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The physical and mechanical properties of recycled aggregates (RA) among
different particle sizes are compared. Results demonstrate that adhesive mortar
content is a significant factor in determining the properties of recycled aggregate
concrete (RAC). The adhesive mortar content on the surface of recycled
aggregates is critical in selecting the most efficient strengthening treatment,
and effects of the strengthening treatment on properties of RA with different
particle sizes was reported. The utilization of RA was suggested to classify into
fine powder aggregate, fine aggregate, coarse aggregate based on the particle
size, i.e., the multi-scale grading utilization. The most suitable strengthening
treatment was reviewed for RA with various particle size to improve the it’s
utilization efficiency.
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1 Introduction

Excessive carbon dioxide emissions have a negative impact on global economy, society,
ecology (Pierrehumbert, 2019). Nowadays, many countries are implementing energy-saving
and emission reduction policies (Eurostat, 2017; Eurostat, 2018), because the shortage of
natural resources and the reduction of carbon emissions have become a global consensus.
However, with the rapid improvement of urban housing and transportation, the demand
for building materials such as cement, reinforced steel, sand, and gravel is ever-increasing,
leading to their continuous reduction. In addition, defects of early urban planning and
architectural functions led to the demolition of a large number of old buildings with
the improvement of urban housing and transportation, resulting in a huge amount of
construction waste. It is estimated that the annual emission of construction waste in China,
United States, and European Union exceeds 2.3 billion tons (Zheng et al., 2017), 700 million
tons (Wu et al., 2019), and 800 million tons (Ajayi et al., 2016), respectively. Therefore, the
improvement of utilization of construction waste and reduction of carbon emissions is
serious to the sustainable development of construction industry.

Themost effective treatment process for construction waste presently includes crushing,
magnetic separation, screening, and washing steps, resulting in the classification of recycled
aggregates. The type of recycled aggregates differs due to the structural form of the
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demolished building and crushing method, which can be recycled
concrete aggregate (RA), recycled clay brick aggregate, or recycled
mixed aggregate. Recycled aggregates are the most extensively used
in the construction industry due to impurities such as wood blocks,
reinforced steel, and plastics present in recycled mixed aggregate. It
is poor Los Angeles abrasion resistance and water absorption rate of
recycled brick aggregate than natural aggregates (Vegas et al., 2015;
Xie et al., 2015; Ossa et al., 2016). Additionally, the properties and
applications of recycled aggregates was reviewed in this paper.

The cement mortar layer attached on the surface of recycled
aggregates leads to the degradation of its properties compared to
natural aggregates primarily. Generally speaking, the thickness of
the adhesive mortar layer decreases as the number of crushing
increases, which makes the apparent density and water absorption
of RA trend to natural aggregates (Won and Park, 2010). Therefore,
the quality of recycled aggregates is directly related to the crushing
process and the number of crushing (Fang et al., 2020; Cho et al.,
2021). However, an increase in the number of crushing causes a
reduction in the particle size of the aggregates, leading to poor
particle size distribution and lower recovery rate (Yonezawa et al.,
2001). Choi et al. (2017) crushed waste concrete three times via a
cone crusher, and obtained recycled aggregate with a particle size
of 5–10 mm. Nagataki et al. (2004) found that with the increase of
crushing times, the recycled coarse aggregate produced by 1 ton of
waste concrete decreased from 0.6 ton to 0.35 ton.

