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Lithium-ion cells can be considered a laminate of thin plies comprising the anode,
separator, and cathode. Lithium-ion cells are vulnerable toward out-of-plane
loading. When simulating such structures under out-of-plane mechanical loads,
subordinate approaches such as shells or plates are sub-optimal because they are
blind toward out-of-plane strains and stresses. On the other hand, the use of solid
elements leads to limitations in terms of computational efficiency independent of
the time integration method. In this paper, the bottlenecks of both (implicit and
explicit) methods are discussed, and an alternative approach is shown. Proper
generalized decomposition (PGD) is used for this purpose. This computational
method makes it possible to divide the problem into the characteristic in-plane
and out-of-plane behaviors. The separation of space achieved with this method is
demonstrated on a static linearized problem of a lithium-ion cell structure. The
results are compared with conventional solution approaches. Moreover, an in-
plane/out-of-plane separated representation is also built using proper orthogonal
decomposition (POD). This simply serves to compare the in-plane and out-of-
plane behaviors estimated by the PGD and does not allow computational
advantages relative to conventional techniques. Finally, the time savings and
the resulting deviations are discussed.
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1 Introduction

Energy storage systems (ESS) of electric vehicles are highly hierarchical structures
(Väyrynen and Salminen, 2012). The battery pack consists of several modules. These, in turn,
consist of several cells. Cells are available in different form factors (cylindrical, prismatic, and
pouch) (Budde-Meiwes et al., 2013). As a result, the internal structure is either winded or
stacked, but the basic stack-up is always the same, consisting of anode and cathode layers
which are separated by separator foils (Waldmann et al., 2016). The anode and cathode
themselves are laminates as well, consisting of the metallic current collector and a porous
coating, called active material (Reynolds et al., 2021). The stack-up, called jellyroll or
jellystack, can be regarded as a laminate of thin individual layers. The macro-mechanical,
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electrical, and thermal properties of a cell are determined by this
meso-structure. Due to the hierarchical structure of the ESS, the
properties of the overall system, i.e., the pack, are significantly
influenced by the behavior of the cells and their inner structure.
This is important, especially in the assessment of the ESS under
abuse conditions, such as a crash scenario. Knowledge about the
behavior of individual cells is required. In order to assess the cells,
numerical simulations (Kim et al., 2007) are used in addition to
experiments (Kisters et al., 2017). These are used to assess the
mechanical (Sahraei et al., 2012), thermal (Guo et al., 2010),
electrochemical (Lee and Park, 2012), or the coupled multi-
physical (Zhao et al., 2019) behaviors.

There are different modeling approaches for the FEA simulation
of cells, which differ in their levels of detail. Macroscopic models do
not consider the layered structure. In these models, the cell is
regarded as a uniform piece. The corresponding homogeneous
material parameters are calibrated via cell tests (Sahraei et al.,
2012; Wierzbicki and Sahraei, 2013; Beaumont et al., 2021).
These modeling strategies are computationally efficient but at the
expense of fidelity when it comes to the prediction of cell failure.
With these approaches, it is not possible to infer the behavior of
individual components.

On the other hand, detailed models of lithium-ion cells
distinguish the individual components (Breitfuss et al., 2013;
Gilaki and Avdeev, 2016; Wang et al., 2019). The material
properties of different components thus can be
parameterized—with a direct link to the overall macro-
mechanical behavior. This comes at massively increased
computational efforts.

However, even sections of the structure are sufficient to
determine essential information about the cell. For this purpose,
a limited section of the cell is modeled as a so-called representative
volume element (RVE) or unit cell. Sahraei et al. used such an RVE
to determine the influence of component failure on homogenized
cell behavior (Sahraei et al., 2016). Sonnberger et al. used a unit cell
model to infer the natural frequencies at the cell level (Sonnberger
et al., 2022). Kermani et al. focused on the analysis of in-plane loads
on the cell structure, which can lead to buckling (Kermani et al.,
2021). However, Budiman et al. focused on bending loads of the cell
(Arief Budiman et al., 2022). Analyses with representative unit cells
are also performed beyond the cell level. For example, Tang et al.
considered the combination and interaction of several (cylindrical)
cells (Tang et al., 2017). However, Üçel et al., on the other hand,
analyzed the micro-mechanical behavior of the active material by
means of an RVE (Üçel and Gudmundson, 2022).

For the evaluation and analysis of the risk posed by damaged
lithium-ion cells, however, the component behavior is of essential
interest. Damage to the separator (a layer between anode and
cathode) can lead to an internal short circuit of the cell, which is
a trigger for thermal runaway. In addition to gas release, this
exothermic process can also lead to cell fire or explosions (Chen
et al., 2020).

In crash simulations, it is common to solve them explicitly over
time. Here, the dynamic equilibrium equation (Eq. 1) is solved,
where F is the external force vector, K the stiffness matrix, D the
damping matrix, and M the mass matrix. The corresponding nodal
accelerations €U are summed to the velocities _U and displacementsU
using the central difference theorem (Eqs 2, 3) (Klein, 2015).

M €U
t + D _U

t + KU t � F, (1)
_U
t ≈

1
2Δt

U t+Δt − U t−Δt( ), (2)

€U
t ≈

1
Δt

_U
t+Δt

2 − _U
t−Δt

2( ). (3)

By inserting Eq. 2 and (3) into Eq. 1, the unknown displacement
vector U t+Δt can be calculated. The fact that the mass matrixM and
the damping matrix D are lumped together leads to a trivial
calculation of the inverse (Eq. 4) (Klein, 2015).

M + Δt
2
D( )U t+Δt � Δt2F − Δt2K − 2M( )U t − M − Δt

2
D( )U t−Δt.

(4)
The restriction here is that the Courant–Friedrichs–Lewy (CFL)

condition for a stable simulation must be fulfilled. This means that
the time step Δt has to be smaller than the critical time step Δtcrit
(Eq. 5) (Yang, 2018).

