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In buildings that experience fires, cement mortar is subjected to high-
temperature environments and not only the weight of the structure above but
also blast loads, leading to structural damage and loss of load-bearing capacity.
To investigate the static and dynamic mechanical properties of thermally
damaged mortar, a series of tests utilizing modified split Hopkinson pressure bar
were conducted. These tests included quasi-static, conventional dynamic and
coupled static-dynamic loading tests on mortar specimens that were subjected
to seven temperature levels: 20°C, 100°C, 200°C, 300°C, 400°C, 500°C, and
600°C. The test results revealed that both the thermal damage and loading
method had an impact on themechanical properties and damage characteristics
of the mortar specimens. The compressive strength, elastic modulus and
absorbed energy ratio of mortar decreased as temperature increased. Notably,
the quasi-static strength loss rate was 60% when the temperature reached
600°C. Under coupled static-dynamic loading, the specimens exhibited higher
strength, elastic modulus, reflected energy ratio, and transmitted energy ratio.
Conversely, they had lower average strain rates and absorbed energy ratios.
Intriguingly, the dynamic growth factor had a relative increase of 0.7–2.0
compared with other loading methods. Furthermore, the higher temperature,
the higher fragmentation of the specimens in the fragmentation pattern.
Conventional dynamic loading resulted in the greatest degree of fragmentation.
The findings provide a scientific basis for the design and evaluation of concrete
shockproof and explosion-resistant structures.

KEYWORDS

mechanical properties, thermal damage, mortar, coupled static-dynamic loading,
energy dissipation

1 Introduction

Cement mortar was widely utilized in various architectural structures, including
buildings, bridges, and tunnels. In modern times, the complex layout of building pipelines
and dense urban landscapes had increased the likelihood and severity of fire, resulting
in substantial economic losses (Aitcin, 2003; Hertz, 2005; Liu et al., 2020). Fire posed
significant threats to individuals’ safety and property, with fire losses in China steadily
rising. Fires caused severe damage to the building materials, resulting in a decrease
in the structure’s load-bearing capacity (Schrefler et al., 2002; Patrick and Pietro, 2014).
During a fire incident, the upper building structure experienced high-temperature failure,
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while the lower structure was impacted by falling debris,
accompanied by the explosive effects of explosive materials.
Cementitious materials were subjected to a combination of high
temperature and various types of loading failure, ultimately
leading to building collapse, posing a significant threat to the
safety of individuals and property (Khoury, 2000; Annerel and
Taerwe, 2009; Du et al., 2018). Therefore, to further understand
the mechanical properties of cement mortar in abnormal
environments, it was essential to evaluate the residual properties
after thermal damage (Lu et al., 2013; Mukesh and Shashank, 2019;
Zhao et al., 2019).

During fire, the simultaneous occurrence of thermal damage
and various forms of loading on cement mortar often led to
the destruction of the concrete structures (Biolzi, Cattaneo, and
Rosati, 2008). Recent studies primarily focused on investigating
the static mechanical properties of thermally damaged cement-
based materials. Cree, Green, and Noumowé (2013) carried
out quasi-static strength tests on thermally damaged cement
mortar and concrete, and established typical strength loss model.
Bamonte, Gambarova, and Sciarretta (2021) investigated the
mechanical properties of mortars after heating to 200, 400 and
600°C and 900°C to evaluate the thermal diffusion coefficient.
Jeyaprabha, Elangovan, and Prakash (2016) placed mortar mixtures
at temperatures of 200°C, 500°C, 700°C, and 900°C, followed by
cooling with water, and measured their compressive strength.
Yazıcı, Sezer, and Şengül (2012) investigated the effect of subjecting
mortars to temperature ranging from 20°C to 750°C in a ceramic
furnace for 1 h on their compressive strength. Zhang et al. (2000)
investigated the effects of high temperature duration and curing
age on the energy parameters, strength parameters, stiffness
parameters, and brittleness parameters of ordinary and high-
strength thermally damaged concrete. It was found that these
properties generally decreased linearly with increasing temperature.
Deng et al. (2020) studied the mechanical properties of recycled
aggregate concrete after thermal temperature to provide scientific
guidance for the design of recycled concrete fire protection.
In addition, some scholars had studied the static-dynamic
behaviors of concrete. Chen et al. (2019); Luo et al. (2020) studied
the static-dynamic mechanical properties of concrete columns
in order to provide reference for earthquake resistance and
disaster reduction.