In order to improve the property of recycled aggregate
without reducing the recovery rate of waste concrete, the crushing
technology and the method of removing the adhesive mortar layer
on the surface of recycled aggregate are combined and optimized
by many researchers, among which the representative methods
are as follows: Heat and rubbing (Hideo et al., 2019), acid and
ball milling (Fumoto et al., 2000), microorganism (Feng et al., 2020)
and carbonation (Chinzorigt et al., 2020), all the methods achieved
an expected effect. However, the equipment used in the above
methods is relatively expensive, and the process of removing the
mortar layer consumes a lot of energy, resulting in economic
and ecological problems (Al-Bayati et al., 2016), which makes the
combined treatment technology have more hindered than the single
crushing technology in the actual use. For example, using of acidic
solution in acid and ball milling method may be harmful to the
environment during the storage and disposal process (Wang et al.,
2017). The CO2 emissions of a single mechanical crushing process
are 1.5–4.5 kg/t, but reach 200 kg/t for the heat and rubbing process
(Quattrone et al., 2014). Therefore, the production process of high-
quality recycled aggregate should to be low-carbon, environmental
protected, and economical.

The construction waste can be used as filling waste after
grinding. In addition, a higher value-added utilization method
for construction waste can be divided into two aspects according
to the particle size: 1) The activity of fine powder can be
stimulated by mechanical activation, chemical activation, and heat
treatment, prior to using as cementitious materials (Florea et al.,
2014; Xiao et al., 2018), which can reduce the energy consumption
and environment pollution during the cement production process;
2) The construction waste can be crushed to obtain recycled
aggregate. This is an effective way to solve the shortage of sand
and stone resources in producing concrete, and can solve the
secondary pollution and occupation of cultivated land caused by

landfill and open stacking (Jiménez et al., 2016; Braga et al., 2017;
Feng et al., 2019).Therefore, recycled aggregates were reclassified in
this study. The physical and mechanical performance of recycled
aggregates with different particle sizes were analyzed. Effect of
various strengtheningmethod on properties of RAwas summarized.
These report is expected to provide direction for multi-scale grading
utilization of recycled aggregates and the subsequent research.

2 Recycled concrete aggregates

2.1 Properties of recycled aggregates

The recycled aggregate is composed of the natural aggregate
and the mortar layer adhered on its surface. The difference
between the recycled aggregate and the natural aggregate is due
to the existence of adhesion mortar layer and internal micro-
cracks. The mortar layer is difficult to be separated from the
surface of aggregates, which makes its apparent density and water
absorption significantly different from that of natural aggregate
(Otsuki et al., 2003; Poon et al., 2004; Etxeberria et al., 2006;
Pradhan et al., 2020). The crushing index, apparent density, and
water absorption of natural aggregate (Gokce et al., 2004; de Juan
and Gutiérrez, 2009; Butler et al., 2014; Duan and Poon, 2014;
Fan et al., 2014; Sidorova et al., 2014; Arezoumandi et al., 2015;
Pandurangan et al., 2016; Afroughsabet et al., 2017; McGinnis et al.,
2017; Kim et al., 2016; Yang and Lee, 2017; Dimitriou et al.,
2018; Gholampour and Ozbakkaloglu, 2018; Fan et al., 2020;
Sasanipour and Aslani, 2020; Mi et al., 2021) are about 6%,
2,600–2,700 kg/m³, and 0.5%–1.8% respectively, while those of
recycled aggregate (Gokce et al., 2004; de Juan and Gutiérrez,
2009; Butler et al., 2014; Duan and Poon, 2014; Fan et al., 2014;
Sidorova et al., 2014; Arezoumandi et al., 2015; Pandurangan et al.,
2016; Afroughsabet et al., 2017; McGinnis et al., 2017; Kim et al.,
2016; Yang and Lee, 2017; Dimitriou et al., 2018; Gholampour
and Ozbakkaloglu, 2018; Fan et al., 2020; Sasanipour and Aslani,
2020; Mi et al., 2021) are about 14%, 2,100–2,580 kg/m³, and
2%–10%, respectively. Researchers (Nassar and Soroushian, 2012;
Suryawanshi et al., 2015) found that the thickness of mortar layer
increases as the particle size decreases. Partial mortar layers on the
surface of recycled aggregates can be separated during the crushing
process, and larger aggregates transform into smaller particles.
Consequently, recycled fine aggregates increase while a portion of
the bondedmortar blendswith the fine aggregates, resulting in lower
apparent density and significantly higher water absorption rate than
that of natural aggregates (Akbarnezhad et al., 2011; Gokce et al.,
2011).

