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Machine learning (ML) techniques emerged as viable means for novel materials
discovery and target property determination. At the vanguard of discoverable
energy materials are perovskite crystalline materials, which are known for their
robust design space and multifunctionality. Previous efforts for simulating the
discovery of novel perovskites via ML have often been limited to straightforward
tabular-dataset models and compositional phase-field representations.
Therefore, the present study makes a contribution in expanding ML capability
by demonstrating the efficacy of a new deep evolutionary learning framework for
discovering stable and functional inorganic materials that adopts the complex
A2BB′X6 and AA′BB′X6 double perovskite stoichiometries. The model design is
called the Evolutionary Variational Autoencoder for Perovskite Discovery (EVAPD),
which is comprised of a semi-supervised variational autoencoder (SS-VAE), an
evolutionary-based genetic algorithm, and a one-to-one similarity analytical
model. The genetic algorithm performs adaptive metaheuristic search
operations for finding the most theoretically stable candidates emerging from
a target-learnable latent space of the generative SS-VAE model. The integrated
similarity analytical model assesses the deviation in three-dimensional atomic
coordination between newly generated perovskites and proven standards, and as
such, recommends the most promising and experimentally feasible candidates.
Using Density Functional Theory (DFT), the novel perovskites are subjected to
thorough variable-cell optimization and property determination. The current
study presents 137 new perovskite materials generated by the proposed EVAPD
model and identifies potential candidates for photovoltaic and optoelectronic
applications. The new materials data are archived at NOMAD repository (doi.org/
10.17172/NOMAD/2023.05.31-1) and are made openly available to interested
users.
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1 Introduction

The discovery of new materials is fundamental to addressing numerous technological
challenges. Traditionally, the process consists of experimental synthesization and/or
quantum mechanics first-principles calculations. Despite the significant contributions of
both approaches, they remain inadequate for substantially large search spaces as they tend to
be considerably difficult, unpractical, uneconomical and computationally expensive. In
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Edisonian experiments, for example, new materials have to be
synthesized by reacting chemical participants to produce new
chemical compounds. Such experimental effort will strongly
depend on experiential knowledge, and in some cases, trial-and-
error, thereby limiting their usability over a wider spectrum of
design requirements and/or material class. Similarly, first-
principles (ab initio) methods are generally known to be
computationally expensive due to the heavy price of solving the
costly Schrödinger equation on a many-body Hamiltonian system.
In this context, data-driven Artificial Intelligence (AI) technologies,
that are based on Deep Generative Modeling (DGM), have emerged
as potentially more reliable, inexpensive, andmore rapid alternatives
for the systematic identification of novel (unknown) and complex
materials. By solving an inverse design scheme (Fuhr and Sumpter,
2022), DGM processes can efficiently accelerate the search for new
materials within a robust chemical combinatorial or design space. In
several contemporary studies, DGMs are trained on target-specific
material properties by learning from a materials dataset in a semi-
supervisory manner. The semi-supervisory approach comprises an
unsupervisory algorithm used to regenerate new materials and a
supervisory algorithm for conditioning a target-property of interest.
A proven semi-supervisory DGM used in solving the inverse design
challenge is the Semi-Supervisory Variational AutoEncoder (SS-VAE)
(Kingma et al., 2014), which is a variant of the traditional Variational
Autoencoder (VAE) (Kingma and Welling, 2013). The SS-VAE is a
directed graphical model and operates by projecting a probabilistic
distribution of the original data onto a compact latent space. At the
same time, the SS-VAE learns a representative labeled data associated
with the training dataset during the unsupervised learning process. The
latent space itself can be visualized as a hyperdimensional reduced
representative form of the original data, whereby explorative and
forensic investigations can be conducted (Kamnitsas et al., 2018).
Moreover, the efficiency of a SS-VAE model can be influenced by
several factors that evolve around the application field of interest
and/or hyper-parameter tunings. Within the context of materials
discovery, two aspects are of high importance for influencing the
performance and design architecture of SS-VAE models. First are
material inductive biases, which leverage on the current
physicochemical state of the material class. Such biases are
known to influence the choice of descriptor design, such as
choosing between implementing graph-based modeling (Xie and
Grossman, 2018; Mansimov et al., 2019), image-based modeling
(Ren et al., 2022; Chenebuah et al., 2023) or phase-field modeling
(Jena et al., 2019). Second are target-specific search optimizations.
Optimizing for specific target properties is normally conducted in
the latent space and, thus, influences the overall modeling
architecture and sampling strategy. Customarily, SS-VAE
models are instinctive latent space optimizers, which is due to
the effect of the incorporated supervisory learning algorithm. The
supervisory target-learning network predicts a labeled material’s
property of interest in hyperdimension and, as such, organizes the
latent space based on inferred knowledge from the prediction
process.

In prior studies moreover, the practicality of SS-VAE models
has been demonstrated for systematic materials discovery. For
instance, as applied in a vanadium oxide (V-O) SS-VAE generator,
new polymorphic compounds were successfully identified by
target-learning the latent space using features that quantitatively

assess stability from a strict formation energy perspective (Noh
et al., 2019). In another research, a novel target-property
predicting SS-VAE model was combined with a diffusive
decoding model for generating thermodynamically stable 2D
materials (Lyngby and Thygesen, 2022). Likewise, a Fourier
Transformed Crystal Property (FTCP) representation was used
to describe a wide stoichiometry of inorganic crystals for
simulating the prediction of new stable compounds in a target-
learnable SS-VAE latent space (Ren et al., 2022). In as much as SS-
VAE models have achieved considerable successes, some technical
challenges persist with their target-learning capabilities.
Specifically, a common limitation is a phenomenon referred to
as posterior collapse (Lucas et al., 2019), whereby the model fails to
properly utilize the latent space, and therefore, generates unknown
materials that are substantially different from the predefined target
objective. Another major challenge is that a significant proportion
of generated materials from an explorative sampling strategy are
decoded to be chemically infeasible or inaccurate due to
overlapping geometrical coordination of constitutive atoms
(Ren et al., 2022).

To address the aforementioned challenges, the current study
develops an evolutionary-based deep learning materials generator
that enhances target-specific search optimization in the latent space
while applying a geometrical similarity analysis on atomic coordination
for recommending novel materials that are theoretically more likely to
be chemically stable. The proposed Evolutionary Variational
Autoencoder for Perovskite Discovery (EVAPD) model progressively
combines a SS-VAE deconstructive algorithm, an evolutionary-based
genetic algorithm (Michalewicz and Schoenauer, 1996), and a one-to-
one similarity analysis based on geometrical coordination. Moreover,
the study focusses on the discovery of host materials that adopts the
perovskite stoichiometry. Perovskites in general are well known for their
appealing functionalization, in-demand applications, and robust design
space afforded by their chemical flexibility (Johnsson and Lemmens,
2005; Zhang et al., 2022). Common bulk perovskite stoichiometries
include the simple ternary structures (ABX3) and the quaternary
double B-site (A2BB′X6), as well as the more complex quinary
structures with combined double A- and double B-sites
(AA′BB′X6). Previous efforts for developing machine learning
frameworks for novel perovskite discovery have been limited to
straightforward tabular-dataset models with phase-field
compositional representation and ternary organic/inorganic ABX3

structures (Pilania et al., 2016; Chenebuah et al., 2021; Tao et al.,
2021). In contrast, the current study demonstrates the efficacy of a deep
evolutionary learning architecture for discovering stable and
synthesizable double inorganic perovskites (i.e., A2BB′X6 and
AA′BB′X6). A significant proportion of the newly identified
perovskite candidates are confirmed to be unique (i.e., not found in
the training dataset), and with functional properties that can be
serviceable in photovoltaic and optoelectronic applications. Using
the Quantum Espresso software package (Giannozzi et al., 2009), the
identified candidates are subjected to first-principles Density Functional
Theory (DFT) validation. Novel perovskites that successfully undergo
full variable-cell DFT relaxation are then recommended for further
investigation and/or potential synthesization.

The present study is organized as follows. First, the study
highlights the unlimited design space afforded by the perovskite
material class and describes the proposed modeling approach used
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in representing multi-stoichiometrical compounds that adopts the
perovskite chemical formula. Second, the performance of the
EVAPD model is assessed and the results of the forward and
inverse design modeling experiments are presented based on
standardized evaluation metrics. Third, the generative modeling
approach is demonstrated for some newly predicted host materials
and their properties are determined using machine learning and
DFT. Finally, the developed EVAPD model is compared to other
contemporary design architectures to demonstrate the scientific
contribution of the current study.

