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Concrete reinforcement is essential for ensuring the safety and durability of
concrete structures. Bonding steel plates to reinforce concrete is widely used to
renovate or strengthen concrete beam structures. Due to construction quality
and the influence of factors such as environment and fatigue, debonding
often occurs between the steel plate and concrete, making monitoring and
early warning after concrete structure reinforcement challenging. This paper
proposes a novel approach to monitor the degree of debonding between the
steel plate and concrete beam using active sensing technology. The method
uses lead zirconate titanate (PZT) as an actuator to generate stress waves. It
prepares strip sensors with polyvinylidene fluoride as the sensing element to
monitor stress waves passing through the steel plate and concrete beam. The
monitoring system detects the degree of debonding between the steel plate and
the concrete beam by monitoring the change in surface voltage of the sensor.
Experiments show that the degree of debonding significantly correlates with the
received voltage signal; the higher the debonding, the larger the received voltage
signal. It is also observed that, at the same degree of debonding, the actuator
and sensor attachment position have a particular impact on the received voltage
signal. Through experiments and numerical simulation analysis, it is found that
when the sensor is attached to the left side of the steel plate, that is, the bonded
section of the steel plate, the amplitude of the voltage signal collected by
the dynamic information acquisition system is the smallest, i.e., V_debonded
section > V_middle > V_bonded section. Based on the above research, the active
sensing technology proposed in this paper has good sensitivity to the degree
of debonding between the steel plate and concrete. It is expected to become
an effective monitoring and evaluation method for the degree of debonding
between steel plates and concrete.

KEYWORDS

debonding monitoring, active sensing technology, bar sensor, PZT actuator, PVDF

Frontiers in Materials 01 frontiersin.org

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2024.1361159
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2024.1361159&domain=pdf&date_stamp=2024-02-01
mailto:kh980407@163.com
mailto:kh980407@163.com
https://doi.org/10.3389/fmats.2024.1361159
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2024.1361159/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1361159/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1361159/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1361159/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1361159/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Wang et al. 10.3389/fmats.2024.1361159

1 Introduction

Concrete beams, as a common transverse component, are widely
used in engineering structures. During their long-term use, the
components are prone to serious deformation or even cracking
due to adverse factors such as external loads (Zhan, et al., 2015),
corrosion (Aslani and Dehestani, 2020), fatigue (Zanuy et al., 2007),
etc. If the defects in the concrete beams are not detected and repaired
in a timely manner, it will seriously threaten the safety of the
structure (Kaklauskas, 2017; Fu and Lao, 2023; Yang, et al., 2023).

Common methods for repairing and strengthening concrete
beams include increasing section reinforcement (Ye et al., 2010;
Li, et al., 2014; Naser, et al., 2019), bonding fiber-reinforced
composite material (Dai, et al., 2011; Hawileh, et al., 2018;
Zhang, et al., 2023), and bonding steel plate reinforcement (Barnes
and Mays, 2006; Arslan, et al., 2008; Qu, et al., 2017; Ma and
Liu, 2023). Among them, the method of bonding steel plate
reinforcement has been widely used in concrete reinforcement due
to its simple and fast construction, and it does not significantly
increase the cross-sectional dimensions andweight of the reinforced
components. However, the debonding of the steel plate is a common
problem in the bonding steel plate reinforcement. The quality of
the bonding between the steel plate and the concrete directly affects
the safety of the structure (Jones, et al., 1988; Oehlers and Ali, 1998;
Ali, et al., 2005; Zou, et al., 2023). Once the steel plate is detached
from the concrete bonding layer, it will affect the structural load
and may even cause cracks to further develop, leading to structural
failure. Due to the invisibility of the bonding between the steel plate
and the concrete structure, it is difficult to monitor the quality of
the bonding steel plate. Currently, the widely used non-destructive
testing methods, such as acoustic emission technology (Zaki, et al.,
2023), ultrasonic testing technology (Shah, et al., 2009; Shah and
Ribakov, 2009), fiber optic sensing technology (Buda-Ożóg et al.,
2022), and digital image processing technology (Galkovski et al.,
2023), all involve sophisticated equipment and complex algorithms,
requiring high demands on the testing environment and the
operator’s skill, making them difficult to apply flexibly in some
engineering applications. Therefore, there is an urgent need to
find a simple and effective non-destructive monitoring method
for monitoring the debonding of the steel structure and the concrete
beam bonding joint.