Δt<Δtcrit. (5)
The minimum element-related critical time step Δte crit is used as

the critical time step for the entire simulation (Eq. 6).

Δtcrit � min
e

Δte crit( ). (6)

The element-specific critical value depends on the wave
propagation speed ce and the minimum element dimension lemin

(Eq. 7).

Δte crit � lemin

ce
. (7)

This leads to problems with thin layers, among others, which
cannot be solved using subordinate formulations such as shells. An
example of this is a laminate, which is loaded in the thickness
direction. Due to the discretization with volume elements, the
minimum element dimension is limited with the ply thickness.
This is the case, for example, with lithium-ion cells, which are
subjected to transverse pressure. Therefore, such modeling has, in
general, two major limitations in terms of computational efficiency:
the minimum critical time step and the high number of elements to
be calculated. For the case of linear static calculation, the complexity
is further increased by the introduction of nodal damping (Rayleigh
damping).

With implicit time integration, the global system of equations is
used. This is shown in Eq. 8 for the undamped case.

M €U + K U( )U � F U( ). (8)
In case of quasi-static problems, the term of mass matrixM and

nodal acceleration €U is neglected. The stiffness matrix K is
dependent on the displacement vector U due to non-linear
material behavior. Therefore, the equilibrium is sought by
minimizing the residual force vector R(U), as shown in Eq. 9.

R U( ) � K U( )U − F U( ) � 0. (9)
Nevertheless, the solution according toU can only be carried out

iteratively, for example, with the Newton–Raphson method.
Therefore, the tangent stiffness matrix G (Eq. 10) is used to
calculate the displacement increments ΔU j (Eq. 11), which is
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also a linearized problem. Those increments are summed up over all
iterations j to the displacement vector U j (Klein, 2015).

G U( ) � ∂R U( )
∂U

, (10)
ΔU j � −G−1

U j( )R Uj( ). (11)

However, with this variant, it must be taken into account that the
matrices have to be inverted for the solution. This is also the fact in
the case of linear problems, where the dependence of the stiffness
matrix K onU is neglected. So the solution is calculated by inverting
the stiffness matrix. The inversion of the matrices is very
computationally intensive because they are non-diagonal matrices
whose dimensionality corresponds to DOF × DOF. DOF is the
number of degrees of freedom in the entire system. Modeling all
layers of a laminate with solid elements inevitably leads to highDOF
values.

Thus, both integration methods, explicit and implicit alike,
require more computational effort. This is exactly the problem
the authors tried to solve. In this paper, a solution approach is
presented with which it is possible to complete the implicit solution
of a laminate more quickly. A section of a lithium-ion cell is chosen
as an application case. By using PGD, a separation of space approach
is applied, which divides into the in-plane and out-of-plane
behaviors of the laminate.

Several intrusive and non-intrusive versions of the PGD-based
separation of the space technique have been developed in the past
and applied to a large variety of engineering problems (Bognet et al.,
2014; Quaranta et al., 2018; Leon et al., 2019; Quaranta et al., 2019;
Germoso et al., 2020). The latest usage of the method observes
applications such as wave propagation within plates (Goutaudier
et al., 2022), microwave heating of composite tapes (Tertrais et al.,
2019; Ghnatios et al., 2022), and parametric analyses of
thermoelastic layered functionally graded material (FGM)
composites (Kazemzadeh-Parsi M.-J. et al., 2021; Kazemzadeh-
Parsi et al., 2023).

Moreover, new variants of the method have recently been
developed, extending its application to non-separable and non-
simply-connected domains (Kazemzadeh-Parsi M. J. et al., 2021;
Kazemzadeh-Parsi et al., 2022). Finally, the coupling of in-plane/
out-of-plane representations with machine learning-based sub-
models has recently been investigated in Ghnatios et al. (2021).

The PGD is a model order reduction strategy, which enforces the
separation of variables when expressing the problem solution. This
leads to a strong reduction in the degrees of freedom to be solved.
Algorithmically, this transforms a full 3D problem into a sequence of
2D (in-plane) and 1D (out-of-plane) problems, guaranteeing
computational savings. The PGD furnishes a separated
approximation, which could also be computed via the reduced
proper orthogonal decomposition (POD). However, while the
former seeks such representation a priori, the latter can only be
computed a posteriori (once the full problem solution is available),
requiring much more computational effort.

In this paper, the application to a linearized problem is shown,
and the results are discussed in terms of time saving and resulting
error. The main innovation of this work is the application of PGD-
based separation of space to the detailed structure of a lithium-ion
cell. Until now, the computational effort is kept limited by using

macroscopic modeling approaches. With the approach presented
here, the computational effort can be reduced without sacrificing the
detailed modeling of the structure. It is demonstrated that despite
model order reduction, a physical representation of the in-plane and
out-of-plane behaviors of the structure can be achieved, which is
essential.

2 Methods

First, the design and structure of the commercial lithium-ion
pouch cell is discussed, which serves as the application case for this
work. A section of this structure (unit cell) is modeled in detail using
the finite element method. This unit cell is analyzed for three
different load cases. These increases in complexity differ in terms
of multiaxiality. For the solution, however, no conventional
procedure is used but an approach based on PGD was utilized.
For this, the linear global system of equations is exported using FEA
software. The reordering of the degrees of freedom is then carried
out on this. Subsequently, the problem is solved iteratively in-plane
and out-of-plane until convergence occurs. By summing out several
modes, the solution can be approximated as a finite sum of function
products.