2 Materials and methods

2.1 Perovskite chemical combinatorial
design space

The bulk ternary ABX3 compound is the most fundamental and
prevalent stoichiometry for perovskite crystal structures. Consisting
of three distinctive chemical sites, the A- and B-sites are occupied by
cationic elements, whereas the X-site is anionic. The coordination
environment for both A- and B-sites corresponds to twelve and six
X-site anions, respectively, to form the Pm3m cubic closed packed
(CCP) crystal structure (Johnsson and Lemmens, 2005). Moreover,
considerable non-idealized and ionic-swapping (i.e., inverse- or
anti-perovskites) can form (Wang et al., 2020), which creates
other complex variants with multifunctional properties. Examples
of two complex variants are the double B-site (A2BB′X6) and double
A- and B-sites (AA′BB′X6) perovskites (Mitchell et al., 2017). Both
double stoichiometrical forms are higher derivatives of the primitive
ABX3 and are generally formed through several phenomena that
encompass cationic displacements/defects, local ionic-site sharing,
and deliberate extrinsic doping, among others (Woodward, 1997;
Lufaso and Woodward, 2004). Figure 1 illustrates the arrangement
of constitutive chemical ions with respect to singleABX3 and double
B-site A2BB′X6 perovskites. Considering the A2BB′X6 formula, for
example, the B-site ionic location is consecutively shared by two
different chemical elements to form a rock-salt coordinated
structure. Although less common in natural forms, the double
A-site (AA′BB′X6) perovskite can be regarded as a more

advanced extension to their double B-site counterpart. Equally
characterized by their ionic sharing behavior, both predominant
A- and B-sites are conjointly occupied by two different chemical
elements to produce a more complex stoichiometry. As such, the
emerging materials from both A2BB′X6 and AA′BB′X6 perovskite
crystals are suggested to be of even higher importance to materials
scientists and engineers due to their unique properties that stem
from the contributing effect of more chemical elements at distinctive
ionic site locations. Furthermore, the chemical flexibility afforded by
these respective stoichiometries to accommodate numerous
elements from the periodic table, is also what makes double
perovskites very diverse. For instance, exclusively permuting the
94 naturally occurring chemical elements, while mindful of anti-
perovskite stoichiometrical possibilities and charge imbalances from
Jahn-Teller electronic instabilities (Knapp and Woodward, 2006),
the potential number of A2BB′X6 and AA′BB′X6 structures are
estimated at C94

4 � 3, 049, 501 and C94
5 � 54, 891, 018, respectively.

This rough estimate does not take into account the possibility of
polymorphic variants, which are of a different physical phase and,
thus, exhibit special behaviors that are unrelated to their duplicate
peers (Zhao et al., 2020). As a result, an unlimited number of novel
perovskite materials are potentially yet to be discovered, which only
data-driven technologies can facilitate at a considerably rapid rate.
In this context, the evolutionary deep learning model developed in
the current study provides an accelerated discovery approach
towards the design of serviceable perovskite materials.

2.2 Image-based descriptor design

Molecular and organic materials have standard representative
forms for feature engineering their chemical structures, such as
Simplified Molecular Linear Input Specification (SMILES)
representations (Weininger, 1988) and graph-based methods
(Mansimov et al., 2019). For crystalline materials however, there
currently exists no absolute descriptor design, which is a
consequence of material-inductive biases. Modeling descriptor
design for crystalline materials will have to take into
consideration the crystal material class, the physicochemical state
of the material, the stoichiometry, and the periodic effect of the
reciprocal lattice. Previous efforts for broadly representing general
inorganic crystals have been proposed using the Fourier
Transformed Crystal Property (FTCP) (Ren et al., 2022).
However, such a broad descriptor design is constrained by local
exploitative search mechanisms (e.g., perturbative search
operations), in order to randomly capture theoretically feasible
materials within a diverse pool of material classes. To address
this limitation, the present study constructs a user-interpretable
image-based descriptor design for optimizing the explorative search
of multi-stoichiometrical perovskite materials. The design consists
of two sections that play crucial roles in the modeling objectives of
the current study. The first section contains six crystallographic
features that include: discretized atomic number (i.e., elemental
label), stoichiometrical type, ionic occupancy, lattice parameters,
number of atoms in the unit cell, and fractional atomic coordinates.
The aforementioned features are essential for generative modeling,
as they define the arrangement and bonding of atoms for all newly
discovered perovskites. The second section provides thirteen

FIGURE 1
The double B-site perovskite crystal structure relative to the
single ABX3 (ternary) perovskite structure. For the double B-site, the
single B-site ionic location is consecutively shared by two cations
(B and B′) to form a complex A2BB′X6 quaternary structure
(Mitchell et al., 2017).
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discretized (one-hot encoded) features that comprehensively
describe the thermochemistry behavior of all constitutive
chemical elements that build the crystal structure. They include
group number, row number, electronegativity, covalent radius,
valence, ionization, electron affinity, spdf block, molar volume,
average ionic radius, polarizability, specific heat, and thermal
conductivity. The discretized features are crucial for mapping
perovskites to their corresponding target properties (Xie and
Grossman, 2018). As such, the thermochemistry properties assist
in the organization of the latent space via the target-learning model,
in addition to the supportive feedback models that are integrated
into the evolutionary learning branch. Figure 2 illustrates the
stacking arrangement and matrix array size of all contributing
feature embedding. Both distinctive sections are horizontally
concatenated, three-dimensionally reshaped, and zero-padded to
produce an RGB (image-based) perovskite descriptor with an overall
input matrix array of size (94 × 8 × 3).

2.3 Semi-supervised variational
autoencoder (SS-VAE) model

For generative modeling, a regularized latent space is crucial for
smoothly transitioning between data points in hyperdimension.
Emerging from Bayes theorem, Variational Autoencoders (VAE)
enable such regularization by encoding feed inputs using predefined
probability distributions (Kingma and Welling, 2013). For a known set
of original perovskite samples (i.e., xi{ } ⊆ X ∈ RR), the encoded VAE
latent vectors (i.e., zi{ } ⊆ Z ∈ RQ) are obtained using a probabilistic
recognition (i.e., encoding) network, whereby Q≪R denotes
dimensionality reduction or feature extraction. The goal of VAE is
therefore to approximate the true posterior pθ(z|x) in the decoding

phase by learning the distribution qϕ(z|x) at the encoding phase. Due
to the competing nature of the encoding and decoding functions,
training losses occur, and can be optimized by minimizing the
measurable distance between both probabilistic functions. The
divergence between both functions is estimated using the Kullback-
Leibler (KL) loss metric (Kullback and Leibler, 1951), in addition to
other loss functions that measure reconstruction. Through a sequence
of back-propagation and stochastic gradient descent, the general VAE
loss function Lvae can be expressed using Equation-1:

Lvae ϕ, θ( ) � KL qϕ z|x( )
�����pθ z( )[ ] − 1

n
∑n
i�1

logPθ x|z( )[ ] (1)

ϕ and θ are parameters corresponding to recognition and
generative models, respectively. On averaging the distribution
logPθ(x|z) over i � 1, 2, . . . , n entries, the reconstruction error of
all perovskite feature embedding can be calculated, which is
practically equivalent to the Mean Squared Error (MSE). Based
on a reparameterization technique, the sampling efficiency and
overall optimization of the VAE model can thus be further
improved using Equation-2:

z � μ + σ ⊙ ,where  ~ N 0, I( ) (2)
z is the perovskite latent vector that is drawn from the distribution
qϕ(z|x); μ and σ are deterministic vectors denoting mean and
standard deviation, respectively; and  is a random variable from
the standard Gaussian (normal) distribution N . Moreover, the
latent space of the general VAE model can be further organized
on specific targets to produce the Semi-Supervised Variational
Autoencoder (SS-VAE) (Kingma et al., 2014). A common SS-
VAE technique is by using a target-learning (prediction) arm for
optimization, which assists in organizing target properties in

FIGURE 2
Image-based descriptor design for representing ABX3, A2BB′X6, and AA′BB′X6 perovskite stoichiometries, which serve as input in the generative
modeling exercise.
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hyperdimension. The current study implements such technique by
incorporating a feed-forward neural network (i.e., Multi-Layer
Perceptron (MLP)) for capturing thermodynamically stable
perovskites. The target to be regressively learnt in
hyperdimension is the formation energy (Ef ). Moreover, the
study prefers regressive-based supervisory modeling for
classification (Noh et al., 2019) as it allows the cardinal reflection
of intrinsic data distribution in continuous values within the latent
space. As a result, the overall objective function, comprising of
training losses from the unsupervisory VAE model and the
supervisory MLP model, can be expressed using Equation-3:

Lsvae � Lvae ϕ, θ( ) + 1
n
∑n
i�1

Ef i − Êf i( )2⎡⎣ ⎤⎦
︸�������︷︷�������︸

regression

(3)

Lvae(ϕ, θ) are VAE losses previously defined in Eq. 2. The
regression part of Eq. 3 is theMSE (or L2-loss) from theMLPmodel,
which minimizes the differential error between the targeted Ef and
predicted Êf values.

2.4 Developed deep evolutionary learning
framework

As illustrated in Figure 3, the deep evolutionary framework
implemented in the current study begins by transforming perovskite
samples (i.e., ABX3, A2BB′X6, and AA′BB′X6 stoichiometries) into
image-based representative forms xi{ } ⊆ X ∈ RR (Figure 2). For
training, the probabilistic SS-VAE encoder e(.) dimensionally

reduces all image-based input perovskites to produce
hyperdimensional vectors (i.e., e(X) ↦ Z) that are contained
within a smooth and continuous latent space. The encoded latent
space is pre-optimized on thermodynamic stability by conditioning
a target-learning MLP model to regressively predict the formation
energy (i.e., f(Z) ↦ Ef ). The target-learning operation assists in
organizing the latent space by distinguishing stable versus unstable
regions. For sampling the interested stable region, the current study
applies the Spherical Linear Interpolation (SLERP) technique
(Shoemake, 1985). In principle, SLERP is based on the theory of
spherical quaternions and achieves explorative search by carrying
out semantic vector interpolations in conformity to the volumetric
shape of the hyperdimensional space. Given the interested latent
space vectors (i.e., z{ } ⊆ Z ∈ RQ), SLERP can be formulated as in
Equation-4:

�Zij zi, zj; t( ) � zi
sin 1 − t( )θ

sin θ
+ zj

sin tθ
sin θ

(4)

�Zij0(RQ: 1 × Q) is the interpolated vector in
hyperdimensional Q space along spherical finite length t ∈ [0, 1]
(i.e., line-space). In the current study, t is evenly distributed within a
spacing interval of 0.2, with Q equals 256. The interpolation process
therefore produces new data points at an angle θ between two
interpolated points. As a result, iteratively exploring all regional
sampling points produces (t max

0.2 − 1) × CZ
2 unique data points that

possess hereditary properties of both zi and zj reduced perovskite
forms.