Piezoelectric materials are commonly used in active sensing
technology for structural healthmonitoring due to their sensing and
actuating functions in recent years (Liao, et al., 2008; Howser, et al.,
2011; Huo, et al., 2018). The widely used piezoelectric materials
include lead zirconate titanate (PZT) and polyvinylidene fluoride
(PVDF). PZT has strong piezoelectric effect (Song, et al., 2002) and
a wide bandwidth (Wu, et al., 2019), while PVDF is a piezoelectric
polymer that overcomes the shortcomings of piezoelectric
ceramics and has the advantages of structural flexibility and stable
performance (Audrain, et al., 2004). Both materials have been
widely used and have shown good results in the detection of
bonding slip (Qin, et al., 2015; Zeng, et al., 2015; Xu, et al., 2018)
between concrete and steel, monitoring of structural impact damage
(Yu, et al., 2013), andmonitoring of asphalt pavement crack damage
(Hasni, et al., 2017).

Due to the issue of debonding between reinforced steel plates
and concrete beams, and based on the superior performance of

lead zirconate titanate (PZT) and polyvinylidene fluoride (PVDF)
in the field of structural detection, this paper proposes a new
method for real-time monitoring of debonding between steel plates
and concrete beams using PVDF as the sensor for debonding
monitoring and PZT as the actuator for debonding monitoring.
Through active monitoring experiments on the reinforced concrete
with attached steel plates, the relationship between the received
electrical signal and the degree of debonding was studied. In
addition, based on experimental andnumerical simulationmethods,
the correlation between the sensor installation position and the
received electrical signal under the same debonding state was
analyzed, and the mechanism was explained. Through the above
research, the feasibility of the proposed method for monitoring the
debonding state between reinforced steel plates and concrete beams
was further validated.

2 Preparation and monitoring
mechanism of piezoelectric
transducer

2.1 The preparation of a bar sensor

The strip sensor is prepared based on polyvinylidene fluoride
(PVDF), using a PVDF sensor element with dimensions of 1 cm
× 2 cm × 28 μm. The main performance parameters of PVDF are
shown in Table 1. A polydimethylsiloxane (PDMS) with an outer
ring length of 7cm, inner ring length of 5cm, and a thickness of
500 μm is used as the substrate material to increase the range of
the strip sensor. The mechanical performance parameters of PDMS
are shown in Table 2. The detailed fabrication process of the strip
sensor is as follows: silver is plated on the outer edge of the PVDF
with a thickness of 1μm, then copper foil conductive tape is used to
attach the shielded wire to one side of the PVDF. The PVDF is then
attached to the surface of the PDMSusing epoxy resin.The structural
fabrication process of the strip sensor is shown in Figures 1A a photo
of the actual sensor is shown in Figure 1B.

2.2 Preparation of PZT actuators

The piezoelectric actuator is prepared from lead zirconate
titanate (PZT), with the common types being PZT-4, PZT-5,
and PZT-8. The performance parameters of the three types of
lead zirconate titanate (PZT) materials are shown in Table 3.
Among them, PZT-4 piezoelectric ceramics have high dielectric
constants and electromechanical coupling coefficients,making them
suitable for self-excited sensors that function as both receiving
and transmitting ends (Othmani, et al., 2020) PZT-5 piezoelectric
ceramics have a small quality factor and high dielectric losses
but exhibit high sensitivity, and are therefore commonly used as
receiving elements in devices such as accelerometers, piezoelectric
sensors, and ultrasonic probes (Bouche, 1975; Benes, et al., 1995;
Kumar, et al., 2022). PZT-8 piezoelectric ceramics are a type of high-
power piezoelectric material with low dielectric losses, suitable for
large amplitude excitation, mainly used in ultrasonic cleaning and
ultrasonic surgery (Prabakar, 2007; Zhang, et al., 2017). Through
comparison, it is found that PZT-4 is more suitable as a driver
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TABLE 1 Main performance parameters of PVDF film.