2.2 Research status of recycled aggregate
reuse

The substitution rate of recycled aggregate is an important
index in determining the properties of recycled aggregate concrete.
Etxeberria et al. (Etxeberria et al., 2007a) reported that the
mechanical property of recycled aggregate concrete decreased as
the dosage of recycled aggregate increased.The 28 days compressive
strength and flexural strength of the pervious concrete prepared
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entirely by recycled aggregates were reduced by 56% and 64%,
respectively, compared to the natural aggregate pervious concrete
(Toghroli et al., 2020). Dilbas et al. (2019) found that the 40%dosage
of recycled coarse aggregate was suitable, because the compressive
strength, tensile strength, and flexural strength of recycled aggregate
concrete just reduced by 2%, 4%, and 9% respectively. Mechanical
properties of recycled aggregate concrete can be improved by
decreasing the water-cement ratio reported by Zaben et al. (2021). It
should be noticed that the shrinkage of recycled aggregate concrete
gradually increased with increasing of the dosage. Thus, based on
the 7 days dry shrinkage strain less than 500 μm, it is recommended
that the dosage of recycled aggregates should not exceed 20%
and 40% when produced low strength (20–30 MPa) and medium
strength (30–50 MPa) recycled aggregate concrete, respectively. The
freezing-resistance of recycled aggregate concrete was studied by El-
Hawary et al. (2021), and results showed that mass loss of recycled
aggregate concrete increased as the dosage of coarse aggregate
increased.

The strength of concrete is influenced by obvious mineral
admixtures. Habibi et al. (2021) reported that recycled aggregate
concrete reached an optimal 90 days compressive strength when
cement was replaced by 10 wt% of silica fume; Recycled aggregate
concrete had a better durability when the ratio of silica fume:
granulated blast furnace slag: cement was 6.67: 23.83: 49.49. The
glass powder was ground into fine powder (less than 75 μm) and
used as mineral admixture by Salahuddin et al. (Salahuddin et al.,
2019). Results showed that the compressive strength and splitting
tensile strength of recycled aggregate concrete increased when the
dosage of the fine glass powder was 20 wt%.

2.3 Optimal particle size of recycled
aggregates

Table 1 lists the physical properties of recycled aggregates
used for discussion in Section 2.2. Most of the literature does

not reveal the strength grade of the original concrete, but
literature (Etxeberria et al., 2007a) specifies that the recycled
concrete source is roller compacted concrete (RCC). This RCC
contains approximately 49.1% natural aggregates and 43% bound
mortar. After crushing, 10–25 mm natural aggregates have an
apparent density of 2.67 g/cm³ and a water absorption rate of
0.886%, while 4–10 mm aggregates contain a mixture of natural
aggregates and boundmortar with an apparent density of 2.43 g/cm³
and a water absorption rate of 4.445%. This indicates that the
thickness of adhesivemortar is a key factor in leading to the decrease
of apparent density and the increase of water absorption rate.

Recycled aggregates had a particle size of 8–16 mm, but its
original particle of size was 11.2–22.4 mm reported in literature
(Dilbas et al., 2019), indicating that the aggregates had secondary
crushed. Table 1 shows that the apparent density and water
absorption rate were 2.47 g/cm³ and 0.84%, respectively, indicating
a small amount of adhesive mortar in recycled aggregates.
Nevertheless, some mortar still clung to the surface of aggregates.
Adhesive mortar is removed from the recycled aggregates during
secondary crushing. This indicates that adherent mortar content
of aggregates with a particle size of 5–8 mm increased after the
second crushing. Consequently, recycled aggregates with a particle
size range of 10–16 mm shows an excellent apparent density and
water absorption rate after direct crushing.