Concrete was susceptible to high temperatures and blast or
impact loads. Therefore, the effect of thermal damage on the
dynamic mechanical properties of concrete was crucial. However,
there was little research on the behavior of cement mortar under the
combination of high temperature and impact loads. Bi et al. (2020)
foundwater cooling producedmore irregular fragments and smaller
fragments than air cooling at the same temperature and strain
rate during the dynamic test of concrete. Yao et al. (2017) studied
the mortar’s dynamic compressive strength treated temperatures
ranging from 150°C to 850°C, quantified thermal damage based
on microcracks and chemical changes, and developed a dynamic
uniaxial loadingmodelwith temperature and strain rate effects using
damage variables. This model predicted the strength of mortar after
high temperatures.

However, there is a lack of research on mechanical properties of
thermally damaged cement mortar under different loading forms,
especially under coupled static-dynamic loading. In this study,

mortar was first heated to temperatures of 100°C, 200°C, 300°C,
400°C, 500°C, and 600°C, and then naturally cooled. Subsequently,
quasi-static, dynamic and coupled static-dynamic loading tests
were conducted using a modified SHPB device. The effects of
different loading modes on the mechanical properties, damage
morphology, and energy dissipation characteristics of the thermally
damaged cement mortar were discussed. It was found that when
the temperature reached 600°C, the quasi-static strength loss rate
was about 60%, and the strength increased under static-dynamic
loading. The results of this study will help further understand
the effects of different loading methods on dynamic strength and
deformation characteristics of thermally damagedmortar, reveal the
damage law and dynamic damage mechanism of mortar after high-
temperature damage. The research results will provide scientific
basis for improving the fire safety performance of buildings and
evaluating fire accidents.

2 Materials and methods

2.1 Materials

P·O 42.5 cement was produced from Huainan Conch Cement
Co., Ltd. in Huainan city in this study. The natural river sand was
collected from theHuaiheRiver region ofChina, and had a fine grain
modulus of 2.36 and an apparent density of 2,550 kg/m3. The water
was taken from the laboratory tap. The chemical compositions of
cement are presented in Table 1.

2.2 Sample preparation

Thewater-binder ratio of the mortar used in this study was 0.38,
and the ratio of binder to sand was 1:1.2 (Xiong and Chen, 2020).
Different loading testswere conducted on specimenswith a diameter
of 50 mm and height of 50 mm, following the method described in
the reference by Zhou et al. (2012). The specimens were cured for
28 days after casting. The test program is presented in Table 2.

2.3 Methods

2.3.1 Thermal treatments
To prevent the rapid evaporation of water in the Muffle furnace

from damaging the furnace wall, the specimens were dried in a
105°C oven for 1 day. They were heated to temperatures of 100°C,
200°C, 300°C, 400°C, 500°C and 600°C at a rate of 6°C/min after
completely cooled. Each temperature wasmaintained for 120 min to
ensure uniform temperature distribution within the specimens then
cooled in the furnace before further testing (Gao et al., 2023). A
group of nine specimens were used at each temperature. The SX2-
8-10A resistance furnace manufactured by the Shangyu Daoxu
Scientific Instrument Co., Ltd. in Shaoxing city was utilized in the
study. The thermal cycle temperature curve of high-temperature
treatment is shown in Figure 1.

2.3.2 Quasi-static loading test
The quasi-static compressive strength of the mortar was

determined using aDYE-300 universal testingmachine.The loading
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TABLE 1 Chemical compositions of cement (wt%).

Material CaO SiO2 Fe2O3 Al2O3 MgO SO3 LOI

Cement 49.7 30.6 3.4 7.8 3.7 3.7 1.1

TABLE 2 Test program.