ε/ε0 (KHz) C (m/s) Z (Kg/sm4) K33 (%) σs (N/m
2) ρ(kg/m3) T (°C)

9.5 ± 1.0 2000 2.5–3×104 10–14 44–55×106 1.78×103 −40–80

TABLE 2 PDMS film mechanical properties parameters.

T (°C) Shore
hardness

(HA)

Tensile
strength
(MPa)

Peel
strength
(KN/m)

Ep (GPa) Tearing
elongation

(%)

Dielectric
strength
(KV/mm)

k33 Volume
resistance
(Ω·cm)

−40–200 50 4 7 1.6 100 12 2.7 1014

FIGURE 1
Bar Type Piezoelectric Sensor. (A) Preparation process diagram (B) Physical diagram.

TABLE 3 Mechanical properties parameters of PZT materials.

Material type S11(N·m
−2) d33 (pC/N) ε/ε0 Ep (Gpa) k33 Curie temperature T (°C)

PZT-4 1.35 × 10−11 320 1,350 76.5 0.64 360

PZT-5H 2 × 10−11 650 3,400 60.6 0.8 220

PZT-8 1.1 × 10−11 225 1,300 60 0.63 300

for monitoring tests of bonding seam delamination in reinforced
concrete beams. In this study, the selected dimensions of PZT-4 are
1 cm × 2 cm × 28 μm.

2.3 The mechanism of active monitoring
for debonding between reinforced steel
plate and concrete beam

Piezoelectric materials, after being polarized by an electric
field, will generate charges when subjected to force, called the
positive piezoelectric effect; under the influence of an electric field,
deformation known as the inverse piezoelectric effect will occur.
By attaching a strip sensor and PZT actuator to the steel plate,
connecting PZTwith the piezoelectric ceramic driving power source

to generate stress waves, and connecting PVDF with the dynamic
information acquisition instrument to convert the received stress
waves into electrical signals. The sensing mechanism described
above can be represented by the first type of piezoelectric equation
as follows:

x = sEX + dtE (1)

D = dX + εxE (2)

Where Formula (1) represents the ability of piezoelectric
materials to convert electrical energy into mechanical energy, which
can be used to make PZT actuators; Formula (2) represents the
ability of piezoelectric materials to convert mechanical energy into
electrical energy, which can be used to make strip sensors. For
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FIGURE 2
Piezoelectric material calculation orientation diagram.

the piezoelectric equations of PZT and PVDF, the piezoelectric
coefficients have symmetry with respect to crystal type, so
Formula (2) can be simplified to:

D3 = d31X1 + d32X2 (3)

Where 3 represents the polarization direction. When the strip
sensor is subjected to the forces in the 1 and 2 directions, the charge
produced in the 3 direction is D3, as shown in Figure 2.

According to the research on the piezoelectric effect of
piezoelectric materials after electric field polarization by Zhao and
Li (2006) when a bar sensor is subjected tomechanical force, charges
will be generated on the upper and lower surfaces, with the amount
of charge being:

Q =∬D3dxdy (4)

Moreover, due to the similar structure of piezoelectric materials
to that of a capacitor, the voltage, after the capacitance is generated
on the upper and lower surfaces, can be determined as follows:

U = Q
Cq

(5)

Where Cq represents the capacitance of piezoelectric material,
which only related to the properties of the material, and the
capacitance is:

Cq =
εbl
t

(6)

Where ε represents the relative dielectric constant of the ceramic
sheet, and lbt represents the length, width, and thickness of the
sensor, respectively. Therefore, by applying excitation signals to the
PZT, it is possible to monitor the voltage signal output by the strip
sensor, which indicates the change in surface voltage of the strip
sensor in order to assess the level of debonding between the steel
plate and the concrete beam.

3 Monitoring experiment and
numerical simulation of debonding
between reinforced steel plate and
concrete beam

This section includes two sets of experiments and one set
of numerical simulations to demonstrate the feasibility of the

TABLE 4 Cracked concrete beammix proportions.