2.1 Cell under study

A section of a commercial lithium-ion cell is used as the problem
for this work. This is a cell in a pouch format with the dimensions:
260 × 216 × 7.8 mm. The entire structure has a nominal capacity of
42 Ah and a mass of 0.9 kg. The structure of the cell was analyzed in
detail by Kovachev et al. (2019). The behavior under mechanical
loading was discussed by Raffler et al. (2022). Various layer
thicknesses and materials are listed in Table 1. The jellystack
consists of 42 separators, 21 cathodes, and 22 anodes. The pouch
foil envelops the stack. The thicknesses determined by microscopy
and published by Kovachev et al. were marginally scaled (by
approximately 3%) to replicate the total thickness of the cell.

The anodes consist of a current collector of copper, which is
coated with a graphite-based active material on both sides. The
cathodes have a core layer of aluminum covered with NMC. The
separators are always in between anodes and cathodes. These are

TABLE 1 Properties of the components (Kovachev et al., 2019).

Component Thickness [µm] Material

Anode 136

Current collector 9 Copper

Active material 63.5 Graphite

Cathode 165.2

Current collector 19.5 Aluminum

Active material 72.85 NMC (LiNiMnCoO2)

Separator 19.5 Polypropylene

Pouch 190 Polymers and aluminum
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porous plies made of polypropylene. This porosity in combination
with the liquid electrolyte enables the flow of ions between the
electrodes.

2.2 Unit cell

A section of the described cell is used as an application example.
A stack of 42 separators, 21 anodes, and 21 cathodes is utilized for
this procedure. The commercial software VPS-Pam-Crash was used
for modeling. The in-plane dimensions are 10 × 10 mm. The
thickness of the stack results from the number of layers and the
respective layer thicknesses.

This leads to an overall dimension of 10 × 10 × 7.14 mm for the
section under study (Figure 1 left).

As shown in Figure 1(right), the structure is discretized in the
plane by 21 × 21 nodes, i.e., an element size of 0.5 mm in the plane.
In the thickness direction, separators and current collectors are
represented by one element each. For the discretization of the active
materials, three elements are used along the thickness. Shared nodes
yield the connection of the individual layers, i.e., no interlaminar slip
is assumed. This results in a total of 337 nodes across the thickness.
This means that the problem being investigated consists of
445,851 DOF (21 × 21 × 337 × 3).

The material models of the individual layers were chosen
according to their characteristic behaviors. Material parameters
were established from samples extracted from a new and
discharged cell (Schmid et al., 2022). The in-plane behavior of
the samples was determined by tensile tests. The out-of-plane
behavior was identified by compression tests. The specimen
geometry for the tensile tests was 15 × 5 mm. For the
compression tests, a stack of components was compressed by a
flat-end impactor (D = 11 mm and R = 1 mm). For the stack of the
separator, 47 layers were used, and for the electrodes, seven layers
were used, resulting in a sample height of about 1 mm. For the
calibration of the quasi-static material behavior, the results at the
minimum test speeds were used. This was 20 mm/min for the tensile
tests and 1 mm/min for the compression tests.

The section of the cell structure, as shown in Figure 1, is analyzed
in three different load cases. These increases in the complexity of the
load case are shown in Figure 2. In the simplest case (Figure 2A), the
unit cell is only compressed in the thickness direction by 0.5 mm. All
degrees of freedom of the lower nodes are locked. In the second load
case, in addition to the compression in the thickness direction by
0.5 mm, a shear load in x- and y-directions is added. Therefore, the
upper nodes are displaced by 0.2 mm in the x- and y-directions
(Figure 2B). In the last load case, as shown in Figure 2C, in addition
to the compression, the upper nodes are displaced by 0.2 mm in the

TABLE 2 Parameters of different material models.

Component Bulk modulus [GPa] Shear modulus [GPa] Yield stress [GPa] TCO stress [GPa] Young’s modulus [GPa]

Anode CC 42 14 0.324

Cathode CC 22.2 7.4 0.212

Separator 2.5

Anode AM 1.0e–5 20

Cathode AM 1.0e–5 20

CC, current collector; AM, active material

FIGURE 1
Section of lithium-ion cells under study with overall dimensions in mm (left). Number of nodes in-plane and out-of-plane (right).
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y-direction to introduce a shear loading. The displacement of the
right nodes by 0.2 mm generates a tension load to the structure.

For all three load cases, the problem is solved linearly implicitly.
This allows the global system of equations to be exported. This
consists of the global stiffness matrix K , the global external force
vector F, and the global displacement vector U . Once the global
system is assembled using the commercial solver, it can be solved
quickly by applying the PGD-based separation of space approach.
Python 3.8 is used for this approach. The global displacement vector
U computed via VPS is exported to compare the PGD-based
solution. Moreover, an a posteriori separated approximation of U
is built via the POD to be able to compare the PGD in-plane and out-
of-plane displacements.

2.3 A priori in-plane/out-of-plane model
reduction based on PGD

Let us describe mathematically the unit cell and the related finite
element-based simulation. For this purpose, the unit cell is
represented by the three-dimensional separable domain Ω ⊂ R3,
expressed as Ω � Ωxy × Ωz, where Ωxy ⊂ R2 represents a two-
dimensional domain and Ωz ⊂ R is a one-dimensional domain.
The subscripts are related to the notation used for the corresponding
variables, the vector (x, y) and the scalar z, respectively. A
geometrical discretization is introduced, defining an in-plane grid
Ωh

xy, composed of Nxy nodes and an out-of-plane grid Ωh
z, of Nz

nodes. The three-dimensional mesh is recovered by the Cartesian
product of these grids Ωh � Ωh

xy × Ωh
z, yielding a total number of

nodes N � NxyNz. For clarity, it should be noticed that the
superscript h, as customarily used in numerical methods, just
tracks a generic discrete grid defined over the domain.