Group (S) Thermal
temperature/°C

Loading
condition

Group Thermal
temperature/°C

Loading
condition

Group Thermal
temperature/°C

Loading
condition

T20 20

Quasi-static

T20D 20

Dynamic

T20SD 20

Static-dynamic

T100 100 T100D 100 T100SD 100

T200 200 T200D 200 T200SD 200

T300 300 T300D 300 T300SD 300

T400 400 T400D 400 T400SD 400

T500 500 T500D 500 T500SD 500

T600 600 T600D 600 T600SD 600

FIGURE 1
Thermal cycle temperature curve for high-temperature treatment of
mortar specimens.

rate during the tests was controlled to be approximately 1 kN/s.
Three specimenswere tested at each thermal treatment temperature.

2.3.3 Dynamic loading test
The dynamic loading tests were conducted using a SHPB device

with 50 mm diameter to apply an impact air pressure of 0.3 MPa.
The SHPB device, as shown in Figure 2, can also be used for
coupled static-dynamic loading tests. The launcher consists of a
launch cavity and a spindle-shaped bullet, while the incident and
transmitted rods possess an elastic modulus of 210 GPa and a
wave propagation velocity of 5,200 m/s. To reduce the radial inertia
between the specimens and the rods during dynamic loading,

petroleum jelly was uniformly coated on the cross sections of the
incident and transmitted rods.The loading applied on the specimens
were determined according to the one-dimensional stress wave
propagation theory. It was assumed that stress in SHPB was in state
of equilibrium. The stress, strain rate, and strain were calculated by
Eqs (1)–(3) (Jiang et al., 2023):

σ =
A0E0

As
εT (1)

̇ε = −
2C0

ls
εR (2)

ε = −
2C0

ls
∫
t

0
εRdt (3)

where E0, A0 and C0 are the elastic modulus, cross-sectional area
and longitudinal wave velocity of the bar, respectively; As and ls are
the cross-sectional area and length of cement mortar specimens,
respectively; εT and εR are the transmitted and reflected strain on
the rod, respectively.

2.3.4 Coupled static-dynamic loading test
The test was conducted using the device in Figure 2. Mortar was

performed static-dynamic loading tests with an impact air pressure
of 0.3 MPa. In this case, an axial load was applied prior to the impact
(Dai et al., 2010), with the magnitude of the axial load being 10%
of the quasi-static compressive strength after thermal treatment.
The impact dynamic loads were applied by opening the valve and
releasing the bullet after a stabilization period of 5s for the axial load
indication.

2.3.5 Scanning electron microscope (SEM) test
SEM tests were conducted to investigate the microstructure

and morphology of thermally damaged cement mortar’s hydration
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FIGURE 2
Improved SHPB for dynamic and static-dynamic loading tests.

products. This test utilized a Flex1000 electron microscope scanner.
The loaded specimens were crushed and sampled, followed by
continuous pumping for 24 h in a vacuum pump. Subsequently, they
were sprayed with gold, and the SEM images were recorded.

3 Results and discussion

3.1 Mechanical properties of thermally
damaged mortar under different loading
conditions

Based on the assumption of one-dimensional stress wave theory,
the dynamic stress in incident rod is equal to the dynamic stress
in the transmitted rod. The results of stress balance tests conducted
on specimens are presented in Figure 3, which reveals that the sum
of the incident and reflected dynamic stresses was equal to the
transmitted dynamic stress. This confirms that the dynamic stresses
on both sides of specimens were balanced, thereby ensuring the
reliability of the data.

3.1.1 Dynamic stress-strain curve characteristics
To investigate the effect of thermal damage and different

loadings on stress-strain curve characteristics of mortar specimens,
typical mortar specimens with compressive strength closest to the
average valuewere selected for further analysis. Figures 4, 5 illustrate
the stress-strain curves of thermally damaged specimens under
dynamic loading and coupled static-dynamic loading, respectively,
which can be divided into three stages.

Stage 1: The elastic deformation stage was characterized by
approximately linear growth of mortar stress with strain, a stable
dynamic elastic modulus (Ec). The Ec was found to be dependent
on the high temperature, with the control group exhibiting the
highest value of Ec. However, when the temperature reached 600°C,
the Ec was the smallest. At this stage, micro-pores were present
within the mortar specimens, and micro-cracks formed between
sand particles and cementitious material. These cracks experienced

FIGURE 3
Dynamic stress equilibrium curves of mortar specimens during the
dynamic loading tests.

extrusion and shrinkage. Nevertheless, due to the pre-applied axial
load during static-dynamic loading tests, this stage was shorter in
duration, resulting in higher compactness and a relatively smaller
peak strain.