Moreover, the SLERP technique is characterized by its tendency
to lean more towards the variety extreme in the variety-validity
tradeoff (Ren et al., 2022). Here, validity refers to the price in

FIGURE 3
Proposed Evolutionary Variational Autoencoder for Perovskite Discovery (EVAPD). The modeling approach progressively combines a Semi-
Supervised Variational Autoencoder (SS-VAE), a Genetic Algorithm (GA), two fitness-scoring convolutional neural networks (Conv2D), and a geometrical
similarity-screening test to form the deep evolutionary learning framework.
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generating structurally feasible candidates (i.e., exploitation), but at
the expense of diversity. Variety on the other hand pertains to
diversification in generated candidates (i.e., exploration), but at the
expense of feasibility. The present study attempts to manage the
higher variety extreme from SLERP by implementing an exploitative
similarity test analysis that improves validity. In addition, the
present study integrates an evolutionary algorithm for further
optimizing the sampled solutions generated from the SLERP
process. The evolutionary search algorithm performs
metaheuristic search operations and ranks the generated
solutions based on a fitness-scoring process. For this purpose, the
Genetic Algorithm (GA) is preferred over other similar evolutionary
models due to its computational flexibility in allowing user-defined
fitness functions and non-derivative problem-solving capability
(Michalewicz and Schoenauer, 1996). The GA model searches for
the most promising perovskite candidates by conducting dynamic
iterative operations over a batch population via a process that is
inspired by biologically motivated crossover and mutation of genes
(scalars) and chromosomes (vectors). Moreover, the current study
modifies the mutation process of the GA model to be quality-
adaptive, by flipping the genes of low-quality solutions twice as
much as high-quality solutions. To comprehensively search for
high-quality candidates, the fitness function of the GA model
(g(Z)) outputs and ranks the quality of the derived solutions
based on three important factors. The first consideration takes
into account the energy above convex hull (Ehull) parameter,
which represents the thermodynamic decomposition state of a
compound and has been recommended in previous studies for
indexing synthesizability. As demonstrated on 80% of sulfides
and oxides, compounds with Ehull ≤ 0.08 eV/atom are highly
stable upon synthesization (Singh et al., 2019). As such, the
fitness function of the GA model is configured to search and
rank solutions based on an ideal Ehull value that equals zero. For
this purpose, a two-dimensional convolution neural network
(Conv2D) is pre-trained to predict the labeled Ehull target of
training perovskite samples (i.e., f(X) ↦ Ehull). The Ehull

Conv2D model interacts with the GA model by providing
feedback analysis for updating the fitness function. The second
consideration complements the first by using information from
the Inorganic Crystal Structure Database (ICSD) (Belsky et al.,
2002) labeling to predict the most synthesizable perovskite
solutions. In general, ICSD materials are chemical compounds
that have been certified mostly from physical experiments. The
current study justifies the usage of ICSD labels by using explainable
interpretability technique to connect them to the Ehull parameter.
Thus, in addition to the Ehull Conv2D model, the GA also
progressively updates the fitness function by using feedback
information from a pre-trained secondary Conv2D model that is
conditional on ICSD classification (i.e.,f(X) ↦ ICSD). As such, the
GA model highly ranks perovskite solutions that are predicted to be
ICSD compounds (1) and lowly ranks perovskites that are not
predicted as ICSD compounds (0). It should be noted moreover
that highly ranked H � g(Z) GA solutions do not necessarily mean
that they all would be chemically feasible upon post-processing.
Therefore, a third consideration is applied for post-analytical
screening of all high-quality solutions. By simulating a similarity
analysis, the study seeks to minimize the concern of overlapping
atomic coordinates in a unit cell, which leads to the detrimental

reconstruction of invalid or unfeasible materials. Using a one-to-one
differential comparison approach, the similarity test empirically
evaluates the geometrical deviation in coordinated environment
of all constitutive atoms in the unit cell, relative to some
perovskite standards. Given a latent vector �Zij ∈ RQ from the
SLERP-GA process, the similarity analytical test calibrates
structural feasibility for reconstructed perovskite outputs
(i.e., x̂ij{ } ⊆X̂∈ RR) using the mathematical expression in
Equation-5:

∑Ω x̂ij( ) −Ω �x( )∣∣∣∣ ∣∣∣∣
Natoms

≤F (5)

�x is the perovskite standard used for comparison, which
conforms to the specific type of perovskite stoichiometry in
addition to the number of atoms Natoms in the unit cell; Ω(.)
evaluates the absolute one-to-one differences in three-
dimensional atomic coordination between decoded latent vectors
and corresponding standards. As such, Eq. 5 measures the average
dissimilarity value (F ) in fractional atomic coordinate with respect
to standards.

2.5 Variable-cell DFT relaxation using
Quantum Espresso

Using the first-principles Density Functional Theory (DFT)
simulation technique, the novel candidates emerging from the
EVAPD pipeline are chemically and geometrically validated to
ascertain their synthesizability potential. For this purpose, the
Quantum Espresso (QE) DFT software package (Giannozzi et al.,
2009) is used to perform plane-wave Generalized Gradient
Approximation (GGA) calculations, as parametrized on a
Perdew-Burke-Ernzerhof (PBE) (Perdew et al., 1996) - Projector
Augmented Wave (PAW) pseudopotential class (Blöchl, 1994;
Kresse and Joubert, 1999). For validating the novel candidates,
the current study applies two successive DFT approaches. First,
non-spin polarized DFT relaxation is performed on stationary unit
cells of the crystal lattice in order to find the most stable three-
dimensional configuration of constitutive atoms or ionic positions.
The preliminary relaxation exercise saves computational resource by
ensuring that only chemically-balanced and atomically-optimized
candidates (i.e., novel perovskites with converged total electronic
energy) are selected for further investigation. For the second
relaxation phase, the overall crystal structure is thoroughly
examined by performing variable-cell relaxation (vc-relax) on all
axes and angles of previously converged unit cell candidates.
Moreover, the second optimization phase includes spin polarized
(magnetic) calculation by inducing collinear starting magnetization
values on the initially relaxed geometry. Such spin polarization is
beneficial for understanding the magnetic behavior of the material,
i.e., di-, para-, ferro-magnetism, etc. For both relaxation phases,
appropriate K-points grid meshes are used to sample the three-
dimensional Brillouin zone of the reciprocal crystal lattice, as
recommended by Materials Cloud (Talirz et al., 2020). The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) iterative algorithm is
applied for ionic and cell optimizations. Self-consistent field (SCF)
electronic convergence is achieved by setting energy accuracy, force
and pressure at 1.0e-7 Rydberg, 1.0e-3 Rydberg/Bohr, and 0.5 kbar,
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respectively. The energy cutoff threshold for charge density is set at
ten times the corresponding value for wave function from the
chemical element pseudopotential’s condition (Prandini et al.,
2018). To ensure that a smooth integration of electron
occupation occurs across the fermi energy level, Gaussian-
smearing technique with low broadening (0.01 Rydberg) is used.

3 Experiment and simulation results

3.1 Perovskite dataset

For training the Evolutionary Variational Autoencoder for
Perovskite Discovery (EVAPD) model, the current study uses
scientific data from the Materials Project (Jain et al., 2013).
Using pymatgen MPRester, the training samples are extracted
from the platform by searching for only generic entries that
adopt the three interested perovskite stoichiometries, i.e., ABX3,
A2BB′X6 and AA′BB′X6. The extracted perovskite data are
screened to ensure that compounds with no more than forty
atoms in a conventional unit cell are selected for investigation
(i.e., Natoms ≤ 40). Limiting to forty atoms is necessary because of
inadequate data beyond this threshold. The screening process
resulted into 8,228 inorganic perovskite compounds for
experimentation. As illustrated in Figure 4A, the data
prevalence with respect to the three investigated stoichiometries
is about 51%, 46%, and 3% for ABX3, A2BB′X6, and AA′BB′X6,
respectively. Likewise, Figure 4B illustrates the stacked percentage
of atomic unit cells for each stoichiometry. It can be seen that
Natoms � 5, Natoms � 10, and Natoms � 20 dominates ABX3,

A2BB′X6, and AA′BB′X6, respectively. For all cases however,
Natoms � 10 constitutes a significant amount of data
representation corresponding to about 21%, 65.2%, and 21.2%
for ABX3, A2BB′X6, and AA′BB′X6, respectively. On assessing
targets based on stability, 23% of all experimented data are
considered to be perfectly stable (i.e., Ehull � 0), and 97.9% have
negative formation energies (i.e., Ef < 0). The dataset also contains
about 32.1% of experimentally certified ICSD perovskites. Using
Figures 4C, D, the correlation in distributed data between Ehull and
labeled ICSD perovskites are graphically displayed. It can be
observed that for perovskites with decorated ICSD labels, the
data frequency is highly distributed towards the zero mark of
idealized stability.

