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Cell-instructive biomaterials are an essential component in tissue engineering
and regenerative medicine. In the past three decades since the term “Tissue
Engineering” was coined, researchers have made significant progress towards
regenerating disease or damage tissues and organs by combining innovations
in biomaterials, signaling molecules and cell therapies. However, challenges
persist including limitations in properties of cell-instructive biomaterials, lack
of advanced manufacturing technologies for precise spatiotemporal control
of key players in tissue engineering, and hurdles in clinical translation and
regulatory process. In this perspective article, we briefly review the current state
of the field including the evolution in our understanding of the role biomaterial
mechanics and scaffolding architecture, development of self-healing and
modular biomaterials, and progress in advanced manufacturing technologies
such as 3D bioprinting. In addition, we discuss about how innovation in research
technologies including multi-omics and spatial biology, and advanced imaging
modalities may pave the way for enhancing our understanding about cell-
biomaterial interactions. Finally, we present our perspective as early career
clinicians and researchers on the key role and potential impact that clinician-
scientists can generate in the development, validation, clinical translation and
adoption of the next-generation of cell-instructive biomaterials for application
in engineering tissues and organs to impact human health.

KEYWORDS

biomaterials, tissue engineering, mechanobiology, mechanoregeneration, scaffold
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1 Advances in biomaterial mechanics and
mechanoregeneration

Biomaterial mechanics are key determinants of their suitability for biomedical
applications. Since the birth of the field of tissue engineering in the 1990s (Langer
and Vacanti, 1993), scientists focused largely towards designing biomaterials for
tissue regeneration. In these approaches, biomaterials commonly served as temporary
scaffolds that mimic the native extracellular matrix (ECM), and provided a favorable
microenvironment for cells to form of tissue(s) of interest (Drury and Mooney, 2003).
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In native tissues, resident cells exist within a complex and
physically confining three-dimensional (3D) ECM, which provides
key signals directing cellular behavior (Ingber et al., 1994; Vining
and Mooney, 2017; Yamada and Sixt, 2019). In addition to
biochemical signals such as growth factors and chemokines, cells
have the ability to sense and respond to biophysical signals
within their microenvironment (Discher et al., 2009).The cell-ECM
mechanotransduction is facilitated through binding between cell
surface receptors to peptide epitopes conjugated to the ECM, such
as arginine–glycine–aspartate (RGD) ligands (Rowley et al., 1999).
Recent advances in material sciences have expanded the arsenal
of cell adhesion peptides that can directly interact with surface
receptors, such as integrins or cadherins, to alter downstream
signaling and cellular response (Hamley, 2017; Ligorio and Mata,
2023). For instance, phage display technology has been successfully
employed to identify and further expand the library of small
peptides applicable for biomaterial functionalization (Martins et al.,
2016). By conjugating these cell adhesion molecules to biomaterials,
researchers have significantly improved cell-material interactions
leading to enhanced cell response and behavior when encapsulated
including sensing the mechanical cues provided by the materials
(Rowley and Mooney, 2002; Ligorio and Mata, 2023). In fact,
mechanical forces can direct stem cell behavior in development
and regeneration (Vining and Mooney, 2017). As cells interact
with the surrounding ECM, a cascade of mechanosensing and
mechanotransduction signaling pathways work together to mediate
change in gene and protein expression leading to alteration in cell
behavior (Vining andMooney, 2017;Wu et al., 2022b), this has been
discussed in a number of review articles.

In the past two decades, research in mechanobiology, studying
mechanisms bywhich cells sense and respond tomechanical signals,
has uncovered the fundamental role of biomaterial mechanical
properties in tuning cell function. In the late 1990s and early 2000s,
researchers elucidated the role of ECM stiffness on tuning cell
behaviour both in two-dimension (2D) and 3D (Discher et al., 2005;
Engler et al., 2006). Particularly, elasticity or stiffness (Discher et al.,
2005; Vining and Mooney, 2017) has been demonstrated to
control many important cell behaviors in tissue regeneration,
such as migration, proliferation, differentiation, and matrix
deposition (Alsberg et al., 2001). In the 2010s, further research
demonstrated the role of ECM stiffness in tissue regeneration
including the promotion of craniofacial bone regeneration in vivo
when mesenchymal stem cells are encapsulated in hydrogels with
a favorable stiffness (Huebsch et al., 2015; Huebsch et al., 2010)
(Figure 1).