Let us now introduce a 3D displacement field u(x, y, z) of the
discretised structure Ωh, where the bold notation accounts for its
components u � (u, v, w), each one being a function of (x, y, z). For
notational simplicity, let us denote with m the number of in-plane
nodes Nxy and L with the number of layers, corresponding to the
number of out-of-plane nodesNz. A numerical computation (by the
aid of a finite element simulation, for instance) leads to the nodal
displacement, as shown in Equation (12).

U �
u1

u2

..

.

uL

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R3mL×1. (12)

Here, each ul collects the in-plane displacements at layer
l � 1, . . . , L. Since each displacement has its own components
(x, y, z), it is expressed as given in in Equation (13).

ul � ul,1, ul,2, . . . , ul,m, vl,1, vl,2, . . . , vl,m, wl,1, wl,2, . . . , wl,m( )T ∈ R3m×1.

(13)
The numerical solution of a mechanical problem defined overΩ,

for instance, using the finite element method, can, however, be
computationally prohibitive. Indeed, when rich through-the-
thickness behaviors need to be captured, a 3D finite element
formulation should be employed, and a high number of degrees
of freedom is often required in the thickness direction (Feng and
Aymerich, 2014; Duan et al., 2020; Lin et al., 2020). Moreover, if the
structure is a degenerated domain, for instance, thin structures
where the size of Ωxy is much larger than Ωz, the size of the
elements shall scale with the out-of-plane mesh granularity hz, to
avoid highly distorted elements (poor aspect ratio). Such
requirements often cause an excessively high computational
complexity.

Let us consider, for instance, a full 3D finite element formulation
of a static linear problem within an implicit simulation framework.
This leads to the assembled system, whereK ∈ R3mL×3mL denotes the
stiffness matrix and F ∈ R3mL×1, the nodal load vector (Eq. 14).

KU � F. (14)
The numerical resolution of the linear system is an expensive

task in finite element simulations with a huge number of DOF.
Indeed, for a first remark about the complexity of a finite element
simulation, the analysis of Farmaga et al. (2011) is followed. Let us
denote with C a positive constant, namely, the number of operations
per element, and with W the (sparse) stiffness matrix bandwidth.
Moreover, let E be the total number of elements and N the total
number of nodes. The assembly of K and F is carried out by first
evaluating the related contributions of a single element (so-called
local quantities) and then looping over all the elements. If C is the

FIGURE 2
Three different load cases for the investigation of the separation of space approach: (A) compression in the thickness direction, (B) compression and
shear loading of the stack, and (C) compression, shear, and in-plane tension loading.
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number of operations needed for the local assembly of one element,
then for global assembly, this scales asymptotically as
O(CE) � O(E). This reduces to O(E) as constants are
disregarded with asymptotic notation.

A second assembly step is required to add modifications for
prescribed nodal values, whose complexity, in the worst case,
amounts to O(NW). The solution of the system is also usually
divided into two stages. The first one is reordering. For instance,
when using Gaussian elimination, the matrix is transformed to an
upper triangular matrix, requiring an asymptotic complexity of
O(NW2). Second, the inversion of the system scales with
O(NW). In such a case, the total complexity scales
asymptotically as O(NW2). Since the transformation to an upper
triangular matrix grows fastest, it governs the complexity, which
finally scales asymptotically as O(NW2).

Within the literature of linear algebra, numerous algorithms
have been proposed to accelerate the matrix inversion stage. Most of
the methods are based on matrix bandwidth reduction, adequate
preconditioning, reordering, and factorizations (George and Liu,
1978; Saad, 2003; Timothy, 2006; Sybis et al., 2016; Conejero et al.,
2022).

Since in this work we look for an in-plane/out-of-plane reduced-
order model, the most suitable strategy for the linear system solution
is that proposed in Leon et al. (2019) and Germoso et al. (2020). Such
a method avoids the inversion of the full 3D system, based on
enforcing an in-plane/out-of-plane separated representation in the
solution, leading to a sequence of 2D and 1D systems.

Here, the a priori in-plane/out-of-plane separated
representation of the algebraic system is presented Leon et al.
(2019). For a better understanding, the linear system from
Equation (14) can be put into the form of Equation (15).

K11 K12 / K1L

K21 K22 / K2L

..

. ..
.

1 ..
.

KL1 KL2 / KLL

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u1

u2

..

.

uL

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

F1

F2

..

.

FL

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

ul � ul,1, ul,2, . . . , ul,m, vl,1, vl,2, . . . , vl,m, wl,1, wl,2, . . . , wl,m( )T,
Fl � Fx

l,1, F
x
l,2, . . . , F

x
l,m, F

y
l,1, F

y
l,2, . . . , F

y
l,m, F

z
l,1, F

z
l,2, . . . , F

z
l,m( )T. (15)

A reduced in-plane/out-of-plane form of the solution is assumed
and built by means of an iterative algorithm detailed hereafter. For
each layer l � 1, . . . , L, the separated form, as shown in Eq. 16, is
enforced, where Pk denotes the kth in-plane mode and Tk

l denotes
the kth out-of-plane contribution for the current layer. The product
of these two functions is called a mode, with its total number n in the
reduced model. The symbol + stands for the element-wise
Hadamard product.

ul ≈ un
l � ∑n

k�1
Pk+Tk

l . (16)

2.3.1 In-plane mode definition
The in-plane mode Pk is defined by the three components of the

displacement, where Pk
• contains the in-plane nodal values of the

component • (See Eq. 17).

Pk �
Pk

u

Pk
v

Pk
w

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ ∈ R3m×1,

Pk
• �

Pk
•,1

Pk
•,2

..

.

Pk
•,m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Rm×1. (17)

2.3.2 Out-of-plane mode definition
In Eq. 18, in the out-of-plane mode, at fixed layer l, Tk

l is
expressed in a similar manner, where T k

•,l contains the nodal values
of the component • at layer l, replicated for all the in-plane DOF
values.