3.2 Preliminary forward design evaluation on
target-property prediction

The forward design can be formulated as: given the perovskite
crystal structure, find the corresponding target (i.e., f(X) ↦ y),
whereby X is the image-based perovskite material as described in
Figure 2, and y are the interested targets. By solving the forward
design, the study investigates the target-property prediction quality
of the developed image-based descriptor used to represent a
perovskite material in the training dataset. The targets considered
for simulation include the formation energy (Ef ), the energy above
convex hull (Ehull), and ICSD labeling. For predicting Ef , a different
approach is used however, since the prediction variable itself is
conditional on the general performance of the inverse design SS-
VAE model, and not on the feedback loops that are used to update

FIGURE 4
Data statistics of ABX3, A2BB′X6, and AA′BB′X6 perovskite stoichiometries used in the training experiment: (A) pie chart of sample occurrences; (B)
relative percentage in the number of constitutive atoms in the unit cell of a stoichiometry; (C) and (D) reveal the frequency in data distributionwith respect
to the energy above convex hull (Ehull) target for ICSD and Non-ICSD compounds, respectively.
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the fitness function of the genetic algorithm. For predicting Ehull and
classifying ICSD labels, independent two-dimensional convolutional
neural networks (Conv2D) are pre-trained for modeling their
respective forward design functions f(.). The forward design
experiment is conducted on the preprocessed dataset (Section
3.1) and is evaluated using five-fold cross-validation. The
Conv2D architectures for modeling both Ehull and ICSD targets
are identical and comply with the type of supervisory analysis,
i.e., linear and sigmoidal functions for regression (Ehull) and
binary classification (ICSD), respectively. Details on the design
architecture are provided in Supplementary Material. In the case
of regressive analysis, the study uses standardized metrics in the
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)
and coefficient of determination (R2%) to assess the accuracy. As a
result, Figure 5A reveals cross-validated results on the prediction of
Ehull based on the three distinctive stoichiometries. The average
MAE (± standard deviated) scores are estimated at 0.109 ± 0.006 eV/
atom, 0.047 ± 0.004 eV/atom, and 0.059 ± 0.005 eV/atom for ABX3,
A2BB′X6, and AA′BB′X6, respectively. Likewise, RMSE scores are
estimated at 0.262 ± 0.038 eV/atom, 0.143 ± 0.046 eV/atom, and
0.085 ± 0.023 eV/atom, respectively. For classifying ICSD versus
Non-ICSD labeled perovskites, standardized metrics in the average
Receiver Operating Characteristic (ROC) on all five-fold cross-
validated sets was applied, with average Area Under the Curve
(AUC) determined at 84.35% ± 1.08%. To further highlight the
importance of the ICSD label, the current study introduces a model
interpretability technique in the Shapley additive explanations
(SHAP) (Shapley, 1953; Lundberg and Lee, 2017). SHAP analyzes
the average marginal contribution of an input feature across all
possible feature coalitions towards the prediction of a target. For this
purpose, eight DFT-predicted variables are used as inputs to
ascertain their relationship with the ICSD target. The inputs
include Ef , Ehull , energy band gap (Eg ), structural density, unit
cell volume, and three-dimensional inter-axial cell angles (i.e., alpha,
beta, and gamma). From the SHAP summary plots in Figure 5B, the
Ehull parameter is strongly recognized as the best correlative feature
with the ICSD target. The horizontal axis indicates the impact of a
feature value for positively or negatively influencing the
classification process. As such, the plot confirms the positive

influence of lower Ehull values (i.e., blue in the plot) and the
negative influence of higher Ehull values (i.e., red) for classifying
ICSD labelled perovskites. The results demonstrated by the Shapley
process are consistent with the data distributive analysis, as
illustrated in Figures 4C, D. More information on the forward
design modeling results are provided in Supplementary Material.

3.3 Performance of the SS-VAE inverse
design model

The proposed SS-VAE model is used to inversely generate
unknown perovskites while using target-learning information
from a supervisory Multi-Layer Perceptron (MLP) model. For
evaluating the model’s performance, the reconstructive errors
from the encoding-decoding phases of important feature
embedding is investigated. In addition, the efficacy of the target-
learning MLP for organizing the latent space based on predicted
formation energy is evaluated. For predicting the formation
energy, the latent space vectors (i.e., zi{ } ⊆ Z ∈ RQ) from the
encoding SS-VAE model are mapped to Ef via the branched
MLP network (i.e., f(z) ↦ Ef ). The branched MLP architecture
is progressively downsized using dense layers, and is linearly
activated at the final output layer to comply with the prediction of
continuous values (i.e., regression). Figure 6A displays the
regressive fitting analysis of the MLP model with overall
average R2 at 92.31% ± 1.23%, while Figure 6B displays a
comparative chart on the relative performance of each stoichiometry
from the prediction process. The realized MAE values for predicting
ABX3, A2BB′X6, and AA′BB′X6 formation energies are estimated at
0.191 ± 0.010 eV/atom, 0.104 ± 0.006 eV/atom, and 0.181 ± 0.022 eV/
atom, respectively. For evaluating the generative modeling behavior, the
current study applies standardized loss metrics for measuring the
deviation in reconstruction between originally encoded perovskites
(i.e., z � e(X)) with their corresponding decoded forms
(i.e., X̂ � d(z)). The functions e(.) and d(.) denote encoding and
decoding, respectively. Table 1 reports average stoichiometry-specific
results of important feature embedding, as carried on a five-fold cross-
validation experiment. From the reported results, it can be observed that

FIGURE 5
Results on forward design modeling. (A) Stoichiometric-specific MAE and RMSE evaluations on the prediction of Ehull with average overall MAE at
0.079 ± 0.002 eV/atom, as experimented using five-fold cross-validation; (B) SHAP summary plot with correlative features arranged according to
average marginal importance towards the classification of ICSD labeled perovskites.
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for one-hot encoded features, the reconstructive performance is fairly
similar, and practically negligible among all stoichiometries. For feature
embedding that is not one-hot encoded, the average overallMAE values
are reported at 0.739 ± 0.033 Å, 5.196° ± 0.220° and 0.022 ± 0.001 Å/Å
for lattice edge vectors, inter-axial angles and fractional atomic
coordinates, respectively. More information on the modeling
architecture, including hyperparameter specifications for
guiding the SS-VAE learning process, is provided in
Supplementary Material.

3.4 Generating novel and stable perovskites
of the double stoichiometry

The architectural design of the SS-VAE model dimensionally
reduces each image-based perovskite into encoded data points of
vector length R256: 1 × 256 in the latent space. Figure 7 illustrates
the smooth transitional behavior of the latent space and displays the
distinctive regions that qualify stable and unstable data points. To
gain more insight into the pattern of the encoded latent space,
Figures 7A, B use principal component analysis (PCA) to plot the
top two orthogonal axes that produce the largest variance from the
data transformation process. The PCA algorithm used is the
t-Distributed Stochastic Neighbor Embedding (t-SNE), and is
chosen due to its better functionalization for capturing complex
or nonlinear data structures (van der Maaten and Hinton, 2008).
The t-SNE illustrations are shown for real/continuous (Figure 7A)
and discrete/binary formation energy points (Figure 7B).
Categorizing the formation energy into discrete values simply
enables a quicker identification of highly stable points. Highly
stable perovskites are predefined by their formation energy values
within the range Ef ≤ − 1.5 eV/atom. Such a stable threshold
constitute good proxies for designing formable photovoltaic
materials (Ren et al., 2022). In the corresponding figures, they
are colored yellow and constitute about 69.3% of the overall

perovskite dataset used in the deep evolutionary learning
experiment. Emerging from the t-SNE plot, the effect of the
target-learning arm can be visualized with respect to the
distinctive separation of highly stable data points (yellow) from
their unstable counterparts (blue). However, for sampling stable
data points, the current study refers to the direct latent space and not
to the t-SNE transformative space. This is based on the rationale that
PCA techniques are irreversible due to the loss of information that
comes with the data transformation process. Hence, the two-
dimensional plane that best captures the displacement of stable
versus unstable data points from the R256 real latent space is
carefully examined for explorative sampling operation. Figures
7C, D exemplary demonstrate visualizations from the
displacement of stable versus unstable points in the real latent
space (i.e., 2D plane). By plotting the 164th against the 179th
axis from a stochastic training process, the region of interest in
space can be viewed as the most captivating locality where the
probability of generating new stable data points is highest. Using
Figure 8, all data points within the region of interest are shown to be
isolated and aggregate to about 1,584 interested perovskite points.
Statistically, 88% are stable perovskites, i.e., Ef ≤ − 1.5 eV/atom
(Figure 8A), 30% are experimentally certified with ICSD labeling
(Figure 8B), and 70% are perovskites that demonstrate good
synthesizability potential, i.e., Ehull ≤ 0.08 eV/atom (Figure 8C).
In addition, the relative occurrences of interested data points
with respect to different stoichiometries are displayed using
Figure 8D. A majority of the isolated perovskites are A2BB′X6,
constituting about 63% of all data points. ABX3 and AA′BB′X6

stoichiometries occur less at 30% and 8%, respectively. A majority
(i.e., 60%) of A2BB′X6 points within the region of interest are
primitive or singular formula units (i.e., ten atoms in their unit cell).
This suggests that primitive crystal cell types are more likely to
produce stable perovskites, and therefore, they are used for
generating new data points in the sequel SLERP sampling
operation. For 589 distinctive A2BB′X6 interested points with

FIGURE 6
Modeling performance of the SS-VAEmodel for inversely designing perovskites. (A)MLP’s regression fitting on Ef for target-learning the latent space
with average overall R2 at 92.31%± 1.23%; (B)Comparative chart of different stoichiometries on the average prediction performance of Ef , as evaluated on
all five-folds cross-validation experimented sets.