However, all living tissues are viscoelastic. In the recent years,
researchers have identifiedmatrix viscoelasticity as a keymechanical
property capable of modulating 2D and 3D cell and tissue behavior
(Chaudhuri et al., 2020; Chaudhuri et al., 2016; Chaudhuri et al.,
2015; Vining and Mooney, 2017) for in vitro tissue engineering
and in vivo regeneration (Wu et al., 2022b). Recent research has
elucidated the role of viscoelasticity on tuning stem cell spheroid and
organoid behavior (Wu et al., 2022a; Elosegui-Artola et al., 2023).
In addition, the viscoelasticity has been demonstrated to impact in
vivo tissue regeneration as biomaterials with rapid stress relaxation
enhanced bone regeneration in a rodent model (Darnell et al., 2017;
Whitehead et al., 2021) (Figure 1).

FIGURE 1
Schematic of key considerations in the design and fabrication of
cell-instructive biomaterials. Q13

As research progresses in silico, with the development of
spheroid and organoid systems and organ-on-chip technologies,
researchers have additional tools to study the effect of biomaterial
mechanics in a more physiologically relevant model while reducing
the need for animal studies (Ingber, 2022; Leung et al., 2022).
These systems can recapitulate aspects of human biology, enhance
the high throughput of experiments, and enable a more ethical
conduct of biomaterial research to continue to advance our field.
Research and development teams may also choose to use finite
element analysis models (FEA) or other computational models to
analyze the behavior of complex structures and materials prior to
beginning animal studies. FEA aids in material selection process,
design optimization, and failure analysis (Wu and Briant, 2012;
Hendrikson et al., 2017).

2 Advances in scaffold architecture
and morphology

In the 1940s, medical devices highlighted the importance
of textured and porous features as precursors to today’s tissue
engineering techniques in biomaterial fabrication. Biomaterial
surfaces are crucial as interfaces between the host and implants,
influencing various biological processes (Liu et al., 2022). Different
applications require unique biomaterial structures, and there is
no one-size-fits-all approach to fabrication methods. Textured and
porous materials with open systems have been proven to foster
positive interactions between the host and implant across different
disciplines, ensuring successful long-term integration (Swanson and
Ma, 2020). Recent literature and commercial products underscore
the significance of biomaterial architectural features, such as surface
texture and porosity, backed by reliable fabrication methods.
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For the next-generation of tissue engineering biomaterials,
engineers must develop a toolkit of fabrication strategies
encompassing nano, micro, and macro-level features (Anderson,
2006). Advancements inmaterials fabrication technology are pivotal
in fostering collaboration between materials science, engineering,
and biomedical sciences. “Scaffold architecture” pertains to how
bulk material is distributed at macro, micro, and nano-scales,
aligning with tissue, cellular, and molecular levels of organization
(Muschler et al., 2004). Customizability at each architectural
level is vital for influencing biological outcomes because there
is no universal construct, and scaffolds are designed for specific
applications. Tissue engineering scaffold design involves selecting
biodegradable and biocompatible polymers, architectural features,
and mechanical properties tailored to the target tissue, facilitating
cell adhesion, proliferation, differentiation, and nutrient exchange.
In particular, scaffold texture, such as topography and surface
patterning, and porosity and pore sizes, play critical roles in
addressing these needs (Loh and Choong, 2013; Swanson and Ma,
2020; Adhikari et al., 2023) (Figure 1).

Texture is vital. Textured surfaces promote integration by
aiding cell infiltration and reducing inflammation, making them
advantageous for host-guest interactions (Ito, 1999). Tissue
engineering scaffolds aim to mimic the collagen extracellular
matrix (ECM) found in most tissues (Langer and Vacanti, 1993).
Collagen, the body’s most abundant extracellular protein, has a
triple helix macro-structure and sub-micrometer fiber diameter.
Processing technologies like electrospinning, self-assembly, and
thermally induced phase separation are well-established for
achieving an ECM-like nano-architecture and surface texture
in synthetic biomaterials (Ma and Zhang, 1999). Each of these
methods has unique properties and applications, which we
have previously described in detail elsewhere (Swanson and
Ma, 2020).

Replicating the 3D structure and role of the native ECM is
crucial in tissue engineering (Ma and Zhang, 1999). Nanofibers
resulting from thermally-induced phase separation create a
biomimetic fiber network that enhances protein adsorption
(Woo et al., 2003) and promotes cell adhesion and proliferation
(Smith et al., 2010), affecting cell differentiation (Smith et al., 2009).
In various contexts, 3D nanofibrous matrices facilitate osteoblast
cell adhesion, stem cell differentiation (Liu et al., 2009), and tissue
regeneration (Gupte and Ma, 2012) (Figure 1).