Tk
l �

T k
u,l

T k
v,l

T k
w,l

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R3m×1,

T k
•,l � Tk

•,l

1
1
..
.

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � Tk
•,l1m ∈ Rm×1. (18)

2.3.3 PGD mode computation
The PGD unknown vectors are computed iteratively by means

of alternating in-plane and out-of-plane problems. Let us suppose
that, at the enrichment step n, un−1l has already been computed.
Then, the PGD solution at the current enrichment is expressed as
given in Equation (19).

un
l � un−1

l + Pn+Tn
l � ∑n−1

k�1
Pk+Tk

l + Pn+Tn
l . (19)

At this stage, the quantity Pn+Tn
l , for l � 1, . . . , L, is computed

by means of an alternating direction strategy (ADS) up to a fixed
point. This implies a further index (k) to track the ADS non-linear
iteration. For instance, starting from an initial guess for the out-of-
plane function, the fixed-point method is as follows:

• Tn
l (0) assumed

• for k > 0, until stagnation ofPn(k)+Tn
l (k), do

1. in-plane update: fix Tn
l (k − 1) and find Pn(k),

2. out-of-plane update: fix Pn(k) and find Tn
l (k).

The first remark concerns the initial guess Tn
l (0) for l � 1, . . . , L.

As previously defined, Tn
l involves only the three unknown scalar

values Tn
u,l, T

n
v,l, and T

n
w,l, which are then replicated over the in-plane

grid for algorithmic reasons. This means that the out-of-plane vector
to be assumed is basically the through-the-thickness kinematics of
the three components u, v, and w, as shown in Equation (20).

Tn � Tn
u,1 Tn

v,1 Tn
w,1 / Tn

u,L Tn
v,L Tn

w,L( )T ∈ R3L×1. (20)
In the following section, we enter in the details of the in-plane

and out-of-plane updates. For the sake of notational simplicity, the
superscript k of the non-linear iteration is suppressed.
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2.3.4 In-plane update
By defining the diagonal matrices Z

j
l � diag(Tj

l ) ∈ R3m×3m,
for each PGD iteration j � 1, . . . , n and for each layer l �
1, . . . , L, the by-layer nodal displacement is written, as in
Equation (21).

un
l � ∑n−1

k�1
Zk

l P
k + Zn

l P
n. (21)

Concatenating the matrices for all the layers, as shown in
Equation (22), the total displacement approximation is expressed,
as in Equation (23).

Tj �
Z

j
1

..

.

Z
j
L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R3mL×3m, (22)

Un � Un−1 + TnPn � ∑n−1
k�1

TkPk + TnPn. (23)

In the in-plane update, we look for the vector Pn, which
minimizes the current residual of the linear system, as described
in Equation (24).

Rn � F − KUn � F − KUn−1( ) − KTnPn � Rn−1 − KTnPn � 0.

(24)
Rearranging the terms and pre-multiplying the equation by TnT,

we obtain the reduced system to be solved, which is shown in
Equation (25).

TnTKTn( )Pn � TnTRn−1. (25)

Such a system scales with the number of in-plane nodesm since
TnTKTn ∈ R3m×3m, for an asymptotic complexity of O(m).

2.3.5 Out-of-plane update
In this step, the unknown vector is Tn, which can explicitly

appear in the expression of the current displacement Un, after
defining suitable matrices in the same fashion of the in-plane
update.

To this purpose, let us define the diagonal matrices
Pj � diag(Pj) ∈ R3m×3m, for each PGD iteration j � 1, . . . , n, and
the in-plane replicating matrix C, as shown in Equation (26).

C �
1m 0m 0m
0m 1m 0m
0m 0m 1m

⎛⎜⎝ ⎞⎟⎠ ∈ R3m×3. (26)

Here, 1m ∈ Rm×1 and 0m ∈ Rm×1 have entries all equal to 1 and 0,
respectively. In such a way, the current displacement at layer l is
expressed, as given in Equation (27).

un
l � ∑n

k�1
PkC

Tk
u,l

Tk
v,l

Tk
w,l

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (27)

The total through-the-thickness displacement is obtained by
introducing the block diagonal matrix (Equation (28)), accounting
for all the L layers where 0 ∈ R3m×3 has only zero entries. This yields
the global displacement, as shown in Equation (29).

Pk �
PkC 0 . . . 0

0 1 1 ..
.

..

.
1 1 0

0 . . . 0 PkC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R3mL×3L, (28)

Un � Un−1 +PnTn. (29)
This is enforced in the current global residual to obtain the out-

of-plane problem, which is shown in Equation (30).

Rn � F − KUn � F − KUn−1( ) − KPnTn � Rn−1 − KPnTn � 0.

(30)
Rearranging the terms and pre-multiplying the equation byPnT,

we obtain the reduced system to be solved, which is shown in
Equation (31).

PnTKPn( )Tn � PnTRn−1. (31)

Such a system scales with the number of out-of-plane layers
since PnTKPn ∈ R3L×3L, for an asymptotic complexity of O(L).

This procedure is performed until a defined number of iteration
K is reached or the result is not changing anymore. This means that
the deviation error ξ of two consecutive iterations is below a defined
limit ξlimit. To evaluate this, the Frobenius norm ‖•‖F is used, as
shown in Equation (32).

ξ � PnTn − TnPn��� ���F
TnPn‖ ‖F . (32)

It is worth noting that the full 3D system involving the matrix
K ∈ R3mL×3mL, whose asymptotic complexity scales as O(mL), is
never inverted. The complexity of each PGD enrichment is now
written asymptotically as O(K(m + L)), where K is the number of
fixed-point iterations. The complexity of each PGD mode k �
1, . . . , n is now asymptotically written as O(K(m + L)), where K
is the number of fixed-point iterations. This means that the total
complexity can be written as a function of n, K,m, L as
O(nK(m + L)).