Stage 2: The plastic deformation stage was characterized
by a change in the dynamical mechanical properties after the
elastic limit stress was reached. As deformation increased, the
plastic deformation stage under dynamic loading became more
pronounced, while that under coupled static-dynamic loading was
shorter. Upon reaching the yield stress, the strain of the specimens
increased to a certain extent, but the stress decreased sharply. This
phenomenon can be attributed to the axial loading compacting the
internal structure of the mortar, thereby exacerbating the damage
caused by thermal damage to the specimens.
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FIGURE 4
Dynamic stress-strain curves of specimens under dynamic impact.

FIGURE 5
Dynamic stress-strain curves of specimens under static-dynamic
coupled loading.

Stage 3: The unloading stage was characterized by the rapid
decrease in the stress of the specimens under dynamic loading
when their internal damage has accumulated to the limit of fracture.
Inversely, mortar subjected to static-dynamic loading exhibited one
or more secondary stress peaks, indicating that they still possessed a
certain load-bearing capacity after damage and had not completely
broken down.

3.1.2 Compressive strength characteristics
The impact of high-temperature on compressive strength of

thermally damaged mortar was a crucial factor that must be
considered. As illustrated in Figure 6, it can be observed that
the compressive strength of thermally damaged mortar decreased

FIGURE 6
Variation trend of mortar compressive strength with temperature
under different loading conditions.

with temperature under the same loading conditions. The quasi-
static compressive strength (σ s) exhibited a quadratic function
trend with temperature, resulting in a correlation coefficient R2

of 0.980. In contrast, the dynamic compressive strength (σd) of
mortar under dynamic and static-dynamic loading displayed a
linear downward trend, with correlation coefficients R2 of 0.989 and
0.929, respectively.The results clearly indicated that the compressive
strength of mortar was the highest under static-dynamic loading,
followed by that under dynamic loading, and lowest under quasi-
static loading.

The dynamic increase factor (DIF) is defined as the ratio
of the average σd to the average σ s for thermally damaged
specimens. It is commonly used to assess and compare the
influence of impact loads on material strength (Xu and Li, 2011;
Yao et al., 2016; Yin et al., 2018; Shu et al., 2022). Variation trend of
mortar DIF with temperature under different loading conditions
is illustrated in Figure 7. Under the same loading conditions,
DIF increased approximately exponentially with temperature, with
correlation coefficients R2 reaching 0.922 and 0.950, respectively.
When axial static pressure and dynamic loading were combined,
static pressure caused compaction of the pores, leading to a
significant increase in DIF (from 0.7 to 2.0). In summary, DIF is
sensitive to variations in high temperature and pre-applied axial
pressure.

3.1.3 Deformation characteristics
Dynamic elastic modulus Ec is a measure of the deformation

ability of a specimen under elastic deformation. The corresponding
strain is the peak strain when the specimen reaches its peak stress
(Chen et al., 2022; Li et al., 2023; Michał et al., 2023; Zhang et al.,
2023). The elastic modulus of mortar was determined by selecting
the slopes of the tangents at two points on the stress-strain curve,
namely, when the stress reached 0.3 times and 0.6 times the peak

Frontiers in Materials 05 frontiersin.org

https://doi.org/10.3389/fmats.2024.1359358
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Ying et al. 10.3389/fmats.2024.1359358

FIGURE 7
Variation trend of mortar DIF with temperature under different loading
conditions.

stress σmax. The calculation formula is Eq. (4):

Ec =
σ1 − σ2

ε1 − ε2
(4)

where σ1 and σ2 are the stresses at the two points corresponding
to 0.6 times σmax and 0.3 times σmax on the stress-strain
curve, respectively; ε1 and ε2 are the strains at the two points,
respectively.

The relationship between Ec ofmortar and temperature is shown
in Figure 8. Ec decreased linearly with increasing of temperature,
with correlation coefficients R2 of 0.974 and 0.947, respectively. Ec of
mortar under dynamic loading and static-dynamic loading at 600°C
decreased by 62.58% and 41.44%, respectively, compared to that at
20°C. This reduction was due to the same reason as the decrease in
dynamic compressive strength.