Pores are equally important. Native tissues have hierarchical
nutrient, waste, and signaling molecule transport channels
(Nunes et al., 1997). In synthetic prostheses or tissue engineering
scaffolds, mirroring this native porous architecture is beneficial
(Ryan et al., 2006). Pore size requirements vary by scaffold and
tissue type, with a minimum pore size needed for vascularization
(Gupte et al., 2018; Swanson et al., 2021), tissue ingrowth, and
uniform cell distribution. Pore curvature influences early
differentiation of mesenchymal cells (Swanson et al., 2022). A
porous 3D construct offers a high surface area and void space
for crucial cell-matrix interactions, and synthetic polymers
are advantageous for their reproducible fabrication with pre-
designed macropores. Macropores are particularly important
in cell-free constructs, where endogenous cells fill defects
(Swanson et al., 2020). Such 3D tissue engineering scaffolds with
interconnected macropores have shown regenerative potential

in various tissues and physiological systems within a short
timeframe (Figure 1).

3 Advances in self-healing and
modular materials

Technologies developed during the nuanced eras of tissue
engineering utilized a “top-down” approach in which variations
cells, growth factors, and scaffolds were tested together until
an appropriate engineered tissue was produced (Nichol and
Khademhosseini, 2009).These traditional approaches often resulted
in non-homogenous cell distributions (Sittinger et al., 2004)
and were time intensive. Recent advances in the fabrication
and manufacturing of self-healing and modular materials with
promising applications in tissue engineering and regenerative
medicine.

Hydrogels are commonly used in biomaterials due to their ability
to maintain their structural integrity, emulate an ideal environment
to mimic native tissues (Mantha et al., 2019), and seamlessly
transition between liquid and solid states (Ho et al., 2022). Their
ability to rapidly transition between solid-like and liquid-like
states makes them ideal injectable and extrudable materials in
surgical procedures and 3D printing, respectively (Zhang et al.,
2018; Salzlechner et al., 2020). Self-healing biomaterials have shown
potential for regenerative medicine applications (Riley et al., 2019;
Uman et al., 2020) and therapeutics due to controlled delivery into
patient-specific tissue defects (Li and Mooney, 2016; Choe et al.,
2018; Li et al., 2023).

Themodularity of granular hydrogels can induce an appropriate
host response. For example, researchers can modify rheological
properties to control the rate of infiltration of biological structures
and restrict excessive deposition of ECM by invading cells, or in
the case of severe tissue damage maximize cell response (Qazi and
Burdick, 2021).

Granular hydrogels can self-heal through a process called
“jamming transition”, where the particles in the material rearrange
themselves to fill the void left by the damage (Daly et al., 2019;
Riley et al., 2019; Muir et al., 2021). The jamming phenomenon
results in microporous properties that enable injectability.
Additionally, the shear-thinning characteristic of granular materials
makes it a great candidate for extrusion bioprinting as they
can be customized to emulate the biophysical and biochemical
environment of the extracellular matrix. The fabrication of
different shapes of the microgels, granular bioinks using spheroid
and organoid building blocks, and application of multimaterial
bioprinting are all recent areas of interests by researchers (Daly,
2023). Several proof-of-concept models have been published and
show evidence of feasibility (Chaji et al., 2020; McCormack et al.,
2020; Flégeau et al., 2022; Guo and Longaker, 2022).

These multifunctional materials offer enormous potential for
complex biomimicry in regenerative applications. Researchers are
currently challenged by synthesis and characterization techniques
of injectable hydrogels at a scalable level and various regulatory
aspects (Alonso et al., 2021).There is no consensus in the fabrication
process of microgels, and variations in key rheological parameters
influence bioprinting quality outcomes. Development of synthetic
polymers is crucial to achieving consistent quality bioink prior to
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translating this technology into clinics (Bian, 2020). Animal studies
and biocompatibility research is needed to address the challenges
associated with these self-healing hydrogels and to fully realize their
potential in clinical applications.

4 Advances in 3D bioprinting and
manufacturing

3D bioprinting is a key manufacturing method that allows
researchers to mimic native tissue structures consistently, automate
complex manufacturing processes, and create patient-specific and
organ-specific tissue-engineered constructs. Recently, exciting
advances are paving the way to expand the future of biomaterials
research and provide an important avenue to translate materials
innovations into biomedical applications. These developments
include aspiration-assisted freeform bioprinting (Kim et al., 2022),
combinatorial multimaterial bioprinting (Hassan et al., 2022), high
cell density and high-resolution bioprinting (Skylar-Scott et al.,
2019; You et al., 2023). In addition, four-dimensional (4D)
bioprinting has emerged to integrate time as the fourth dimension
where printed constructs can change their shape or function when
an external stimulus is introduced, or when cell fusion and self-
assembly occur post-printing (Gao et al., 2016). Together, these
developments will enhance precise spatiotemporal control of the
manufacturing of tissues and organs adaptable to individual patients
and specific clinical needs.