3 Strengthened recycled concrete
aggregate

3.1 Research status of recycled aggregate
reuse after strengthening

Theadhesion ofmortar layer on the surface of recycled aggregate
leads to a decrease in mechanical properties and durability of
recycled aggregate concrete. Strengthening treatment of recycled

TABLE 1 Physical properties of recycled aggregate.

References Source of recycled aggregate Particle size
(mm)

Apparent
density
(g/cm3)

Water
absorption

(%)

Etxeberria et al. (2007a) Roller compacted concrete consisted of
49.1% nature aggregate and 43%

mortar

4–10 2.43 4.45

10–25 2.67 0.89

Toghroli et al. (2020) Unknown 5–10 2.36 6.13

Dilbas et al. (2019) Recycled aggregate with a particle size
of 11.2–22.4 mm

8–16 2.47 0.84

Zaben et al. (2021) Unknown 5–25 2.63 9.73

El-Hawary et al. (2021) Unknown 5–9.5 2.47 4.09

9.5–12.7 2.43 5.14

12.7–19 2.39 6.12

Habibi et al. (2021) Unknown 5–25 2.46 4.80

Salahuddin et al. (2019) Unknown 5–19 2.34 5.00
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aggregate is effective for removing or strengthening themortar layer,
which can be narrow the gap between recycled aggregate and natural
aggregate (Evangelista et al., 2015; Esmaeeli et al., 2019; Evangelista
and Guedes, 2019; Pawluczuk et al., 2019). Filling pre-wetting,
pickling, inorganic material filling, and carbonation are the major
methods to strengthen recycled aggregates. Katz, (2004) soaked the
recycled coarse aggregate in the silica fume slurry, and made the
7 and 28 days compressive strength of prepared recycled aggregate
concrete increased by 28% and 15%, respectively. The recycled
aggregate is pretreated with silica fume slurry by Sasanipour et al.
(2021), leading to an improvement of resistivity of relevant recycled
aggregate concrete. Recycled coarse aggregate was pretreated with
nano-silica solution and cement slurry by Liang et al. (2015), and the
28 days compressive strength of recycled coarse aggregate concrete
increased from 27.6 to 41.4 MPa with a water-cement ratio of 0.43.
Acidic solution can effectively remove the mortar adhesion on the
surface of recycled coarse aggregate (Tam et al., 2007).The adhesion
of mortar layer of recycled aggregate can be strengthened by a
carbonation treatment. Recycled coarse aggregate was strengthened
by soaking with 3% acetic acid for 24 h and an accelerated
carbonation process, and results showed that the frost resistance and
sulfate resistance of the recycled aggregate concrete were improved
(Kazmi et al., 2020). Recycled coarse aggregate was strengthened
with a combination immersion method of hydrochloric acid and
sodium silicate by Ismail and Ramli (2013a); Ismail and Ramli
(2013b), and the 28 days compressive strength of the prepared C30
recycled aggregate concrete increased by 11.1%. Kou and Poon
(2010) reported that 10% polyvinyl alcohol (PVA) can effectively
strengthen the recycled coarse aggregate. Gholizadeh-Vayghan et al.
(2020) reported that both water absorption and porosity of recycled
aggregates showed a downward trend treated by carbonation. The
modified inorganic bonded fine powder was used to enhance the
surface of recycled coarse aggregates, accompany by an increase in
mechanical properties and impermeability of the prepared recycled
aggregate concrete (Choi et al., 2016).