Concrete Sand Aggregate Water

416.7 624.2 1,159.1 200

theoretical model for monitoring the debonding level between steel
plates and concrete beam, as well as the effect of different sensor
attachment positions on the received stress wave transmission when
the debonding level of the steel plate remains the same. The first set
of experiments consists of a control experiment with fixed positions
of the PZT actuator and strip sensor but different debonding levels
of the steel plates. The second set of experiments involves a control
experiment with the same debonding level of the steel plates, but
different positions of the PZT actuator and strip sensor. Additionally,
numerical simulations were conducted for steel plates with different
positions of the PZT actuator and sensor attachment but the same
debonding level.

3.1 The description of experiment

Theapparatus used in the experiment consists of test pieces, steel
plates, PZT actuators, strip sensors, DH5922Ndynamic information
acquisition system, HPV series piezoelectric ceramic drive power
supply and signal amplifier. In order to simulate the actual use
environment of the steel plate bonding reinforcement method, the
test pieces include 4 cracked concrete beams, with crack dimensions
of 150 mm × 150 mm × 600 mm and a mix ratio as shown in
Table 4. First, when using the steel plate bonding reinforcement
method for the cracked concrete beams, it is necessary to repair the
cracked cracks, fill the cracks with repair adhesive using an adhesive
injector to repair the concrete beams. Secondly, before reinforcing
the concrete beams with steel plates, it is necessary to calculate the
ultimate load-bearing capacity of the steel plate.Once the calculation
meets the requirements, the steel plate is cut into the required shape,
and the surface is coatedwith adhesive.The steel plate is then bonded
to the concrete surface. After bonding the steel plate to the concrete
beams, the reinforced concrete beams are cured in their natural state
for 3 days to ensure a strong bond between the concrete beams and
the steel plate, as shown in Figure 3.

After the concrete beams are firmly bonded to the steel plate,
the strip sensor and the PZT actuator are bonded to the steel plate
using epoxy resin. The strip sensor is connected to an external
charge amplifier and then to the dynamic information acquisition
system. The charge amplifier connected to the strip sensor is set
to an amplification ratio of 100, and the voltage signal acquisition
frequency of the dynamic information acquisition system is set to
500Hz. The PZT actuator is connected to the piezoelectric ceramic
drive power supply, and the piezoelectric ceramic drive power
supply applies a 60Hz–100Hz frequency-sweep sine signal with an
amplitude of 5V to the PZT actuator as an excitation signal, with
a signal duration of 10s. After the power is turned on, the signal is
unstable and needs to wait for the signal to stabilize before starting
the timer, then the dynamic information acquisition system is used
to collect the signal.
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FIGURE 3
Concrete beam with cracks.

FIGURE 4
Concrete beams with different length of steel plate. (A) bonding steel plate reinforcement (B) Piezoelectric material paste.

3.2 Debonding monitoring experiment
between reinforced steel plates and
concrete beams

To study the signal response of piezoelectric materials to
the degree of delamination of steel plates, the steel plates were
bonded to four concrete beams with adhesive, with bonding lengths
of 100%, 75%, 50%, and 25% of the concrete beam length, as
shown in Figure 4A. Then, epoxy resin was used to bond the
strip sensor and PZT actuator to the middle of the steel plate, as
shown in Figure 4B. The electrical signals received by the dynamic
information acquisition system are shown in Figure 5.

According to Figure 5, it can be observed that for the same
frequency sweep signal, the voltage signal amplitude collected by the
dynamic information acquisition instrument varies with different
lengths of steel plate bonding. When the bonding length of the steel

plate is 100%, the voltage signal amplitude collected by the dynamic
information acquisition instrument is 0.017mV; when the bonding
length is 75%, the voltage signal amplitude collected is 0.020mV;
when the bonding length is 50%, the voltage signal amplitude
collected is 0.080mV; and when the bonding length is 25%, the
voltage signal amplitude collected is 0.103 mV.