Frontiers in Materials frontiersin.org09

Chenebuah et al. 10.3389/fmats.2023.1233961

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1233961


singular formula units, interpolating against one another using the
Eq. 4, produces about six hundred and ninety thousand (~690,000)
new A2BB′X6 points. Likewise, generating new AA′BB′X6 data
points is schemed to follow the sampling strategy previously used for
their A2BB′X6 counterparts. However, unlike A2BB′X6 that strictly
interpolates between the same stoichiometry, AA′BB′X6 data points
are additionally allowed to cross-interpolate A2BB′X6

stoichiometries. Cross-interpolating is a consequence of
AA′BB′X6 smaller data prevalence relative to other
stoichiometries. Moreover, the benefit with cross-interpolation is
in the generation of a chemically more diverse collection of unique
data points, given thatAA′BB′X6 perovskites are simply Jahn-Teller
distortional derivatives of the A2BB′X6 stoichiometry (Knapp and
Woodward, 2006). For ranking the most promising double
perovskites emerging from the SLERP process, the new data
points are further analyzed using geometrical similarity
assessment and evolutionary-based search optimization.

3.5 Ranking high-quality candidates and
geometrical similarity analysis

For ranking high-quality candidates, the SLERP latent vectors
are evolutionary learnt using the Genetic Algorithm (GA). The GA
model iteratively searches for the most stable and promising
perovskite candidates using feedback loops from two pre-trained

convolutional neural networks (Conv2D) for updating the fitness
function. The first Conv2D model transmits information based on
predicted stability for an expected/idealized value of Ehull � 0 eV/
atom. Simultaneously, a second Conv2D model imposes the fitness
function to only recognize optimized solutions that are predicted to
have ICSD labels. Through a sequence of single-point crossover and
mutation, the GA search operations are performed on batch
populations for a specific number of iterations or generations.
Moreover, the mutation process is adaptively designed to flip
genes (i.e., scalars) of low-ranked candidates twice as much as
high-ranked candidates, which helps to solve the problem of
constant mutation and premature convergence (Libelli and Alba,
2000; Gad, 2021). Figure 9A illustrates a sensitivity investigation on
the effect of mutation rate for outputting the best solutions from the
GA generative process. It can be observed that for a higher gene
mutation rate of 15% used to flip low-ranked candidates, the model
steeply descends to a local optimum (premature convergence),
thereby generating solutions that are potentially suboptimal
(i.e., indistinguishable from individuals in the iterated batch
population). As the mutation rate decreases, the search operation
gradually descends to better optimized solutions, which are
considerably improved candidates from their mating individuals
currently populated in a batch population. Considering an
optimized mutation rate of 5%, Figure 9B reveals the evolution
in predicted formation energy (Ef ) and energy above convex hull
(Ehull) for the best-ranked perovskite solutions across

TABLE 1 Reconstruction of important input feature embedding from the image-based descriptor, in addition to formation energy determination from the target-
learning arm of the SS-VAE model.

Metric Perovskite feature embedding Target

Atomic
number

Stoich-
iometry

Ionic site
occupancy

Lattice
edges (Å)

Angles
(°)

Natoms Atomic
coordinate

(Å/Å)

Discrete
features

Ef (eV/
atom)

ABX3

MAE 3.54E-05 0 2.88E-05 0.787 4.596 5.45E-04 0.020 9.56E-05 0.191

RMSE 5.95E-03 0 4.15E-03 1.289 6.745 2.01E-02 0.052 9.71E-03 0.335

MAAPE (%) 5.49E-03 0 4.51E-03 11.620 5.326 7.76E-02 - 1.34E-02 -

A2BB′X6

MAE 4.64E-05 0 5.16E-04 0.664 4.575 0 0.022 1.33E-04 0.104

RMSE 6.71E-03 0 2.14E-02 1.204 7.433 0 0.058 1.13E-02 0.195

MAAPE (%) 6.93E-03 0 6.57E-02 8.876 6.077 0 - 1.84E-02 -

AA′BB′X6

MAE 9.66E-04 4.65E-03 1.58E-03 1.036 7.219 0 0.045 3.15E-03 0.181

RMSE 3.09E-02 3.05E-02 3.49E-02 1.592 10.015 0 0.088 5.54E-02 0.270

MAAPE (%) 1.42E-01 4.87E-01 2.22E-01 14.348 8.850 0 - 4.28E-01 -

Overall

MAE 6.92E-05 1.22E-04 2.92E-04 0.739 5.196 2.78E-04 0.022 5.81E-04 0.151

RMSE 8.30E-03 4.93E-03 1.63E-02 1.268 7.961 1.44E-02 0.056 1.43E-02 0.278

MAAPE (%) 1.03E-02 1.27E-02 3.82E-02 10.445 6.391 3.96E-02 57.982 2.83E-02 -

Average stoichiometric-specific evaluation as reported on a five-fold cross-validation experiment. MAAPE stands for Mean Arctangent Absolute Percentage Error.
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100 generations. It can be observed that for the best solutions per
generation, the predicted Ehull value gradually descends and
converges to the idealized Ehull value after 40 generations,
whereas Ef unsteadily descends, but maintains predicted stability
at Ef ≤ − 2.75 eV/atom after 30 generations. Due to the conditional
imposition of the secondary feedback Conv2D loop, all high-quality
solutions outputted by the GA model are predicted to be ICSD
compounds. The current study prioritizes best-ranked solutions
from a batch iteration for novel candidates that are within an
overstated synthesizability criterion of Ehull ≤ 0.08 eV/atom, as
demonstrated for experimental sulfides and oxides (Singh et al.,
2019). It should be noted moreover, that the developed GA model
conditions the metaheuristic search process to perform crossover
and gene mutation of the SLERP latent space vectors within the
boundaries of the minimum and maximum gene values (i.e., scalar)
in a batch population assembly. This ensures that all generated and
optimized GA solutions remain confined within the stability region
of interest in the latent space.

Furthermore, the high-quality solutions emerging from the joint
SLERP-GA processes are further screened to ensure their
geometrically coordinated environment is consistent with proven
standard perovskite forms. As described in Eq. 5, the similarity
analytical model measures the deviation in one-to-one atomic
coordination between standards and newly generated perovskites.
A dissimilarity value of F � 0 indicate that the geometrical

coordination between standard reference forms and newly
generated perovskites are indistinguishable. As such, the current
study uses a threshold ofF ≤ 0.2Å/Å for selecting a good portion of
promising candidates while ensuring that the computed deviation is
within tolerable limits. Figure 10 illustrates the proportion of
dissimilar compounds with respect to each considered standard
perovskite form from the Materials Project (MP) database (Jain
et al., 2013). The standards are chosen to represent a mixed setting in
perovskite geometry, as it relates to crystal system and space group
symmetry. The current study equally selects six highly stable
perovskites for evaluating newly generated A2BB′X6 and
AA′BB′X6 perovskites. For A2BB′X6 specifically, the standard
perovskites are proven ICSD experimentally certified materials
with Ehull � 0. For AA′BB′X6, the chosen standards are MP
materials that are highly suggested for synthesization due to their
very low Ehull values (i.e., Ehull ≤ 15 meV/atom). For over
100,000 newly generated perovskites, it can be observed that
some standards appear to be geometrically more similar to
generated candidates when compared to others (see Figure 10).
The superiority in geometrical similarity with respect to a specific
standard is suggested to be partly due to the chemical prevalence of
the respective crystal structure in the training dataset. For example,
A2BB′X6 standard evaluators in mp-1079615 Ba2UCdO6 (Fm3m)
and mp-13356 Ba2SrTeO6 (R3) highly conform geometrically with
newly generated A2BB′X6 compounds. Likewise, the mp-1227325

FIGURE 7
Visualization of the stability-structured latent space. (A) Transformed t-SNE PCA latent space with respect to real Ef values; (B) Transformed t-SNE
PCA latent space with respect to discrete Ef values; (C) Direct plane in latent space capturing the displacement of perovskite data points with respect to
real Ef values; (D) Direct plane in latent space capturing the displacement of perovskite data points with respect to discrete Ef values. The direct plane is
plotted for the 164th against the 179th axis from a stochastic training process. For discrete plots, yellow denotes stable perovskites based on
Ef ≤ − 1.5 eV/atom, whereas blue denotes unstable points. The region of interest in space for SLERP sampling operation is circled in (C) and (D).
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BaSrMgTeO6 (F43m) standard is noticeably more similar with
newly generated AA′BB′X6 compounds. On assessing the overall
impact of the similarity analytical model for screening potentially
valid candidates, the present study confirms a success rate of ~80%.

The success rate scores the proportion of valid candidates (i.e., non-
overlapping geometrical coordination of constitutive atoms) to the
total number of screened novel candidates that are post-processed
using the Density Functional Theory (DFT).

FIGURE 8
Displacement of data points within the interested latent space region corresponding to the 164th versus 179th axis. (A) Stable versus unstable points
based on Ef ; (B) ICSD versus Non-ICSD labeled points; (C) Stable versus unstable points based on Ehull; (D) Relative occurrence of different
stoichiometries.