The water absorption rates of recycled coarse aggregates
obtained from crushed mortar (water-cement ratios of mortar is
0.3, 0.4, and 0.5, respectively) were 10.5%, 12.6%, and 13.9%,
respectively. This water absorption rates decreased to 8.9%, 9.9%,
and 7.6% after treated by a 10 days carbonation (Liang et al., 2020).
This indicates that the minimum water absorption of different
recycled fine aggregates trend to a same level after carbonation,
that is, the higher water absorption of recycled fine aggregates is,
the more obvious the effect of carbonation. Kou et al. (2014) found
that the smaller the particle size of recycled aggregate is, the more
beneficial it is to the increase of apparent density after carbonation.
The water absorption of recycled aggregates obtained from crushing
of C30, C45, C60, and C80 concrete after carbonation decreased by
20.2%, 21.2%, 22.5%, and 24.1%, respectively (Zhan et al., 2014).The
crushing value of natural aggregate with a particle size of 10–20 mm
was 18% measured by Xuan et al. (2017a), and that of recycled
coarse aggregate was 27.8%. The crushing value of this recycled
coarse aggregate decreased to 20.6% after treating by carbonation,
a decrease of 25.9%. Pan et al. (2017) reported that the crushing
value of recycled fine aggregate can decrease from 18% to 10%
(a decrease of 44.4%) after carbonation treatment. The working
performance and 28 days compressive strength of recycled aggregate
concrete was improved when the recycled aggregate was pretreated

by carbonation (Zhang et al., 2015; Tam et al., 2016; Xuan et al.,
2017b; Luo et al., 2018; Lu et al., 2019), followed by a decrease in the
corrosion resistance (Poursaee andHansson, 2007; De Weerdt et al.,
2019).

3.2 Influence of strengthening methods on
performance of recycled aggregate

Performance indicators of recycled aggregate before and after
strengthening are shown in Table 2. The relationship between
apparent density and water absorption of recycled aggregate can
be seen in Figure 1. The apparent density showed an approximate
linear relationship with water absorption of recycled aggregate.
The apparent density increased after strengthening, while water
absorption decreased. The untreated recycled aggregate (the blue
region in Figure 1) showed a higher water absorption compared to
the strengthened recycled aggregate (the orange region in Figure 1).
The strengthening effects of water absorption, crushing value, and
apparent density of recycled aggregate can be found in Figures 2–4.
The treatmentmethods of inorganicmaterial filling and carbonation
showed an obvious effect for decreasing the water absorption. The
crushing value of recycled aggregate showed a sharp decrease after
carbonation strengthening. The treatment methods of inorganic
material filling and acid treatment are effective in increasing the
apparent density of recycled aggregate.

3.2.1 Effect of inorganic material filling on
properties of recycled aggregate

Strengthening methods such as silica slurry, cement slurry,
polyvinyl alcohol (PVA), and modified adhesive fine powder fill
and reinforce the surface of aggregates. As shown in Figures 2, 4,
a PVA coating method lead to an increase of 69.3% and 74.0%
in the water absorption rate of 5–10 mm and 10–20 mm recycled
aggregates, respectively, corresponding a decrease in the apparent
density of 0.85% and 2.07%, respectively. This indicates that PVA
can minimize water absorption rate but has a minimal impact on
improving the apparent density. The hydrophobic filler material
forms a water-repellent layer on the surface of the aggregate.
Therefore, themeasuredwater absorption rate represents the surface
value of the strengthened recycled aggregate. Refer to Figure 5A for
more specific details on the strengthening process.

3.2.2 Effect of acid treatment on properties of
recycled aggregate

The water absorption of recycled aggregates with particle size
ranges of 5–10 mm and 10–20 mm decreased about 12% and 10%,
respectively, as shown in Figure 2. The apparent density of recycled
aggregates with particle size ranges of 5–10 mm and 10–20 mm
increased by 5.38% and 3.00%, respectively, as shown in Figure 4.
This indicates that acid treatment can effectively remove the bonding
mortar on the surface of the recycled aggregates. Refer to Figure 5B
for more specific details on the strengthening process. The apparent
density of recycled aggregates is related to the water-cement ratio
and mineral admixture dosage of the original concrete, indicating
that the properties of adhesive mortar on the surface of aggregates
showed key role in determining the water absorption and apparent
density (Etxeberria et al., 2007b). The content of adhesive mortar
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FIGURE 1
Relationship between apparent density and water absorption of RA.

