(2020)

Alginate-based
hydrogels

Extrusion-
based

Short submicron PLA
fibers

Human chondrocytes N/A Higher Young’s modules, improvement of
mechanical properties, improved cell viability

Kosik-Koziol
et al. (2017)

Extrusion-
based

GelMA MSCs Mouse Synergistic improvements in mechanical
properties are accompanied by enhanced

toughness and elasticity

Wang et al.
(2021)

Facilitated strong binding with high affinity
and maintained extended release of TGF-β3.
Suppressed hypertrophy of encapsulated

MSCs

Chondroitin sulfate-
based hydrogel

Extrusion-
based

Hydroxybutyl chitosan hMSCs Mouse Good injectability, favorable biocompatibility,
designable structure

Li et al. (2019b)

Extrusion-
based

Gelatin methacrylamide,
hyaluronic acid
methacrylate

BM-MSCs N/A High cell viability, high cell density, high-
resolution, exceptional shape fidelity, highly

robust and accurate

Costantini et al.
(2016)

Abbreviations: PCL, Poly(ε-caprolactone); TFNA, tetrahedral framework nucleic acid; SMSCs, Synovial mesenchymal stem cells; hADSCs, Human adipose-derived adult stem cells; PLA,

polylactic acid; AdMSCs, Adipose-derived mesenchymal stem cells; P(AGE-co-G), Allyl-modified poly(glycidol); hmHA, high molecular weight hyaluronic acid; GelMA, gelatin methacryloyl;

MSCs, mesenchymal stem cells; hMSCs, human adipose-derived mesenchymal stem cells; BM-MSCs, Bone marrow-derived human mesenchymal stem cells.
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295.6 kPa. Thefindings suggest that chitosan presents a new and efficient
approach for articular cartilage repair. Nevertheless, the mechanical
characteristics of chitosan are suboptimal (Shariatinia and Jalali, 2018;
Kou et al., 2021), which constrains the application of chitosan hydrogel
in the context of articular cartilage regeneration. Additionally, a related
concern with respect to chitosan is the acidic milieu required for its
dissolution, which may result in decreased cell viability (Gong et al.,
2020). Notwithstanding, the chemical alteration of chitosan, facilitated
by its numerous amine and hydroxyl groups, for instance carboxymethyl
chitosan and hydroxybutyl chitosan, improves its water solubility. The
mechanical characteristics of chitosan-based ink may be enhanced
through several approaches, such as modifying the degree of
deacetylation and molecular weight of chitosan, integrating synthetic
polymers and bioceramics, and conducting post-treatment procedures
on 3D printed chitosan constructs (Rajabi et al., 2021) These methods
will improve the application value and significance of chitosan in
articular cartilage tissue engineering.

2.2 Hyaluronic acid-based bio-ink

Hyaluronic Acid (HA) is a linear polysaccharide that exists
naturally, comprising repetitive disaccharide units consisting of
glucuronic acid and N-acetylglucosamine, and is extensively
distributed in cartilage (Yue et al., 2015; Sun et al., 2018). It
exhibits remarkable biocompatibility and biodegradability, while

also inducing negligible immunogenicity (Mondal et al., 2016).
HA, a constituent of the ECM, can engage with various
chondrocyte surface receptors, leading to a beneficial impact on
numerous cellular pathways, such as those responsible for
chondrocyte proliferation, ECM secretion, and phenotype
regulation (Chung and Burdick, 2009; Kim et al., 2011; Lebourg
et al., 2013). In contrast to other polysaccharides, HA has the ability
to regulate cartilage function and repair cartilage damage through
various mechanisms. Prior research has established that HA has the
potential to enhance the lubricity of cartilage boundaries, modulate
inflammation at cartilage lesions, stimulate cell adhesion and
proliferation, and improve cartilage ECM deposition and
regeneration. These findings suggest that HA may be a promising
avenue for application in the field of CTE (Ishida et al., 1997; Park
et al., 2013; Lin W. F. et al., 2020a). HA-based hydrogels have been
shown to have lubricating and buffering effects, which could restore
the viscosity and elasticity of synovial fluid (Toh et al., 2010;
Stellavato et al., 2019). More importantly, injectable HA-based
hydrogels have shown promising results in repairing bone and
cartilage defects of varying sizes via minimally invasive surgical
procedures. This approach is advantageous due to the ability of the
hydrogel to completely fill the defect site and provide a favorable
environment for cell growth and tissue regeneration. Despite the
attractive bioactive properties and high biocompatibility of HA,
which have rendered it an appealing biomaterial in the field of CTE,
its use in 3D extrusion-based bioprinting is limited due to its