3.1.4 Strain rate characteristic
Therelationship between the average strain rate and temperature

is illustrated in Figure 9. The strain rate of mortar under dynamic
loading and static-dynamic loading increased linearly with
increasing temperature, with correlation coefficients R2 of 0.913
and 0.927, respectively. The strain rate of mortar under static-
dynamic loading was lower than that under dynamic loading.
The strain rate of mortar under dynamic loading ranged from
143.96 to 151.57 s−1, while that under static-dynamic loading
ranged from 112.44 to 126.19 s−1. Due to the pre-applied axial
load, the structure of mortar became denser, σd increased, the peak
strain decreased.

3.2 Failure pattern of thermally damaged
mortar under different loading conditions

3.2.1 Fracture morphology and failure mode
The mortar failure pattern is closely related to the fragments of

the specimens after loading (Shuai et al., 2020; Padmanabha et al.,

FIGURE 8
Variation trend of dynamic elastic modulus of mortar with
temperature under different loading conditions.

FIGURE 9
Variation trend of average strain rate of mortar with temperature under
different loading conditions.

2022; Zheng et al., 2023). As observed from Table 3, as the
temperature increased from 20°C to 600°C, the mortar color
changed from the usual gray to off-gray and then to pale
yellow. As the temperature increased, the thermally damaged
mortar became powderier and the degree of fragmentation
also increased. Under different loading conditions, the mortar
specimens subjected to SHPB impact broke into blocky pieces.
Compared with specimens under static-dynamic loading, those
under dynamic loading exhibited more irregular and smaller
fragmentation. This was because the axial pressure made the pores
of mortar denser and the coupled effect of static-dynamic loading
enhanced its compressive strength. Despite varying thermal damage
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TABLE 3 Typical fracture morphology of mortar.

Loading condition Thermal temperature (°C)

20 200 400 600

Quasi-static

Dynamic

Static-dynamic

temperatures and different forms of loading conditions, the failure
mode of the mortar remained consistent - splitting and tensile
failure.

3.2.2 Facture surface
TheSEMtestswere conducted on the thermally damagedmortar

specimens (Figure 10). The compressive strength loss of thermally
damaged mortar was closely related to the mass loss (Figure 11).
With the increased temperature, the number of cracks and pores
on the fracture surface gradually increased. The mass loss rate and
quasi-static compressive strength loss rate increased exponentially
with temperature, with correlation coefficients of 0.952 and 0.926,
respectively. In Figure 10A, the gel structure in the mortar was
intact at 20°C, and the dense calcium hydroxide was very neat
and complete. At temperatures between 100 and 110°C, free water
escaped from the cement mortar, and the hydrated calcium silicate
gel began to dehydrate. The hydrated calcium aluminate began
to dehydrate around 200°C (Li et al., 2012; Chen et al., 2023). At
temperature of 300°C, the mass loss rate was about 5%, while the
strength loss rate was about 40%. At this stage, the primary cause
of damage to the mortar was the micropores and microcracks
shown in Figure 10B (Chen et al., 2023; Yu et al., 2023). As the
temperature surpassed 300°C, the number of microcracks and
pores in Figure 10C increased. Upon reaching a temperature of
600°C, numerous microcracks and pores became evident at the
interface, as depicted in Figure 10D (Min-Ho and Sang-Jin, 2006;

Faisal et al., 2018). The maximum strength loss rate of mortar
reached 60%, while the mass loss rate increased to approximately
8%. The decomposition temperature range for calcium carbonate
in the cement paste was 850°C–900°C (Son and William, 2014;
Stoyanov et al., 2023).

3.2.3 Energy dissipation of thermally damaged
mortar under dynamic and coupled
static-dynamic loading

Equations (5)–(8) for calculating energy dissipation are as
follows:

EI = E0C0A0∫
t

0
ε2Tdt (5)

ER = E0C0A0∫
t

0
ε2Tdt (6)

ET = E0C0A0∫
t

0
ε2Tdt (7)

EA = EI −ER −ET (8)

where, EI(t), ER(t), ET(t), and EA(t) are the incident energy,
reflected energy, transmitted energy, and absorbed energy,
respectively.