FIGURE 9
Evolutionary learning process for searching for the most optimized solution using the genetic algorithm. (A) Sensitivity analysis on the mutation rate
across 100 generations; (B) Predicted Ehull and Ef for the best-ranked solutions per generation.
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4 Discovered perovskites, analysis and
Discussion

4.1 Newly discovered double perovskites
and property determination

The present study reports the successful discovery of
114 A2BB′X6 and 23 AA′BB′X6 novel perovskite materials from
the EVAPD model. All presented materials fully underwent
variable-cell DFT relaxation, and are therefore optimized on
atomic coordination and unit cell lattice geometry. From the
presented A2BB′X6 discovered materials, 87 are confirmed not to
be contained in either the experimented dataset or Materials Project
used for the simulation, among which 59 have not yet been reported
in any known database, including the Open Quantum Materials
Database (OQMD) (Saal et al., 2013) and the Novel Materials
Discovery (NOMAD) (Draxl and Scheffler, 2018). The other
27 are polymorphic duplicate chemical compounds, which are
characterized by their different unit cell geometry and evaluated
target properties. With respect to the discovered AA′BB′X6

perovskites, all 23 materials are unique, novel and not yet
reported in any known database. Using ML modeling and DFT
simulation, the newly discovered perovskite candidates are further
investigated in order to ascertain their target properties. For ML
determination, the pre-trained Conv2D networks for predicting
stability properties in the energy above convex hull (Ehull) and
formation energy (Ef ) of the relaxed candidates are used. For
evaluating the energy band gap (Eg ) and total magnetization
however, DFT simulation is rather used, given that Eg and
magnetization are universal and not extensive on total energy.
Upon investigation, 73% of all DFT relaxed perovskites are
predicted to meet initially prescribed stability and synthesizability
requirements (i.e., Ehull ≤ 0.08 eV/atom and Ef ≤ − 1.5 eV/atom).
Moreover, taking into account a safer metastable threshold of
Ef ≤ 0.5 eV/atom as suggested for screening promising vanadium
oxide materials in past study (Noh et al., 2019), all newly discovered
perovskites are confirmed to be at least metastable with negative
formation energies. A comprehensive list of the newly discovered
materials is provided in Table 2, in addition to their determined
target properties. The Crystallographic Information Files (CIF) and

electronic structure code simulations for all materials are made
openly available (see Data availability statement). With reference to
their DFT determined band gaps, the current study identifies some
promising candidates, which can potentially serve as host materials
for serviceable photovoltaic and/or optoelectronic applications. The
Shockley-Queisser limits are used as basis, postulating that materials
with band gaps within 1 − 1.7 eV are highly theoretically efficient
single junction solar cell materials due to their power conversion
efficiencies (PCEs) in excess of 30% (Shockley and Queisser, 1961;
Rühle, 2016). For high potential material candidates with band gaps
close to the ideal 1.3 eV, the study further investigates the DFT-
determined relative energies (Erel), in addition to their electronic
and magnetic behaviors using band structure and Projected Density
of States (PDOS) plots. The materials include In2YSbO6 (CIF ID: 3),
Sr2LiAlH6 (CIF ID: 64) and SrLiWTeO6 (CIF ID: 132), and their
properties are provided in Figure 11. For these compounds, the band
structure in momentum-space are found to possess indirect
bandgaps. For assessing relative energies of these materials, a
similar approach is applied as previously demonstrated for
hybrid organic-inorganic perovskites (Emery and Wolverton,
2017; Kim et al., 2017), which is originally inspired by actual
formation energy calculations. In essence, the relative energy
accounts for the simple difference in total DFT-computed
energies between the relaxed crystalline material and the sum of
the isolated constitutive elements at the same level of theory as the
crystalline material calculation. Further details on computational
methodology and equations are provided in Supplementary
Material. Band structures are computed along high-symmetry
line segments in the irreducible Brillouin zone of their primitive
crystal structures (Setyawan and Curtarolo, 2010). For evaluating
the PDOS, denser K-point grid meshes are used in the Quantum
Espresso code.

4.2 Experimental impact of the EVAPD
model and future improvements

The unlimited design space afforded by perovskite
stoichiometries suggests that data-mining Deep Generative
Modeling (DGM) can be a more efficient alternative over first-

FIGURE 10
Similarity analysis as it relates to the three-dimensional geometrical (atomic) coordination between proven perovskite standards from the Materials
Project (MP) database and newly generated perovskite compounds from the SLERP-GA process.
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TABLE 2 Newly discovered double perovskites emerging from the EVAPD model that successfully underwent thorough DFT-relaxation.

CIF
ID

Novel
perovskites

Model predicted
energy above

convex hull (eV/
atom)

Model
predicted
formation
energy

(eV/atom)

DFT determined
energy band
gap (eV)

DFT determined
magnetization
(Bohr Mag/cell)

DFT relaxed
unit cell

volume (Å3)

Prevalence

Newly discovered A2BB′X6 candidates

1 Ca2YOsO6 0.0856 −2.7913 0 3 187.9863 unique found in
Kiselyova et al.

(2022)

2 In2YOsO6 0.048 −2.4760 0 1.30 186.2338 unique and novel

3 In2YSbO6 0.0443 −2.6351 1.3173 0 218.1894 unique and novel

4 K2LiAlF6 0.0083 −3.3828 7.4390 0 180.0827 MP duplicate

5 K2LuSbO6 0.0812 −2.9783 2.6903 0 246.4022 unique and novel

6 K2LuTaO6 0.0963 −3.3696 2.9115 0 234.0484 unique and novel

7 K2MgVO6 0.0075 −2.9025 0 1 199.1696 unique and novel

8 K2MgWO6 0.0261 −2.7115 2.0025 0 208.3489 unique (found in
OQMD)

9 K2NaAlF6 0.0228 −3.3659 6.8882 0 198.0626 MP duplicate

10 K2NaVO6 0.0397 −2.4516 0 2 222.1200 unique and novel

11 K2NaWO6 0.0598 −2.6772 0 1 237.0695 unique and novel

12 K2SmVO6 0.0283 −3.0930 0 3 214.8249 unique and novel

13 K2TaInO6 0.0615 −2.8902 2.4008 0 228.2666 unique and novel

14 K2TaPdO6 0.0855 −2.5618 0.0852 1 285.8298 unique and novel

15 K2TaSbO6 0.1028 −2.9635 2.2023 0 184.0429 unique and novel

16 K2TaVO6 0.0588 −3.1233 0.7552 0 208.1623 unique and novel

17 K2UVO6 0.0268 −3.2084 1.0767 1 193.6815 unique and novel

18 K2UZnO6 0.0372 −3.0309 1.8107 0 254.7339 unique and novel

19 La2CaOsO6 0.0887 −2.7011 0 2 204.5027 unique and novel

20 La2MgIO6 0.2091 −2.8906 0.1673 0.97 207.4252 unique and novel

21 La2MgSnO6 0.0440 −3.0197 3.9553 0 183.9209 MP duplicate

22 La2MgUO6 0.0720 −3.3863 0.1783 2 200.8788 unique and novel

23 La2MgZrO6 0.1016 −3.3645 4.0578 0 183.2739 MP duplicate

24 La2NaSnO6 0.0364 −2.7480 0 0.89 215.4072 unique and novel

25 La2NbZnO6 0.0800 −2.9022 2.1099 0.99 143.4851 unique (found in
OQMD)

26 La2SrUO6 0.0762 −3.2995 0 2 240.0037 unique and novel

27 La2SrWO6 0.0886 −2.9263 0.3512 0 223.8164 unique and novel

28 La2TaInO6 0.0579 −3.0543 1.9279 0 227.6226 unique and novel

29 La2TaNbO6 0.0904 −3.2607 0 0.02 167.6303 unique and novel

30 Na2BiAlH6 0.0637 −0.7374 1.6872 0 230.9296 unique and novel

31 Na2BiAlO6 0.0278 −2.6915 1.7100 0 189.1179 unique and novel

32 Na2BiIrH6 0.0604 −0.7101 0 0 232.7939 unique and novel

(Continued on following page)
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TABLE 2 (Continued) Newly discovered double perovskites emerging from the EVAPD model that successfully underwent thorough DFT-relaxation.

CIF
ID

Novel
perovskites

Model predicted
energy above

convex hull (eV/
atom)

Model
predicted
formation
energy

(eV/atom)

DFT determined
energy band
gap (eV)

DFT determined
magnetization
(Bohr Mag/cell)

DFT relaxed
unit cell

volume (Å3)