FIGURE 2
Study design schematic diagram. Adapted with permission from Li P. et al. (2021b).
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inadequate physical properties. One of the limitations of using HA
in 3D bioprinting is the insufficient viscosity of its solutions, which
can result in poor stability within the printing reservoir and hinder
the homogeneous distribution of cells in the printed construct. The
gelation properties of HA, which are crucial for preserving the 3D
structure post-printing, are found to be insufficient. In order to
achieve optimal mechanical properties for cartilage structures,
Antich et al. (2020) have developed a unique bioink based on
HA. By co-printing a combination of HA with alginate and
polylactic acid (PLA), it has been observed that HA-based
bioinks have the potential to enhance cell function through the
upregulation of chondrogenic gene markers and the deposition of
specific matrices, ultimately leading to the promotion of
chondrogenesis. Compared to the standalone PLA scaffold, the
addition of HA to the scaffold significantly enhances the
compressive modulus. The authors suggest that this improvement
in mechanical properties may be attributed to the colloid osmotic
pressure and viscoelasticity properties of HA, which contribute to its
load-bearing capability. HA-based hydrogels have been
demonstrated to induce significant morphological differentiation

of mesenchymal stem cells (MSCs) and exhibit a capacity for
cartilage tissue reconstruction when utilized for MSCs delivery.
In the context of implantation into injured joints, mesenchymal
stem cells or chondrocytes delivered via hydrogels may encounter
increased levels of reactive oxygen species (ROS) within the
inflammatory microenvironment. This exposure has the potential
to disrupt the cells’ phenotype and normal functions, ultimately
impeding the efficacy of tissue regeneration. To mitigate the side
effects induced by ROS during 3D bioprinting constructs and to
promote cartilage tissue regeneration in the context of OA disease,
Shi et al. (2022) have developed a multifunctional hydrogel, which is
created through a dynamic covalent bond between phenylboronic
acid grafted hyaluronic acid (HA-PBA) and poly(vinyl alcohol). In
addition, a secondary crosslinking mechanism has been employed
between the acrylate moiety on HA-PBA and the free thiol group
from thiolated gelatin, resulting in enhanced stability of the hydrogel
(Figure 3). The multifunctional hydrogel described above has been
proposed as a viable bioink for the creation of 3D bioprinted
constructs with anti-ROS properties, which could promote the
regeneration of cartilage tissue within an elevated ROS and

FIGURE 3
Diagrammatic representation of the production process for a dynamic hydrogel made from HA and gelatin that are covalently linked. (A) The
synthesis strategy of the functional group HA-PBA-Ac. (B)Diagrammatic illustration depicting the creation of a gelatin-crosslinked dynamic HA hydrogel
and (C) outline of the experimental design used in the bioprinting study. Adapted with permission from Shi et al. (2022).
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chronic inflammatory microenvironment. The use of bioinks
containing high concentrations of polymeric materials is a
common practice in 3D bioprinting to facilitate the fabrication of
stable 3D cell-hydrogel constructs. However, this approach may
result in limited cell bioactivity and an uneven distribution of newly
synthesized ECM. Hauptstein et al. (2020) crosslinked thiolated HA
and allyl modified polyglycidyl by ultraviolet light and added
unmodified high molecular weight HA to accommodate PCL-
enabled 3D bioprinting, and unexpectedly found that the
distribution of cartilage ECM in low-polymer content bioink was
greatly improved by supplementing high molecular weight HA.
During the initial preparation day, the Young’s modulus of 3wt%
gels was approximately 0.3 kPa, whereas the Young’s modulus of
10wt% gels measured 10.9 kPa. After 21 days of cartilage
differentiation, the Young’s modulus of 10% gels increased to
28 kPa, while the 3 wt% gels exhibited significantly higher
stiffness with values of 36.9 kPa for 3 wt% -hmHA and 45.4 kPa
for 3 wt% +hmHA gels. According to the authors, this finding
emphasizes the importance of a homogeneous distribution of the
ECM in achieving higher construct stiffness. These structures
combine PCL-enabled 3D printability with uniform ECM
distribution and increased stiffness after cartilage differentiation
and thus represent the promise of cartilage regeneration.