Under different loading conditions, the energy dissipation
law of mortar specimens was investigated by using energy ratio
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FIGURE 10
SEM images of thermally damaged mortar specimens. (A) 20°C, (B) 200°C, (C) 400°C, (D) 600°C.

FIGURE 11
Mass and quasi-static compressive strength loss ratio variation of
thermally damaged mortar with temperature.

due to the difference of the incident energy (Liu et al., 2020;
Yan et al., 2023).

Under different loading conditions, the reflected energy ratio
(ER/EI) of mortar increased an increase in temperature, as shown
in Figure 12A. This was because as thermal treatment temperature
increased, the strength of the mortar decreased, resulting in a
greater difference in wave impedance between mortar and rod,
leading to a worsening energy transfer effect and a larger reflected
energy ratio. In terms of numerical value, the reflected energy ratio
under static-dynamic loading was larger than that under dynamic
loading. This was due to the mortar strength under static-dynamic
loadingwas greater than dynamic loading at same thermal treatment
temperature.

Figures 12B, C showed the variation of ET/EI and EA/EI of
mortar with temperature, respectively. From the trend of change,
it can be seen that ET/EI and EA/EI of the mortar under different
loading conditions both exhibited a downward trendwith increasing
temperature. In terms of magnitude, the transmitted energy ratios
of the mortar under static-dynamic loading were generally greater
than those under dynamic loading, while the absorbed energy ratios
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FIGURE 12
Energy proportion variation of thermal mortar with temperature.
(A) ER/EI, (B) ET/EI, (C) EA/EI.

were smaller than those under dynamic loading. This was due to
the weakening of mortar strength as the temperature increased,
while the pre-applied axial compressive stress helped to enhance
its strength.

4 Conclusion

The mechanical properties of thermally damaged mortar
specimens under different loading conditions were studied. The
findings of this research were intended to offer valuable data
for the safety assessment of cement-based structures following
a fire event, particularly when subjected to complex loading
scenarios. Based on the results, the following conclusions can
be drawn:

(1) Under the same loading conditions, compressive strength
of thermally damaged mortar decreased as temperature
increased. At 600°C, the quasi-static strength loss rate was
approximately 60%. DIF of the mortar was temperature-
sensitive. Ec decreased linearly, while strain rate increased
linearly with increasing temperature. It was attributed to
the presence of more pores and defects within the mortar’s
interior following thermal damage, which in return facilitated
deformation with increasing temperature.

(2) Under the same thermal treatment temperature, the order
of mortar strength under different loading was: static-
dynamic loading, dynamic loading and quasi-static loading. In
comparison to dynamic loading, mortar subjected to coupled
static-dynamic loading exhibited a larger DIF and Ec. DIF
was found to be sensitive to pre-applied axial compressive
stress. Additionally, strain rate of mortar under coupled static-
dynamic loading was relatively low, ranging from 25 to 30 s−1.
It was due to the pre-applied axial pressure before dynamic
loading, which helped to compress the pores within themortar
and thus enhance its strength.

(3) Under the same loading condition, increasing temperature
resulted in more fragmentation in thermally damage mortar.
The increase in pores and microcracks in the mortar was
primarily caused by the gradual evaporation of free and bound
water, followed by the decomposition of chemical components.
Under different loading conditions, the failure mode of
thermally damaged mortar was characterized by splitting and
tensile failure. Notably, quasi-static loading resulted in the
largest broken fragments of mortar, while dynamic loading led
to smaller fragments compared to static-dynamic loading.This
difference was due to the pre-applied stress, which caused the
pore structure to become more compact and thus reduced the
degree of mortar crushing.

(4) With increasing temperature, ER/EI of mortar increased
significantly, while ET/EI and EA/EI energy ratio decreased.
Furthermore, the pre-applied stress had a positive effect on the
ER/EI and ET/EI , while it decreased EA/EI .The law governing
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the dissipation of energy in mortar was found to be consistent
with the strength damage law.

The limitation of this study was that no mortar samples were
studied above 600°C. Due to the limitation of instruments and
equipment, the maximum thermal temperature of mortar samples
only reached 600°C. Subsequently, the dynamical mechanical
properties of the cement mortar can be investigated after
experiencing higher temperatures.
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