Prevalence

33 Na2BiIrO6 0.0193 −1.8546 0.0350 0 236.5911 unique (found in
OQMD)

34 Na2CaAlO6 0.0611 −3.1006 0 1 191.4990 unique and novel

35 Na2CaMoO6 0.0604 −2.6822 2.5511 0 264.3304 unique and novel

36 Na2CaOsO6 0.0565 −2.4036 0.28 0 197.6243 unique and novel

37 Na2LiAlF6 0.0326 −3.3884 4.8759 0 204.3696 MP duplicate

38 Na2LiAlH6 0.0218 −0.2936 0 0 162.0319 MP duplicate

39 Na2LiAlO6 0.0152 −3.0514 1.0735 0 204.0824 unique and novel

40 Na2LiIrH6 0.0297 −0.6518 3.1077 0 136.3614 unique (found in
OQMD)

41 Na2LiIrO6 0.0162 −2.1437 0 1.31 182.7216 unique (found in
OQMD)

42 Na2LiMoO6 0.0183 −2.1355 0 0 226.0315 unique and novel

43 Na2LiOsO6 0.0393 −2.3692 0 1 182.7384 unique (found in
OQMD)

44 Na2LiReO6 0.0689 −2.4378 2.0998 0 196.2724 unique (found in
OQMD)

45 Na2LiSbO6 0.0604 −2.6087 0 0.32 185.6615 unique and novel

46 Na2LiWO6 0.0590 −2.6704 0 1 245.8288 unique (found in
OQMD)

47 Na2LuSbO6 0.0716 −2.7760 2.1790 0 197.1082 unique and novel

48 Na2LiAlCl6 0.1071 −2.0026 4.3836 0 333.5019 unique and novel

49 Na2PbIO6 0.0190 −1.4003 0 0.01 264.0148 unique and novel

50 Na2SrAlO6 0.0495 −3.1057 0 0.99 188.1454 unique and novel

51 Na2SrWO6 0.0817 −2.6955 2.8114 0 210.0640 unique and novel

52 Na2YOsO6 0.1174 −2.7037 0.6172 0 186.0850 unique (found in
OQMD)

53 Rb2YCrO6 0.0588 −2.9201 0 1 240.2418 unique and novel

54 Sr2CaCrO6 0.1076 −2.7039 0.5864 0 191.7340 unique (found in
OQMD)

55 Sr2CaOsO6 0.0304 −2.6552 0 2 197.3510 MP duplicate

56 Sr2CaReO6 0.0175 −2.8774 1.6654 1 271.3090 unique (found in
OQMD)

57 Sr2CaWO6 0.0240 −2.9441 3.3256 0 293.9386 MP duplicate

58 Sr2LaBiO6 0.0909 −2.8449 1.8002 0 232.8416 unique (found in
OQMD)

59 Sr2LaIO6 0.0958 −2.5272 2.8215 0 238.5288 unique and novel

60 Sr2LaOsO6 0.0195 −2.7273 0 3 216.5066 unique (found in
OQMD)

61 Sr2LaSbO6 0.0960 −2.9495 3.6379 0 223.6365 MP duplicate

62 Sr2LaTaO6 0.0818 −3.3471 3.6806 0 223.7284 MP duplicate

(Continued on following page)
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TABLE 2 (Continued) Newly discovered double perovskites emerging from the EVAPD model that successfully underwent thorough DFT-relaxation.

CIF
ID

Novel
perovskites

Model predicted
energy above

convex hull (eV/
atom)

Model
predicted
formation
energy

(eV/atom)

DFT determined
energy band
gap (eV)

DFT determined
magnetization
(Bohr Mag/cell)

DFT relaxed
unit cell

volume (Å3)

Prevalence

63 Sr2LaWO6 0.1108 −2.9554 2.6374 0.91 214.7024 unique (found in
OQMD)

64 Sr2LiAlH6 0.0389 −0.2312 1.2878 0 219.3971 unique (found in
OQMD)

65 Sr2LiAlO6 0.0284 −3.1793 3.4147 0 224.3396 unique and novel

66 Sr2LuCrO6 0.0500 −2.8415 0.3637 1 185.8248 unique and novel

67 Sr2LuReO6 0.0275 −3.0234 0 2 197.3544 unique (found in
OQMD)

68 Sr2LuSbO6 0.0231 −3.1057 3.2007 0 200.4097 unique (found in
OQMD)

69 Sr2LuTaO6 0.0205 −3.4885 3.6944 0 199.7342 MP duplicate

70 Sr2MgCrO6 0.0363 −2.7345 0.3661 0 167.0767 unique found in
Berger and

Neaton. (2012)

71 Sr2MgIrO6 0.0033 −2.4959 0 2.61 177.9777 MP duplicate

72 Sr2MgMoO6 0.0106 −2.8090 1.5866 0 129.7052 MP duplicate

73 Sr2MgOsF6 0.0154 −2.8075 0 2 272.8870 unique and novel

74 Sr2MgOsO6 0.0110 −2.5261 0 1.99 177.7485 MP duplicate

75 Sr2MgReO6 0.0142 −2.7664 1.6831 0.98 178.3182 MP duplicate

76 Sr2MgRuF6 0.0096 −2.7924 0 2 247.8723 unique and novel

77 Sr2MgRuO6 0.0132 −2.5165 0 2 221.7697 unique (found in
OQMD)

78 Sr2MgWO6 0.0186 −2.8973 3.0590 0 180.6957 MP duplicate

79 Sr2MgZnO6 0.0165 −2.8075 2.3762 0 202.8798 unique and novel

80 Sr2NaOsO6 0.0208 −2.4579 0.0663 1 253.7158 MP duplicate

81 Sr2SmCrO6 0.0335 −2.8132 0 6 192.3164 unique (found in
OQMD)

82 Sr2TaBiO6 0.0430 −2.9384 2.4783 0 209.4533 unique (found in
OQMD)

83 Sr2TaCrO6 0.0229 −3.1039 0 3 176.6377 MP duplicate

84 Sr2TaInO6 0.0209 −2.9940 3.8795 0 192.2006 MP duplicate

85 Sr2TaNbO6 0.0201 −3.2132 1.2333 0 229.4728 unique and novel

86 Sr2TaReO6 0.0176 −2.9210 0 1.97 182.4202 unique and novel

87 Sr2TaSbO6 0.0212 −3.0180 2.3901 0 204.7348 unique and novel

88 Sr2TaTlO6 0.0419 −2.9036 3.0273 0 242.0947 unique (found in
OQMD)

89 Sr2UOsO6 0.0287 −2.7800 0 - 203.1170 MP duplicate

90 Sr2UReO6 0.0394 −2.9491 0 3 206.2281 unique and novel

91 Sr2UZnO6 0.0427 −3.0953 1.7157 0 200.5956 unique (found in
OQMD)

92 Sr2YAsO6 0.0586 −2.6479 3.3749 0 187.9900 unique and novel
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TABLE 2 (Continued) Newly discovered double perovskites emerging from the EVAPD model that successfully underwent thorough DFT-relaxation.

CIF
ID

Novel
perovskites

Model predicted
energy above

convex hull (eV/
atom)

Model
predicted
formation
energy

(eV/atom)

DFT determined
energy band
gap (eV)

DFT determined
magnetization
(Bohr Mag/cell)

DFT relaxed
unit cell

volume (Å3)

Prevalence

93 Sr2YCrO6 0.1250 −2.7500 0.3655 1 187.4396 MP duplicate

94 Sr2YIrO6 0.0433 −2.7223 0 2 199.0370 MP duplicate

95 Sr2YNbO6 0.0521 −3.3244 3.3429 0 205.8638 MP duplicate

96 Sr2YOsO6 0.0724 −2.7742 0 2.98 201.3224 unique (found in
OQMD)

97 Sr2YSbO6 0.0636 −2.9898 3.6141 0 206.4964 MP duplicate

98 Sr2YTaO6 0.0592 −3.4184 3.7983 0 205.4073 MP duplicate

99 Sr2YUO6 0.1066 −3.5173 1.4735 1 247.2421 unique found in
Kiselyova et al.

(2022)

100 Sr2ZnInO6 0.0273 −2.4509 0 1 238.7750 unique and novel

101 Sr2ZnOsO6 0.0775 −2.2847 0 2 247.2131 unique (found in
OQMD)

102 Sr2ZnWO6 0.0804 −2.5807 2.9726 0 248.8888 MP duplicate

103 Ti2AgBiO6 0.0737 −2.4187 2.1840 0 154.9840 MP duplicate

104 Ti2AgCrO6 0.0559 −2.4021 0 3 189.4848 unique and novel

105 Ti2AgIO6 0.0251 −1.8277 1.9355 0 191.4311 unique and novel

106 Ti2AgOsO6 0.0812 −2.0162 0 1 187.2507 unique and novel

107 Ti2AgSbO6 0.0903 −2.0542 2.6975 0 185.4760 unique and novel

108 Ti2CaBiO6 0.0429 −2.6432 2.0389 0.58 174.0697 unique and novel

109 Ti2CaOsO6 0.0350 −2.6602 0.8013 0 143.2558 unique and novel

110 Ti2LaCrO6 0.0683 −3.0520 0.0192 2.99 210.7606 unique and novel

111 Ti2SrUO6 0.1124 −3.3210 0 2.06 166.8265 unique and novel

112 Ti2UBiO6 0.0308 −2.8286 0.3062 1 189.8967 unique and novel

113 Ti2YBiO6 0.0930 −2.8358 1.0625 0 178.6732 unique (found in
OQMD)

114 Ti2YOsO6 0.0771 −2.8459 0.0358 1 146.7013 unique and novel

Newly discovered AA′BB′X6 candidates

115 NaLaBiTeO6 0.0325 −2.4001 0 0 203.6228 unique and novel

116 NaLaIrTeO6 0.0802 −2.3650 0 0.16 267.4710 unique and novel

117 SrLaMgBiO6 0.0643 −2.5990 2.6394 0 221.4500 unique and novel

118 NaLaSbTeO6 0.0127 −2.4894 0.2000 1 231.8197 unique and novel

119 NaScIrTeO6 0.0646 −2.3068 0 1.21 196.9658 unique and novel

120 NaScMgTeO6 0.0477 −2.4890 2.5755 0 168.0166 unique and novel

121 NaTaBiTeO6 0.0127 −2.4991 0.1953 0.99 206.3917 unique and novel

122 NaTaMgTeO6 0.0127 −2.6183 3.2346 0 369.8424 unique and novel

123 NaTlSbTeO6 0.0803 −2.0968 0.1243 0.02 214.5647 unique and novel

124 SrCdWRuO6 0.1047 −2.3234 0.6816 0 219.6032 unique and novel
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principles techniques and/or Edisonian experiments for making
accelerated discovery. The current study points to this potential
advantage by cost-effectively demonstrating the efficacy of a deep
evolutionary learning framework for discovering stable and
functional perovskites that adopt the A2BB′X6 and AA′BB′X6