2.3 Alginate-based bio-ink

Alginate is a hydrophilic polysaccharide of natural origin,
characterized by a negative charge (Lee and Mooney, 2012). It is
composed of linear, unbranched copolymers consisting of varying
proportions of (1-4)-linked b-D-mannuronic acid M) and
a-L-guluronic acid G) monomers, which are linked together through
covalent bonds. The copolymer structure is defined by the arrangement of
consecutive G sequences, consecutive M sequences, and alternating MG
sequences, with the physical properties of alginate being influenced by the
copolymer composition, sequence formula, and overall length of the linear
chain (Augst et al., 2006; Bidarra et al., 2014). Alginate has gained
considerable attention as a biocompatible material due to its high
water content, good porosity, and adjustable viscosity. It is known to
readily form hydrogels, which can be utilized as scaffolds for loading both
cells and drugs (Maity and Das, 2021). Due to their biocompatibility and
cost-effectiveness, natural alginate hydrogels have become a popular
choice in the field of TE (Cao et al., 2023). Despite its advantages, the
clinical utility of alginate can be limited by its suboptimal mechanical
properties. Kosik-Koziol et al. (2017) developed a novel approach to
enhance the mechanical properties of 3D-printed hydrogel constructs for
CTE by incorporating short submicron polylactide (PLA) fibers into
composite bioinks containing alginate. Incorporating PLA short fibers

FIGURE 4
Diagram illustrates the steps involved in preparing and printing the sulfated interpenetrate network bioink. (A) The process of creating a bioink for
alginate/alginate sulfate-GelMA IPN involves the addition of the growth factor TGF-β3 to the mixture of alginate/alginate sulfate and GelMA solution,
which is then combined with porcine MSCs after the growth factor has been bound to the alginate/alginate sulfate. (B) The picture shows 3D bioprinted
structures. (C)A diagram illustrating the crosslinking procedures, wherein cylinders were printed and exposed toUV for 15 min and then subjected to
ionic crosslinking in a calcium bath for an additional 15 min. The resulting constructs were either cultured in vitro for 6 weeks or implanted
subcutaneously for 4 weeks. Adapted with permission from Wang et al. (2021).
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into alginate constructs resulted in a threefold increase in Young’s
modulus compared to pristine alginate constructs(from 6.9 to
25.1 kPa). In addition, the incorporation of short sub-micron PLA
fibers into alginate hydrogels not only enhanced mechanical
properties, but also improved cell viability compared to hydrogels
composed solely of alginate. The latter were observed to undergo
partial leaching after 14 days of incubation. Remarkably, the
chondrocytes retained their rounded morphology, implying that the
fiber-reinforced hydrogel system represents a promising substrate for
chondrocyte encapsulation and the mechanical support of tissue
structures. Given the limitations of traditional approaches, growth
factor therapy has emerged as an attractive alternative for promoting
the regeneration of functional cartilage (Quintana et al., 2009). Currently,
several approaches have been devised to regulate the delivery of growth
factors in a temporal and spatialmanner tomodulate the differentiation of
MSCs.Nevertheless, apprehensions regarding the initial burst releases and
changes to the bioactivity of growth factors still persist (Freeman and
Kelly, 2017; Chen et al., 2018; Caballero Aguilar et al., 2019; Gonzalez-
Fernandez et al., 2019; Peak et al., 2019). Wang et al. (2021) have
introduced a new class of bioink consisting of alginate sulfate
functionalized, growth factor eluting, alginate-gelatin methacryloyl
(GelMA) interpenetrating networks (Figure 4). This bioink is
specifically designed to facilitate chondrogenesis of encapsulated MSCs,
while providing suitable mechanical properties for the regeneration of
articular cartilage. The authors have successfully synthesized dual
crosslinked S-IPN constructs, exhibiting a remarkable compression
modulus of approximately 32.48 kPa. This value is significantly higher
than the sum of the individual components, suggesting a synergistic effect
of dual crosslinking in enhancing construct stiffness. The incorporation of