One significant challenge in bioprinting is tuning the intricate
balance between cell functions and printability.With recent progress
in the development of granular hydrogel bioinks, bulkmicroporosity
in bioprinted constructs enhances the diffusion of nutrients and
allows for better cell growth (Tuftee et al., 2023). The modular
nature of granular hydrogels allows researchers to gain control over
printability, resolution, porosity, scaffold degradation, cell loading,
and heterogeneity, all contributing to enhancing the versatility of 3D
bioprinting technology to address unmet clinical needs.

Another significant challenge in 3D bioprinting is the
maintenance of bioprinted tissue viability. The inclusion of complex
vascular networks for nutrient transport and waste disposal is
critical to generating viable tissues suitable for clinical application
(Chen et al., 2021). For instance, large bone defects are difficult
to regenerate due to the lack of effective vascularization in the
biomaterial scaffold (Shen et al., 2022). Recent advances in 3D
bioprinting pave the way for fabrication of tissue constructs with
enhanced vascularization with strategies such as the incorporation
of pro-angiogenic factors, for example vascular endothelial
growth factors (VEGF), platelet-derived growth factors (PDGF)
or fibroblast growth factor (FGF), to bioinks induce host vascular
in growth into the implanted tissue, the utilization of sacrificial
printing techniques to create perfusable tissues, or the fabrication
of scaffolds with their own vasculature that can be directly
microsurgically connected to the host vasculature to promote
tissue integration (Skylar-Scott et al., 2019; Chen et al., 2021;
Joshi et al., 2022).

3D bioprinting has the potential to revolutionize the future of
healthcare by fabricating organ replacement options to overcome
donor organ supply shortage, providing physiologically relevant
in vitro models for drug testing to reduce the use of animals

in research and enabling personalized treatments in regenerative
medicine. For clinical translation, recent progress highlights the
potential of intraoperative bioprinting of heterogeneous hard
and soft tissues during craniomaxillofacial reconstructive surgery
(Moncal et al., 2021; Kang et al., 2023). However, future work is
needed to address the challenges of 3D bioprinting, including high
costs associated with expensive technology, regulatory hurdles of
cell therapy, quality control of manufacturing, and ethical concerns
(Datta et al., 2023).

5 Advances in multi-omics and spatial
biology for understanding
cell-material interactions

Understanding cell-material interactions such as inflammation,
degradation, and remodeling is necessary to develop new
biomaterials. Recent advances in multi-omics and spatial biology
pave the way to enhance our understanding of these complex
interactions at a single-cell resolution with spatial information.
These methods allow researchers to gather valuable data and refine
material design with high throughput screening of cell-material
interactions (Sari et al., 2022). For instance, macrophages play key
roles in host response to biomaterials upon implantation. Our
understanding of biomaterial degradation-related macrophage
subpopulations around implanted biomaterials has evolved from
the classic M1/M2 profiles (Mills, 2012). Single-cell RNA-seq
enable the comprehensive analysis of transcriptome profiles around
biomaterial scaffolds, and mapping of scaffold induced cell response
at high resolution.

In addition, new advances in spatial biology pave the way to
precisely identify the biogeography of cellular activity, gene and
protein expression, providing spatial and temporal information in
cell-biomaterial interaction. Both mammalian and bacterial cellular
activities can be studied at a single-cell level putting their behavior
in the context of their microenvironment. For example, novel
technologies such as spatial phenotyping have the potential to
combine multi-omics data and relate with specific tissue, organ and
biomaterial architecture to create a “Google Map” of cell-material
interactions (Shi et al., 2020; Hickey et al., 2022). These powerful
tools will pave the way for researchers to refine the development of
cell-instructive biomaterials.