higher stoichiometries. The model extends beyond ideal
perovskite symmetrisation by searching for non-idealized and/
or non-electroneutral compounds, as well as similar chemical
compounds that share the same formulation with perovskites
(e.g., ilmenite). In general, the main reason for non-idealized
perovskites is the Jahn-Teller distortional effect from the electronic
instabilities of constitutive atoms, which translates into the form of
BX6 octahedral tilting/rotation (Knapp and Woodward, 2006). As
such, in addition to finding novel candidates that are chemically and
structurally idealized, the current study contributes by also
discovering new inorganic perovskite candidates that are
influenced by the Jahn-Teller non-idealized effect. It shall be noted
moreover, that the screening of some non-electroneutral compounds
by the EVAPD model is equally a reflection of the training dataset
from the Materials Project database (Jain et al., 2013), as most proven
perovskite compounds do not strictly obey charge neutrality laws. The
successful convergence/relaxation of these compounds via density
functional theory (DFT) validates their potential formability upon
synthesization. The developed EVAPD model is architectured to
highly rank novel candidates based on target properties that are
predefined on stability and synthesizability. Moreover, the EVAPD
model could be re-engineered for application on othermaterial classes
and/or multi-objective target optimizations. Such re-engineering
would necessitate modifications to the current descriptor concept
and mechanism for performing target-objective search optimization.
To shed more insight on the contribution of the present study in the

field, Table 3 compares the developed EVAPD model to some prior
designs for accelerated materials discovery using the DGM approach.
In general, deep evolutionary learning has achieved substantial
successes in molecular design and de novo drug discovery (Kwon
et al., 2021; Mukaidaisi et al., 2022) in previous years. However, they
have not been broadly expanded to energy materials discovery.
Specifically, the Fourier Transformed Crystal Property (FTCP)
representation (Ren et al., 2022) and the Image-based Materials
Generator (iMatGen) (Noh et al., 2019) utilize semi-supervised
variational autoencoders (SSVAE) for generating novel materials.
Both approaches rely singularly and strictly on a target-learnable
latent space, which may be insufficient for target-property
optimization due to the distribution of the dataset and
in situations where the DGM model fails to properly assimilate
the latent space [e.g., posterior and mode collapse (Lucas et al.,
2019)]. To overcome this challenge, the proposed EVAPD model
integrates a genetic algorithm for target-property optimization.
This is achieved by performing in-depth search operations about a
global optimizable minimum for generating high quality solutions.
In addition, the inclusion of a geometrical similarity analysis
enables streamlining the search for novel candidates to the
most promising and theoretically feasible ones. As a result, a
considerably advanced model performance is achieved with
increased capacity for the discovery of novel crystalline
materials, as demonstrated on the perovskite material class for
application in the field of regenerative energy.

On the downside, VAE models, including the proposed model, are
also prone to several challenges that affect their general performance for
generating quality samples in the latent space. In addition to the
aforementioned posterior and mode collapse phenomena, other
concerns are related to their computational efficiency on

TABLE 2 (Continued) Newly discovered double perovskites emerging from the EVAPD model that successfully underwent thorough DFT-relaxation.

CIF
ID

Novel
perovskites

Model predicted
energy above

convex hull (eV/
atom)

Model
predicted
formation
energy

(eV/atom)

DFT determined
energy band
gap (eV)

DFT determined
magnetization
(Bohr Mag/cell)

DFT relaxed
unit cell

volume (Å3)

Prevalence

125 SrFeIrRuO6 0.0970 −2.2202 0 3.02 165.2095 unique and novel

126 SrLaBiSbO6 0.0287 −2.4481 1.1895 0.86 241.1619 unique and novel

127 SrLaBiWO6 0.0399 −2.5638 0.6738 0 218.4850 unique and novel

128 SrLaIrTeO6 0.0854 −2.3460 0.7392 0 313.8927 unique and novel

129 SrLaIrWO6 0.0613 −2.6405 0.4640 0 156.0003 unique and novel

130 SrLaTaWO6 0.0523 −3.3072 0.8349 0 236.7150 unique and novel

131 SrLiBiTeO6 0.0365 −2.2757 1.2793 0 169.1703 unique and novel

132 SrLiWTeO6 0.0331 −2.4863 1.3587 0.97 314.7984 unique and novel

133 SrScIrTeO6 0.0436 −2.3979 1.2786 0 197.2712 unique and novel

134 SrScMgTeO6 0.0583 −2.6448 0.7720 0.75 194.4175 unique and novel

135 SrTbMgTeO6 0.0321 −2.6312 0.0345 7 210.4011 unique and novel

136 TiLaBiTeO6 0.0675 −2.4840 1.3341 0 205.9486 unique and novel

137 TiLiBiTeO6 0.0559 −2.3201 2.7195 0 159.4994 unique and novel

Potential host perovskites that may be serviceable in photovoltaic and/or optoelectronics applications are marked with orange background and are 17 in total.
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high-dimensional data structures. The current study observes such
lapses in the higher errors that were realized in reconstructing the
lattice edge vectors and inter-axial angles associated with the input
image-based descriptor (Table 1). Possible solutions to mitigate
such limitations are by replacing the conventional autoencoder

with a more efficient Wasserstein autoencoder (Tolstikhin et al.,
2017), or by entirely remodeling using a different DGM, e.g.,
generative adversarial networks (GAN) (Goodfellow et al., 2014)
and denoising diffusion models (Sohl-Dickstein, et al., 2015). This
is the focus of future studies aiming at improving the EVAPD

FIGURE 11
Electronic band structure and projected density of states (PDOS) properties for three promising photovoltaic host perovskite materials from the
EVAPD model, with idealized band gaps close to 1.3 eV (A) In2YSbO6- CIF ID: 3; (B) Sr2LiAlH6- CIF ID: 64; and (C) SrLiWTeO6- CIF ID: 132. The new
materials each contain ten atoms in their relaxed unit cells. Relative (Rel.) energy in units of Rydberg (Ry) per atom.

TABLE 3 Proposed model as compared to the prior arts on invertible deep generative modeling (DGM) approaches for accelerated materials discovery.

References Model design Generative
algorithm

Optimization technique Material class

Lyngby and Thygesen
(2022)

Crystal Diffusion Variational Autoencoder
(CDVAE)

Diffusion model
with VAE

Constrained dataset on target 2D materials

Ren et al. (2022) Fourier Transformed Crystal Property (FTCP) SS-VAE Target learning General inorganic
materials

Long et al. (2021) Constrained Crystals Deep Convolutional
Generative adversarial network (CCDCGAN)

GAN Constrained conditional learning Bismuth Selenide

Dan et al. (2020) Generative inorganic materials modeling
(MatGAN)

GAN Compositional learning with no geometrical
information

General
composition

Kim et al. (2020) Composition-Conditional Crystal GAN GAN Compositional learning Mg-Mn-O ternary
structures

Pathak et al. (2020) Deep Inorganic Material Generator (DING) SS-VAE Target learning General
composition

Noh et al. (2019) Image-based Materials Generator (iMatGen) SS-VAE Target learning Vanadium oxide

Present study Evolutionary Variational Autoencoder for
Perovskite Discovery (EVAPD)

SS-VAE Target learning, evolutionary learning and
geometrical similarity learning

Inorganic double
perovskites
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model by comparing and contrasting the results generated in the
current study with other advanced DGM techniques. Another
potential improvement is to better integrate DFT in the
EVAPD model. In the current design architecture, post-
optimizing novel perovskites using DFT validation is performed
after generative and sampling processes have taken place. A better
design alternative might be by directly integrating on-the-fly first-
principles DFT validation and/or laboratory synthesization into
the evolutionary learning space to produce an adaptive EVAPD
model. This could ensure that novel materials with definitive
targets are generated on a more successful rate. This is also an
area of future studies.

5 Conclusion

In the present study, an Evolutionary Variational Autoencoder
for Perovskite Discovery (EVAPD) model is proposed for
accelerating the search for stable and functional perovskite
candidates. The perovskite stoichiometries of interest are the
complex A2BB′X6 and AA′BB′X6 double chemical compounds.
The developed EVAPD model comprises a Semi-Supervised
Variational Autoencoder (SS-VAE), an evolutionary-based
Genetic Algorithm (GA), and a similarity analytical model to
form a deep evolutionary learning framework. The SS-VAE
model generates new perovskites from a target-learnable space,
which is pre-optimized on the formation energy target. To find
the most stable and synthesizable candidates, the GA model
performs metaheuristic search operations on the newly generated
perovskites, based on a predefined fitness function that adapts to the
supervisory learning of the energy above hull parameter and
inorganic crystal structure database (ICSD) label. Moreover, the
similarity analytical model assesses the novel candidates to ensure
that their three-dimensional geometric coordination is in close
approximation with proven standards. As proof of concept, the
EVAPD model is experimented on about 8,000 training samples
from the Materials Project (MP) and has successfully predicted
137 materials so far, of which 59 A2BB′X6 and 23 AA′BB′X6 are
unique and novel (i.e., not included in the experimented dataset, MP
in general, or any other known materials database). Among them,
seventeen are identified as candidates with promising potential as
host materials for photovoltaic and/or optoelectronic applications.
Overall, the current study illustrates the potential of the EVAPD
deep evolutionary learning framework for novel materials discovery
and opens up a new avenue for further advancements in the field.
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