alginate sulfate into theGelMA interpenetrating network bioink facilitated
effective and continuous delivery of growth factor, resulting in enhanced
chondrogenesis and inhibition of hypertrophy of encapsulatedMSCsboth
in vitro and in vivo. Alginate is a biocompatible and natural polymer that
has beenwidely utilized in the 3Dprinting of bone and cartilage.Due to its
non-animal derived origin, it is a favorable material for hydrogel ink in
terms of biocompatibility. Although notable advances have been achieved
in the realm of 3D bioprinting of alginate for orthopedic purposes, there
are still a number of questions to be addressed, such as bad mechanical
properties, short of long-term stability, the absence of functional moieties
that can improve cell adhesion and proliferation, etc. (Murab et al., 2022)

2.4 Chondroitin sulfate-based bio-ink

The articular cartilage, being a vital component of the
musculoskeletal system, is composed of various biomolecules, of
which chondroitin sulfate plays a crucial role as the predominant
GAGs. Chondroitin sulfate (CS) is a crucial element of the cartilage
ECM, constituting over 80% of the GAGs present. The presence of
CS imparts the articular cartilage with essential physiological
functions that are imperative for the smooth functioning of the
joint (Lin T. S. et al., 2020b). CS in the cartilage ECM plays a crucial
role in providing mechanical support and imparting the necessary
viscoelastic properties to the tissue. The composition of CS varies
across different species and age groups. In the context of therapeutic
intervention for joint-related pathologies, CS has been employed in
combination with glucosamine to alleviate pain and facilitate the
restoration of cartilage, thus addressing the underlying causes of

FIGURE 5
The process of fabricating hydrogel implants made of HBC/OCS materials. (A) Images depicting the injectability of pre-crosslinked hydrogels
composed of 20HBC-3OCS and 40HBC-3OCS HBC/OCS. (B) printed sacrificial molds (C) Hydrogel implants with different shapes made of HBC/OCS.
(D) Implants made of self-crosslinked HBC/OCS hydrogel with diverse shapes and constituents. Adapted with permission from Li C. D. et al. (2019b).
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joint dysfunction. This synergistic approach holds promise for
ameliorating joint afflictions and enhancing overall joint health
(Li et al., 2016). In its native state, CS primarily occurs as a
component of aggrecan, a natural polymer that plays a crucial
role in several biological processes that contribute to the
maintenance of cartilage and its capacity to resist compressive
forces. CS’s hydrophilic properties and abundance of negatively
charged residues enable it to facilitate the retention of a significant
volume of water within the ECM. Under compression, some of this
water is released, only to be reabsorbed when the load is removed
(Roughley and Mort, 2014). In addition to its mechanical role in
providing resistance, the mechanism of water retention mediated by
CS also facilitates the exchange of nutrients and waste products,
thereby contributing to the proper function and performance of the
chondrocytes that are embedded within the matrix. CS is implicated
in a range of mechanical and biological processes associated with
cartilage function, including resistance to compressive forces, as well
as the absorption of water and nutrients. Moreover, CS exerts a
regulatory effect on chondrocyte metabolism at the cellular level
(Monfort et al., 2008; Aisenbrey and Bryant, 2019). It sustains the
structural integrity of cartilage and promotes the restoration of joint
function in arthritic conditions by virtue of several biological
properties. These properties include the capacity to modulate
inflammatory responses (Corradetti et al., 2016), preserve the
stem cell niche (Dyck et al., 2015) and regulate enzymatic
activities involved in cartilage homeostasis (Sage et al., 2013). In
addition, CS is a significant constituent of the ECM in mineralized
tissues. CS plays a pivotal role in regulating bone remodeling within
the intrabony microenvironment by modulating the differentiation
of osteoclasts and osteoblasts (Salbach et al., 2012). Thus, CS-based
scaffolds have garnered significant attention in the field of CTE
(Wang et al., 2007; Varghese et al., 2008; Sharma et al., 2013). To
generate a biocompatible cell-carrying hydrogel with a modifiable
structure. Li C. D. et al., 2019b) fabricated a shape-controllable
bionic hydrogel composed of water-soluble HBC and oxidized CS
(OCS). The Schiff base reaction was employed to covalently
crosslink the materials, thereby improving their mechanical
properties (Figure 5). In vitro and in vivo experiments
demonstrate the viability of culturing hMSCs in the HBC/OCS
hydrogel, with the cells retaining high levels of activity. As a
result, this biomimetic hydrogel, which is both shape-controllable
and cell-laden, holds great promise for utilization in the realm of
articular cartilage tissue engineering. Costantini et al. (2016)
employed GelMA, CS aminoethyl methacrylate (CS-AEMA), and
methacrylic acid hyaluronic acid (HAMA) as the main components
for the fabrication of a cartilage scaffold using 3D printing. In his
study, a 3D biomimetic hydrogel scaffold was constructed for the
purposes of CTE. The scaffold was designed to achieve high cell
density, with a concentration exceeding 107cells/mL, as well as a high
cell survival rate, which was observed to be greater than 85%–90%.
Additionally, the scaffold exhibited a high printing resolution,
reaching approximately 100 μm. Following a 3-week culture
period, it was observed that the scaffold promoted the
differentiation of BM-MSCs into chondrocytes. As for the
mechanical performance of the scaffold, its compressive modulus
can reach approximately 100.1 kPa. Notwithstanding the potential
benefits of employing CS hydrogel systems in CTE, extant research
indicates that such systems are encumbered by certain limitations