FIGURE 2
Water absorption of recycled aggregate.

FIGURE 3
Crush index of recycled aggregate.

increased as the particle size of recycled aggregate decreased (Nassar
and Soroushian, 2012; Suryawanshi et al., 2015). This is the main
reason for the better improvement effect of 5–10 mm recycled
aggregates after acid treatment compared to that of 10–20 mm
aggregates. Therefore, recycled aggregate with a particle range of
5–10 mm is suitable for acid treatment.

FIGURE 4
Apparent density of recycled aggregate.

3.2.3 Effect of carbonation treatment on
properties of recycled aggregate

Figure 6 shows the relationship between the apparent density
and water absorption of recycled aggregates before and after
carbonation. It shows that the apparent density andwater absorption
of untreated recycled aggregate with a particle size of 5–20 mmwere
2.55–2.60 g/cm3 and 6.9%–13.9%, respectively, which changes into
2.56–2.62 g/cm3 and 5.5%–9.9% after strengthening. The apparent
density and water absorption of untreated recycled aggregate with
a particle size of 0–5 mm were 2.39–2.45 g/cm3 and 10.4%–12.3%,
respectively, which changes into 2.40–2.46 g/cm3 and 8.2%–9.5%
after strengthening. This indicates that the apparent density showed
a little change but the water absorption decreased significantly
after carbonation. The water absorption of recycled aggregates
with an apparent density of less than 2.42 g/cm3 and more than
2.57 g/cm3 was reduced by about 3.5%. The crushed value of
recycled aggregates with a particle size of 0–5 mm is reduced from
18% to 10% (a decrease of 44.4%) after carbonation, as shown
in reference (Pan et al., 2017). This shows that carbonation can
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FIGURE 5
Strengthening treatment of recycled aggregate.

FIGURE 6
Relationship between apparent density and water absorption (carbonation treatment).

effectively reduce the crushing index of recycled aggregate and the
internal porosity of aggregates (Fang and Chang, 2015; Jang and
Lee, 2016; Liang et al., 2019). Refer to Figure 5C for more specific
details on the strengthening process. Therefore, recycled aggregates
with a particle size of 0–5 mm should be treated by carbonation
strengthening.

3.3 Relationship between particle size and
strengthening methods of recycled
aggregates

It can be concluded that: 1) Recycled aggregates with a particle
size of more than 5 mm should be treated by an inorganic material
filling process, which significantly decreased the water absorption;

2) Recycled aggregates with a particle size of less than 5 mm should
be treated by a carbonation process, which effectively decreased the
water absorption and crushing value; 3) Recycled aggregates with a
particle size of 5–10 mm should be treated by an acid treatment, and
the effect of acid treatment on apparent density andwater absorption
is related to the content of adhesivemortar on the surface of recycled
aggregates.

4 Classification of recycled aggregate

In addition to surface adhesion mortar of aggregates (Liu et al.,
2019; Nie et al., 2019), recycled aggregates of different particle
sizes have significantly different performance compared to nature
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aggregates. For example, recycled aggregates with a particle size
0–5 mm shows a good crushing value after carbonation treatment.
Recycled aggregates with a particle size of 10–20 mm shows a
good apparent density and crushing value after direct crushing.
Recycled aggregates with a particle size of 5–10 mm shows a
good crushing value. The different characteristic of particle sizes
should be taken into consideration for the better utilization of
recycled aggregates. Recycled aggregates can be divided into three
scales: fine powder aggregate (particle size less than 5 mm),
fine aggregate (particle size of 5–10 mm), and coarse aggregate
(particle size of 10–20 mm) for the multi-scale hierarchical
utilization.