The method presented here is used to solve the three linear
problems shown in Figure 2. Both the computation time and the
resulting error are used to evaluate the efficiency. As a reference, the
classical solution of the problem is used by inverting the stiffness
matrix K. As a measure of the resulting error, again the Frobenius
norm is used, which is shown in Equation (33).

ε � U inv − UPGD
���� ����F

UPGD
���� ����F . (33)

2.4 A posteriori in-plane/out-of-plane
model reduction based on POD

For the sake of comparison of the PGD results, an in-plane/out-
of-plane model of the displacement U (expressed in Eq. 12) can be
obtained a posteriori inspired by the POD (Antoulas, 2005; Volkwein,
2013). The displacements are collected by components splitting ul of
Equation (13) in the vectors, which are given in Equation (34).
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ux
l � ul,1, ul,2, . . . , ul,m( )T

uy
l � vl,1, vl,2, . . . , vl,m( )T

uz
l � wl,1, wl,2, . . . , wl,m( )T

⎫⎪⎪⎬⎪⎪⎭ ∈ Rm×1. (34)

The by-component matrices, as shown in Equation (35), are
binding such vectors by columns.

Ux � ux
1 ux

2 / ux
L( )

Uy � uy
1 uy

2 / uy
L( )

Uz � uz
1 uz

2 / uz
L( )

⎫⎪⎬⎪⎭ ∈ Rm×L. (35)

The POD applies to each one of these matrices in the
standard form of the singular value decomposition (SVD).
For instance, considering Ux, the SVD is expressed, as given
in Equation (36).

Ux � PuΣuT
T
u . (36)

WherePu ∈ Rm×m contains the eigenvectors ofUxTUx,Tu ∈ RL×L

contains the eigenvectors of UxUxT and Σu ∈ Rm×L is the matrix
storing the singular values σ. The reduced singular value decomposition
of rank r> 0 finds instead the separated approximation where the
matrices with superscript r are obtained considering only the first r
eigenvectors, as in Equation (37).

Ux ≈ Ux
r � Pr

uΣr
uT

r
u
T. (37)

In the literature of the POD, the first r eigenvectors are also
referred to principal modes, and in this case, they give a reduced in-
plane/out-of-plane separated representation of the displacement
field.

FIGURE 3
Comparison between simulation and experiments of the component tests. Tensile tests: (A) separator, (B) anode, and (C) cathode; compression
tests: (D) separator, (E) anode, and (F) cathode.
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It shall be noticed that this POD-based model reduction requires
the full knowledge of the displacement field, coming from the full
inversion of the system in Equation (14). This entails all the
computational drawbacks previously discussed.

3 Results

3.1 Material calibration

The unit cell consists of five different material models:

• Separator
• Anode—current collector
• Anode—active material
• Cathode—current collector
• Cathode—active material

For the calibration of the respective material models, the
results of tensile tests and compression tests were used, as
discussed by Schmid et al. (2022). In Figure 3, the
simulations are compared with the mean results of the
experiments.

FIGURE 4
Results of load case I: (A) quasi-static linear FEM solution (displacement norm), (B) first mode u-direction, (C) first mode v-direction, (D) first mode
w-direction, and (E) resulting error over the number of modes.
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Since a linearized problem is dealt with in the following section,
two different simulation variants were carried out. The red curves
show the results of the quasi-static non-linear simulations. The
results of the static linear versions are shown in blue.

Subplots a–c show the comparison of simulation and
experiments of the tensile tests. The parameters of all material
models are shown in Table 2. Anodes and cathodes behaved
approximately isotropically. Therefore, an isotropic elastic–plastic
material model was chosen for the current collectors. It is assumed
that the active material has no significant effect on the in-plane
behavior. This was taken into account by a tensile cutoff (TCO)
stress of 1.0 10−5 GPa.

In contrast to the electrodes, the separator has anisotropic in-
plane behavior. Therefore, three experimental mean curves are
shown in Figure 3A. The samples utilized in the machine
direction (MD) behave more stiffly than those utilized in the
transverse direction (TD). The averaged curve of the diagonal
direction (DD) lies in between. With the non-linear foam model
chosen for the separator, this anisotropy cannot be taken into
account. Therefore, the results of the diagonal direction were
used for the calibration of the tensile behavior. In the linearized
calculation, the initial slope of the compression curve is also used
as the tensile stiffness in this material model. This results in
deviations between the red and blue curves even in the range of

FIGURE 5
Comparison of PGD and POD for load case I: PGD (left) and POD (right). Resulting singular values over the number of modes (bottom).
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small strains. However, it is evident that a distinction is made
between the tension and compression phases in the case of a non-
linear solution. This leads to much better results despite the
unchanged material model.

Figures 3D–F show the results of the compression tests. The
results are used to calibrate the compression properties of the active
materials and the separator. The same material model (non-linear
foam) was used for the active materials of the anode and cathode as
for the separator. Again, the non-linear simulation results are shown
in red, and the linearized results are in blue.

3.2 Application of proper generalized
decomposition

Non-linear material models were used for all components.
Nevertheless, the application of the presented approach is shown
on a linearized problem—as the first step—for three different load
cases. This was performed to avoid an intrusive approach. Thus, a
deeper insight into the behavior and results of the method is
possible. All three load cases, as shown in Figure 2, were solved
with the described procedure. The applied deformation is

FIGURE 6
Results of load case II: (A) quasi-static linear FEM solution (displacement norm), (B) first mode u-direction, (C) first mode v-direction, (D) first mode
w-direction, and (E) resulting error over the number of modes.
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considered small enough to perform a static linear calculation. The
results are shown in Figures 4–7. A value of 10−6 was chosen as the
limit value ξlimit for the alternating direction strategy. If this value is
not achieved in 50 iterations, the process is terminated anyway, and
the next mode is calculated. In all three cases, 10 modes are used.