The relationship between the length of steel plate adhesion
and the voltage amplitude is shown in Figure 6. As shown in
Figure 6, with the decrease in the length of steel plate adhesion,
the voltage signal amplitude collected by the dynamic information
acquisition instrument gradually increases, especially at a adhesive
length of 75%, where a significant turning point in the signal
amplitude occurs. Therefore, the characteristics of the voltage
signal amplitude collected by the dynamic information acquisition
instrument changing with the degree of steel plate detachment can
be used to characterize the degree of detachment between the steel
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FIGURE 5
Signal response of steel plates with different sticking lengths. (A) Paste length 100% (B) Paste length 75% (C) Paste length 50% (D) Paste length 25%.

FIGURE 6
Different paste length signal amplitude change diagram.

plate and concrete; that is, the larger the signal amplitude received
by the dynamic information acquisition instrument, the shorter the
length of steel plate adhesion, the greater the degree of detachment
between the steel plate and the concrete beam.

3.3 The experiment on the influence of
different monitoring positions on the
electrical signal

The monitoring experiment of the debonding degree of steel
plates has proved the feasibility of the active sensing technology
in monitoring the debonding degree of steel plates. However, the
influence of sensor position on signal amplitude cannot be ruled out.

In order to study the difference in signal amplitude caused by the
different positions of sensors attached to the steel plate, a concrete
beam with a steel plate attachment length of 50% was selected.
PZT actuators and strip sensors were respectively attached to the
left end, middle and right end of the beam, as shown in Figure 7.
The dynamic information acquisition system was used to collect the
signals generated by the strip sensors attached to different positions
of the steel plate, as shown in Figure 8.

As seen in Figure 8, it can be observed that when the PZT
actuator and strip sensor are attached to different positions on the
steel plate, the voltage signal amplitudes collected by the dynamic
information acquisition system are also different. When the sensor
is attached to the right side of the steel plate, i.e., the debonding
section of the steel plate, the voltage signal amplitude collected by
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FIGURE 7
Sensors at different positions paste schematics. (A) left (B) mid (C) right.

FIGURE 8
Signal response of different position sensors.

the dynamic information acquisition system is the largest.When the
sensor is attached to the middle of the steel plate, the voltage signal
amplitude collected by the dynamic information acquisition system
is significantly smaller than that collected in the debonding section.
When the sensor is attached to the left side of the steel plate, i.e.,
the bonding section of the steel plate, the voltage signal amplitude
collected by the dynamic information acquisition system is the
smallest, i.e., Vdebonding section > Vmiddle > Vbonding section.
Therefore, due to the different bonding conditions between the steel
plate and concrete, sensors in different positions perceive external
signals differently under the same excitation signal, resulting in
different signal amplitudes collected by the dynamic information
acquisition system.

3.4 The simulation on the influence of
different monitoring positions on the
electrical signal

In order to investigate the reasons for the different signal
amplitudes collected by the dynamic information acquisition system
at different monitoring positions in the experiment of steel plate,
this section continues to discuss the impact of PZT actuators
and strip sensors at different positions on the received signal
amplitudes by establishing a numerical model when the pasting
length is fixed.

Using COMSOL software to model the strengthening of
steel plates on concrete beams, the three-dimensional elastic

wave solid mechanics module was selected for analysis.
First, the material properties were set, with concrete, steel
plate, and epoxy resin using the materials provided by
COMSOL, including Concrete, Structural steel, and Filled
epoxy resin (X238). The properties of the materials are shown
in Table 5. Then, the pasting length of the steel plate was
set to 50%, with the left side being the pasted section and
the right side being the debonded section. The constructed
three-dimensional model of the steel-reinforced concrete
beam is shown in Figure 9. After the model is established,
the concrete beam is controlled by the physical field to
control the grid, with extremely refined grid divisions. The
grid division diagram of the concrete structure is shown
in Figure 10.