5 Reclassification and reuse of
recycled aggregates

5.1 Fine powder aggregate and fine
aggregate

Recycled fine powder aggregate contains high weight of adhered
mortar, resulting in a high water absorption rate and low apparent
density that is markedly different from natural aggregates. This
recycled fine powder shows a high carbonation activity, which can
be used to prepare pre-products such as sound insulation board,
heat insulation board and small block by a carbonation process, as
shown in Figure 7. These products were prepared using Recycled
fine powder aggregate via a compression moulding method. The
strength of pre-products can be significantly improved during the
carbonation process.

5.2 Coarse aggregate

Coarse aggregate is a viable coarse aggregate for recycled
concrete, as its water absorption rate and apparent density are
comparable to those of natural aggregates, and it contains a small
amount of bondingmortar. However, the content of adheredmortar
on the surface of the aggregate is a crucial factor affecting the
workability, mechanical properties, and durability of freshly mixed
and hardened concrete.

Therefore, the method of digital image (Gu et al., 2014) is
selected to divide and label mortar and aggregate based on
color differences, and quantify the mortar adhesion rate and
shape coefficient of recycled coarse aggregate were quantified.,
the shape coefficient is used to match the natural aggregate,
as shown in Figure 8 when the mortar adhesion rate does not
exceed 30%. When the adhesion rate of mortar exceeds 30%,
the adhesion rate of mortar is reduced by two times of “low-
temperature heating—particle molding.” The recycled aggregate
should be soaked and dried by CPCM (cement based permeable
material) before preparing recycled aggregate concrete if this two
times treatment was not enough. It is necessary to mix the
cement slurry first, and then add other aggregates. It should be
noted that the recycled aggregates should be pre-wet, as shown in
Figure 9.

A multi-scale classification method for utilization of recycled
aggregate was proposed in this study, and has the following
advantages compared with previous studies: 1) Increase the level of
recycling utilization of RA; 2) An appropriate strengtheningmethod
was chosen according to the particle size of RA; 3) Utilization the
best performance of RA.

FIGURE 7
The specific process for preparing green building materials from mortar aggregate.
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FIGURE 8
Intelligent sorting process for adhered mortar aggregates.

FIGURE 9
Pre-wetting process for adhered mortar aggregates.

6 Results

A review regarding researches on the utilization of recycled
aggregates was conducted in this paper.The effects of reinforcement

technology on the performance of recycled aggregates were
summarized. The relationship between various reinforcement
technologies and particle size of aggregates was reported. The main
findings are as follows:
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(1) For directly crushed recycled aggregates, the optimal particle
size range for apparent density and water absorption rate is
between 10 and 16 mm.

(2) Recycled aggregates with a particle size of more than 5 mm
should be treated by an inorganic material filling process,
which significantly decreased the water absorption. Recycled
aggregates with a particle size of less than 5 mm should be
treated by a carbonation process, which effectively decreased the
water absorption and crushing value. Recycled aggregates with a
particle size of 5–10 mm should be treated by an acid treatment,
and the effect of acid treatment on apparent density and water
absorption is related to the content of adhesive mortar on the
surface of recycled aggregates.

(3) According to the performance advantages of the recycled
aggregates before and after strengthening, it is re-classified,
mainly including three scales of recycled fine powder, mortar
aggregate, and bonded mortar aggregate. The recycled fine
powder can be directly prepared products after carbonation
treatment. Mortar aggregate has better water absorption and
more internal pores after inorganic material filling or acid
treatment, which can be used as the aggregate of soundproof
board, heat insulation board, and other prefabricated boards.
The binder mortar aggregate has similar water absorption,
apparent density and crushing value to the natural aggregate,
and can directly replace the natural aggregate to produce
recycled aggregate concrete. The multi-scale grading utilization
of recycled aggregate can be realized.

7 Future work

A classifying and utilizing method for recycled aggregate
was proposed according its particle size in this study for a
higher utilization level of construction waste. However, a specific
replacement rate of RA cannot be provided during the classification
and utilization, and the process parameters should to be further
confirmed. Therefore, a combined method of experiment and

simulation should be conducted in the subsequent research to
determine the replacement rate and process parameters.
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