Figure 4 shows the results of the first load case. Here, the unit cell
is compressed in the thickness direction. The fringe plot of the
displacement norm of the linear static calculation using VPS-Pam-
Crash is shown in Figure 4A. This shows a maximum of 0.5 mm and
occurs at the upper nodes where the Dirichlet boundary conditions
are applied.

Figures 4B and C show the results of the first mode. Each mode is
composed of three components (u-, v-, and w-components). These are,
in turn, divided into an in-plane function P and an out-of-plane
function T. Accordingly, P is dependent on the in-plane position
(x- and y-coordinates), and T is the function of the z-coordinate.
Figure 4B shows the function for the u-component (displacement in the
x-direction). Here, we can observe the characteristic shape, which is
marked by oscillations. This area of the curve has 42 deflections, which
is consistent with the number of electrodes. These are due to the current
collectors, which also expand in-plane as a result of the Poisson’s effect
during transverse compression. The same characteristic curve is

FIGURE 7
Results of load case III: (A) quasi-static linear FEM solution (displacement norm), (B) first mode u-direction, (C) first mode v-direction, (D) first mode
w-direction, and (E) resulting error over the number of modes.
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observed for the v-component (displacement in the y-direction). The
w-component (displacement in the z-direction) does not show such
pronounced oscillations.Here, only different displacements of the layers
in the thickness direction are evident in the T function. From the in-
plane function P, it is observed that all areas are compressed equally
when viewed over the x–y plane.

The computing time of the commercial solver VPS-Pam-Crash
is used to compare the efficiency of the PGDmethod with respect to
classical strategies. The linear static calculation is carried out in
parallel (DMP 16 cores). This comparison shows that on average,
only about half the computing time of the industrial solution is
needed to calculate the first PGD mode. In addition, the PGD
routine in Python is not optimized in terms of computing time,
unlike the solver.

The resulting error ε over the number of modes used is shown in
Figure 4E. This shows that the first mode is already sufficient to
achieve a deviation of only 2.1 10−6. With the following modes, this
value can be minimized to 0.25 10−6.

Figure 5 shows the results obtained with PGD compared to the
POD results from the procedure illustrated in Section 2.3. The left half
shows the three normalized components of the first PGD mode, and
the right half shows the same components with POD. For the POD
components, the result of the classical FEM solution was used as the
basis for the data. (Eqs 34–37). The first 10 singular values are shown
in Figure 5(bottom). Therefore, the ratio of a singular value and the
sum of all are used. Again, it can be seen that the first mode is
sufficient to obtain a sufficiently good approximation of the solution.
Comparing all three components of the first mode, it is noticeable that
no significant deviations are apparent between the PGD and the POD
results.

The results of the second load case are shown in Figure 6.
According to Figure 2B, in this case, both compressions in the
thickness direction and shear in x- and y-directions are applied. The
results calculated using VPS-Pam-Crash are shown in Figure 6A.
The displacement norm here is a maximum of 0.575 mm. This again
concerns the top node layer.

The three functions for the u-, v-, and w-components are shown
in subplots b and c. For all three components, the in-plane function
P assumes a constant value. The out-of-plane component T has a
linear course from a global point of view. Locally, however, it is
characterized by different stiffnesses of the individual layers. These
lead to minor oscillations. This affects all three components.

The resulting error ε, which describes the deviations between
these two solutions, is shown in Figure 6E over the number of modes
used. Already with the first mode, the error ε of about 0.08 can be
achieved. With the following two modes, this value can be reduced to
about 0.014. With the following extensions, a minimum value of
0.005 is achieved.

The results of the third load case are shown in Figure 7. These
correspond to the boundary conditions in Figure 2C. This is the
most complex of the three load cases. The unit cell is compressed
more in the thickness direction than in the previous cases. In
addition to a shear load, a tensile load is applied in the plane.
The fringe plot of the high dimensional solution is shown in
Figure 7A. The maximum displacement norm here is 0.575 mm.
This value is present at the front upper edge.

The u-component of the first mode is shown in subplot 7b. This
is the component that determines the in-plane displacement and

represents the in-plane tensile load. Here, it is noticeable that the
out-of-plane function T has a constant value across the thickness.
The in-plane function P is also constant along the y-coordinate. The
x-direction appears linear only in the in-plane function. The
v-component of the first mode is shown in Figure 7C. The in-
plane function P is constant along both coordinates. The out-of-
plane function T has a stepped curve over the z-coordinate. The
functions of the w-component (Figure 7D) show a similar
characteristic shape. The in-plane function P is constant here as
well but with a negative value. The out-of-plane function T also has a
stepped curve over the thickness. This corresponds to the basic
pattern that is expected from the described boundary conditions,
which is also evident from the fringe plot in Figure 7A.

The deviation of the reduced solution using PGD from the
solution of the commercial solver is shown in Figure 7E over the
number of modes in use. With the first mode, a deviation of 0.08 can
already be achieved. With the three further modes, this value is
reduced to 0.06. By using all 10 modes, the resulting error can be
minimized to 0.004.

4 Conclusion

In this work, an alternative modeling and simulation framework
is proposed in the field of lithium-ion batteries, which are sensible
toward out-of-plane loading.

From one side, the study provides a useful in-plane/out-of-plane
characterization of the mechanical behavior, preventing
simplification hypotheses coming from shell-based formulations.
On the other side, the methodology circumvents fully solid-based
solutions, which are unaffordable for large-scale systems involving
extremely thin structures. Moreover, an additional faced challenge is
the minimal intrusiveness of the proposed procedure, which should
be easily integrated into commercial FEA software.