First, the PZT actuator under the steel-reinforced concrete
beam structure is subjected to analysis with a sinusoidal vibration
signal source. The amplitude of the sinusoidal signal is 1mm,
and the vibration frequency is 500Hz, with specific displacement
constraints set. Then, the bottom vibrating block is similarly used
as an excitation signal source, utilizing concrete parameters, and
the entire structure undergoes transient analysis, with a stop time
of 300μs and a step size of 0.1μs. The propagation of stress
waves generated by the signal source after its inception is shown
in Figure 11.

From Figure 11, it is evident that when the sensor is attached to
the left side of the steel plate, i.e., the adhered portion of the steel
plate, the stress waves generated by the PZT actuator will rapidly
propagate into the concrete due to stress and strain continuity
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TABLE 5 Parameters of material performance.

Materials Density (kg/m3) Young’s modulus (Pa) Poisson’s ratio

Concrete 2,300 2.5 × 1010 0.2

Steel plate 7,850 2 × 1011 0.3

Epoxy resin 1730 2.7 × 105 0.2

FIGURE 9
Geometric modeling diagram of steel plate reinforced concrete.

FIGURE 10
Grid division diagram of steel plate reinforced concrete structure.
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FIGURE 11
The diagram of stress wave propagation. (A) Left pasted sensor; (B) Right paste sensor.

conditions being met at the adhered region where the steel plate is
bonded to the concrete beam with epoxy resin, resulting in stress
wave attenuation. When the sensor is attached to the right side of
the concrete, i.e., the debonded section of the concrete, the stress
waves generated by the PZT actuator first propagate through the
steel plate, with a greater range of variation. The majority of the
transmitted waves are reflected lback to the strip sensor through
the steel plate, and some waves are projected and transmitted
into the concrete, causing a rapid reduction in the deformation
amplitude of the steel plate. Due to the different forms of energy
loss in the adhered and debonded sections of the steel plate, the
energy loss in the adhered section is faster, resulting in a smaller
signal amplitude in the adhered section. Therefore, the different
signal amplitudes captured by the dynamic information acquisition
system when the sensor is attached to different positions on the

steel plate are due to the different propagation conditions and
associated losses during the transmission of stress waves at different
positions.

4 Conclusion

In this paper, the active monitoring experiment of steel plate
reinforced concrete based on PVDFmaterial is designed. Combined
with finite element simulation, the output signal changes of different
bond lengths and monitoring positions of steel plates are compared
and analyzed, and the debonding law of steel plate-reinforced
concrete beams is studied. The main conclusions are as follows:

(1) A piezoelectric theoretical model has been proposed for
actively monitoring the degree of concrete debonding of
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steel plates. A PZT actuator and a strip sensor using
composite materials were prepared to increase the strain
range. The voltage signal output by the strip sensor is
monitored to evaluate the degree of debonding between the
steel plate and the concrete beam by applying an excitation
signal to the PZT.

(2) The experiment on activemonitoring of bonding between steel
plate and reinforced concrete reveals that the signal amplitude
received by the strip sensor varies with the degree of debonding
of the steel platewhen the bonding position of the PZT actuator
and strip sensor is fixed. When the length of the paste is 100%,
75%, 50%, and 25%, the output signals of PVDF are 0.017 mV,
0.020 mV, 0.080 mV, and 0.103 mV, respectively. This means
that the greater the signal amplitude the strip sensor receives,
the greater the degree of debonding between the steel plate and
the concrete beam.

(3) Experiments were carried out on concrete beamswith different
bonding positions of PZT actuators and strip sensors but with
the same degree of debonding of steel plates. The results show
that under the condition of the same excitation signal, the
sensors at different positions have different perceptions of the
external signal due to the different external conditions, and the
influence of the sensor position change needs to be considered.
At this time, the signal received by the sensor installed on the
left, middle, and right side, V debonding section > V middle >
V pasting section.

(4) The concrete beams with different bonding positions of PZT
actuator and strip sensor but the same debonding degree
of steel plate were simulated. The simulation results show
that the signal amplitude of the strip sensor is different
when the sensor is pasted at different positions of the steel
plate, which is caused by the different loss of the conduction
conditions at different positions in the process of stress
wave conduction. The energy loss of the pasting section
is fast, so the signal amplitude generated by the pasting
section is small.
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