that impede their successful implementation. Specifically, their
degradation kinetics are deemed unsuitable, their mechanical
properties are inadequate in mimicking native cartilage tissue,
and they demonstrate a limited capacity for integration with the
host tissue (Shin et al., 2021).

3 Challenges and prospects

This article begins with a succinct overview of the merits and
limitations of widely used 3D printing methods. Subsequently, it
presents a comprehensive summary of hydrogels produced through
3D printing with natural polysaccharides, delineating their distinctive
features. Moreover, select prototypical instances are singled out to
generate curiosity and enhance readers’ cognizance regarding the
superior potential of NP-hydrogels in the field of CTE. In the
presented examples, we provide a comprehensive overview of the
diverse cell types employed in cartilage tissue engineering. It is
worth noting that among these, MSCs derived from bone marrow
or umbilical cord have emerged as the most promising candidates for
advancing CTE applications. The intrinsic lack of vascularization,
innervation, and inadequate chondrocyte differentiation in natural
cartilage renders the tissue incapable of proficient self-restoration.
However, the advent of bioprinting techniques has revolutionized TE
by enabling the construction of customized artificial tissues that
replicate the physiological characteristics of native tissues with
precision. In comparison to traditional methodologies, 3D
bioprinting provides several benefits, including the ability to
incorporate intended micro/nanostructures into scaffolds at the
intended location, efficient fabrication at a high throughput, and the
capacity for achieving exceptional spatiotemporal resolution. The
selection of a suitable bioink material assumes a critical role in the
precise fabrication of 3D printed scaffolds designed for orthopedic
applications. In light of this, hydrogels derived from natural
polysaccharides exhibit tunable chemical properties, desirable
processability, satisfactory cellular biocompatibility, biodegradability,
low cytotoxicity, and an inherent structural similarity to the ECM of
native cartilage. As a result, they have garnered considerable attention in
the development of scaffolds for CTE. Nonetheless, the mechanical
attributes of such hydrogels fall short of matching the requisite
properties of native cartilage, thereby constraining their clinical
utilization. By blending natural and synthetic hydrogels, it is feasible
to harness the superior mechanical characteristics of the latter alongside
the desirable biocompatibility of the former, thereby achieving an
optimal composite hydrogel for diverse biomedical applications.
Hence, the integration of natural and synthetic biomaterials utilizing
state-of-the-art fabrication methodologies continues to constitute a
prominent avenue for the development of in vitro cartilage
constructs. However, it should be acknowledged that achieving a
complete restoration of cartilage to its native composition,
architecture, mechanics, and biofunctionality remains a formidable
obstacle. Despite considerable advancements in the field of 3D
bioprinting of natural polysaccharides for articular cartilage
applications, successful clinical implementation remains a significant
challenge. Enhancing the rheological and mechanical characteristics of
natural polysaccharide-based inks and scaffolds represents a crucial area
of focus to address this issue. Further efforts are necessary to improve
the translational potential of this technology for clinical use.
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