The algorithm exploits standard FEA software for the model
definition, structure discretization, and finite element assembly.
Afterward, the assembled system is tackled by means of the PGD
method, implemented as an external plug-in. This reorders the
original system in a layer-wise manner and enforces a separated
representation of the solution into in-plane and out-of-plane
components. The unknown increasing components are calculated via
an iterative algorithm based on an alternating direction strategy (ADS),
highly reducing the number of degrees of freedom involved in the
subproblems. The product of these two components is called a mode. By
stringing together several modes, the quality of the result is improved.

Since, in implicit simulations, system inversion is a really
computationally demanding task; explicit computations are often
preferred in industry, at the price of losing accuracy and verifying
time-stepping requirements. However, including the PGD-based
system solution in implicit computations appears as an appealing
alternative. Indeed, the total complexity of the PGD algorithm is
expressed as O(nK(m + L)), while that of classical methods, as
O(3mL). Since n and K are usually small (in the present study,
n≤ 10 and K< 10 allow an accurate enough solution) and
mL≫m + L, the PGD complexity is much lower than classical
inversion, making the algorithm particularly attractive.

The method is exemplified over three different load cases of a
linearized static problem defined for a lithium-ion cell. The model is

Frontiers in Materials frontiersin.org13

Schmid et al. 10.3389/fmats.2023.1212400

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1212400


defined using the industrial software application VPS-Pam-Crash,
and the structure is discretized using solid elements, obtaining a
laminate with a large number of degrees of freedom along the
thickness.

The results show that the deviation decreases with the number of
modes used. For example, in load case I, one mode is sufficient to
achieve a deviation of only 2.1 10−6. For the other load cases, which
are more complex, several modes are needed to achieve a sufficiently
small deviation below 1%. Thus, the load influences how many
modes are required.

By comparing PGD and POD, it was shown that almost the same
results were obtained. The main advantage of the PGD method
presented here is that no a priori database is required, while the
POD-reduced model is built only after solving the full system.

The computing time of the commercial FEA software
application VPS-Pam-Crash (parallel computing) is compared
with the needed time of the PGD routine. It has been shown that
on average, it takes about the same time to calculate twomodes using
Python as it does for the classical FEM solution in VPS-Pam-Crash.
However, it should be noted that the PGD implementation is
performed using Python without code parallelization and
optimizations, which will be addressed in further studies.

5 Outlook

In this work, the application was shown on a static linear
problem. However, the more common problems are cases with
non-linear behavior due to the material models. The application of
the presented procedure to non-linear problems with bigger
deformations is part of the current research. At least a semi-
intrusive approach is required to enable the iterative solution
(Equations 9–11) using commercial software. A comparison
between the modified Newton–Raphson procedure, the original
Newton–Raphson method, and the one with PGD would be
interesting. The implementation of this PGD-based model order
reduction approach would also allow a better comparison of the
computational time. By implementing it in a commercial solver, a
fair comparison can be achieved since both solution variants are
carried out in the same environment.

The performance of quasi-static non-linear calculations would
also increase the quality of the material models. In particular, for the
separator (non-linear foam), static linear calculations do not
subdivide into compressive and tensile stiffnesses. However, for
the representation of the in-plane anisotropy, a fundamentally
different material model must be used.

Additional potential in terms of computing time can be
generated by optimizing the PGD solution strategy. The
alternating direction strategy is used to calculate a mode. For
this, an assumption must be made in the first step (initial guess).
The choice of this assumption has an influence on how many
iterations have to be carried out to calculate the two functions T
and P. In the current work, a uniform initial guess was made. It can
be assumed that an advanced selection strategy shows potential to
increase the efficiency.

First, a possible embedding or linking of this method with
common crash simulations—which mainly use explicit time
integration—is carried out by sequential or simultaneous co-

simulation (Esgandari and Olatunbosun, 2015; Hu and Zhong,
2019). Next, the envelope (pouch) of the lithium-ion cell is
explicitly simulated. This simulation also includes contact
modeling of the cell environment. The jellyroll is modeled in
detail and solved time-efficiently using PGD in a parallel implicit
calculation. This makes it possible to explicitly simulate the structure
of the cell environment without suffering from the critical time step
of the fine discretization of the cell structure.
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Nomenclature

Variables

Δt Time-step size

l Element size

c Wave propagation speed

M Mass matrix

D Damping matrix

K Stiffness matrix

F Force vector

€U Acceleration vector

_U Velocity vector

U Displacement vector

DOF Number of degrees of freedom

G Tangent stiffness matrix

Ω Three-dimensional separable domain

N Total number of nodes

P In-plane mode

Σ Singular value matrix

σ Singular value

T Out-of-plane mode

r Rank

E Total number of elements

W Stiffness matrix bandwidth

C Number of operations

O Asymptotic complexity

P In-plane nodal values

T Out-of-plane nodal values

Z Diagonal out-of-plane matrix

b Concentrated out-of-plane matrix

R Residual force vector

P Diagonal in-plane matrix

C In-plane replicating matrix

P Block diagonal in-plane matrix

ξ Error alternating direction strategy (ADS)

K Number of fixed-point iterations

ε Error mode enrichment

Superscripts

t Number of time steps

h Geometrical discretization granularity

r Reduced matrix (r eigenvectors)

k Number of alternating direction strategy (ADS) iterations

n Number of modes

j Number of Newton–Raphson iterations

inv Computed by inversion

PGD Computed by PGD

Subscripts

e Number of elements

crit Critical value

min Minimal value

xy In-plane

z Out-of-plane

L Number of layers

m Number of in-plane elements

limit Limitation value
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