6 Advanced imagine modalities in
tissue engineering

Advanced imaging techniques are essential for noninvasive,
longitudinal, and consistent monitoring of tissue-engineered
constructs, thus overcoming the limitations of conventional analysis
tools and formalin-fixed-paraffin-embedded (FFPE) histologic
analysis (Nam et al., 2015). Confocal, Raman, and holotomography
are advanced imaging modalities used in tissue engineering.
Confocal microscopy can provide exact 3D imaging and correctly
measure subcellular structure and dynamic processes. Confocal
microscopy is widely used to examine surface and near-surface
features in biomaterials such as bone, dentin, and enamel, imaging
cells on scaffolds, and monitoring the function of tissue-engineered
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constructs (Wang and Larina, 2017). Raman spectroscopy is a
label-free vibrational technique that offers unique insights into the
structure and composition of tissues and cells at the molecular level
(Bergholt et al., 2019). Raman spectroscopy has been a growing
tool in tissue engineering, providing a wealth of quantitative
information about the molecular structure of a tissue’s extracellular
matrix (ECM). Holotomography is a new imaging technique
that uses X-ray synchrotron radiation to investigate angio- and
microvasculogenesis without using contrast agents (Appel et al.,
2013). Holotomography has been used to evaluate artificial tissues,
and it can reveal details down to subcellular length scales. Currently,
these methods are limited in capturing complex structures at z-
lengths greater than 100–500 um, depending on the modality.
This area of active investigation and engineering optimization will
hold great significance in evaluating the cell-biomaterial interface
and regenerative outcomes in the future. Each imaging method
has its range of applications and provides information based
on the specific properties of the imaging technique. Therefore,
according to the requirements of the tissue engineering studies, the
most appropriate tool should be selected among various imaging
modalities.

7 The role of clinician-scientists in
translation and adoption

Despite advances in material sciences and advanced
manufacturing technologies, the clinical adoption of innovation
is confronted by numerous challenges, including strict regulatory
policies surrounding biologics and cell therapies, resource-intensive
clinical trials, complex reimbursement and payer structure, and
Roger’s bell curve of technology adoption. Clinician-scientists
who have completed formal bioengineering research and clinical
practice training can provide valuable perspectives and insights
into translation innovation and adoption to the clinical arena
(Roberts et al., 2012).

First, clinician-scientists may be in the ideal position to identify
unmet clinical needs and develop innovative solutions to address
these needs with the support of their research labs and engineering
team. Rather than developing a medical device or technology
first and finding a clinical application second, a solution should
be reverse engineered with a clinical indication in mind. Once
the clinical need and solution has been identified and designed,
the clinician-scientist can provide clinical validation and assist
in human factors design parameters (Herr, 2010). Clinician-led
innovation can lead to increased surgical quality and value, and
can decrease product development timelines (Augustin et al., 2020;
Schwartz et al., 2016).

Second, clinician-scientists can lead pivotal clinical trials with
their knowledge of the technology, experience in trial design
and execution, and clinical skills to carry out the interventions
(Roberts et al., 2012). To strengthen the pipeline of clinician-
scientists contributing to the process of translational medicine, it
is necessary to develop strong training programs, provide quality
mentoring, and robust funding (Herzog et al., 2018).

Third, clinician-scientists may have experience with regulatory
pathways and are well-positioned to communicate with regulators
such as the FDA. Understanding the different regulatory pathways

available prior to technology development is key to alleviating
some of the difficulties in attaining FDA approval for biologics. As
defined in the Code of Federal Regulations Title 21 Section 3.2(e),
a combination product is comprised of two regulated components.
By developing a biologic/device combination product rather than a
sole biologic, researchers can apply through the FDAmedical device
approval process, a notably shorter approval process compared to the
FDA biologic approval process.

Fourth, clinician-scientists may have deep insights into the
reimbursement process and identify the appropriate reimbursement
strategy, associated Current Procedural Terminology (CPT) codes
(i.e., medical insurance billing codes), and product pricing, all of
which are key to successful adoption. Many of these technologies
are new and do not have existing CPT codes. During the research
translation process, conversation with the Center for Medicare
and Medicaid Services should begin to request a new CPT code
or modification of an existing code. Having an approved CPT
code not only helps with negotiating insurance reimbursement but
generates interest froman investor’s perspective, can increasemarket
size, and accelerate clinician adoption rate. Ability to quantify the
proposed value of the product when negotiating reimbursement
with insurance is crucial to this step. Collaborating with a
biotechnology analyst who is comfortable with gathering primary
and secondary market research in fields with limited information is
key. Clinician-scientists can help analysts understand the value of
the technology in these discussions.TheMichigan-Pittsburgh-Wyss
Regenerative Medicine (MPWRM) Resource Center and Center for
Dental, Oral, and Craniofacial Tissue & Organ Regeneration (C-
DOCTOR) are centers from the National Institute of Dental and
Craniofacial Research with expert scientists, engineers, clinicians,
regulatory and technology commercialization teams specialized in
regenerative medicine available to researchers accepted into the
programs (Taylor et al., 2021).

Last, clinician-scientists may also be excellent educators to
provide training to the clinical community to enhance patient
outcomes by communicating about the scientific basis of the
technologies, and clinical tips.

In sum, advances in biomaterials and bioengineering will
revolutionize the future of regenerative medicine. Clinician-
scientists are well-positioned to lead the adoption of innovation into
the clinical arena.
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