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Titanium alloy exhibits exceptional performance and a wide range of
applications, with the high performance serving as the foundation for
the development. However, traditional material design methods encounter
numerous calculations and experimental trial-and-error processes, leading
to increased costs and decreased efficiency in material design. The data-
driven model presents an intriguing alternative to traditional material design
methods by offering a novel approach to expedite the materials design process.
In this study, a framework for computer-aided design high performance
titanium alloys based on machine learning is proposed, which constructs an
intelligent search space encompassing various combinations of 18 elements
to facilitate alloy design. Firstly, a proprietary dataset was constructed
for titanium alloy materials using feature design and a combination of
unsupervised and supervised feature engineering methods. Secondly, six
machine learning algorithms were employed to establish regression models,
and the hyperparameters of each algorithm were optimized to improve model
performance. Thirdly, the model was screened using five regression algorithm
evaluation methods. The results demonstrated that the selected optimized
model achieved an R2 value of 0.95 on the verification set and 0.93 on
the test set, yielding satisfactory outcomes. Finally, a comprehensive model
framework along with an intelligent search methodology for designing high-
strength titanium alloys has been established. It is believed that this method is
also applicable to other properties of titanium alloys and the optimization of
other materials.
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1 Introduction

The application of titanium-containing alloys, such as titanium alloy, titanium-niobium
alloy, and high entropy alloy, has been extensively observed in the fields of aerospace,
navigation, and medicine (Cheng et al., 2021; Cheng et al., 2022; Guo et al., 2023; Liu et al.,
2023; Kang et al., 2024; Shen et al., 2024). Among these alloys, titanium alloy stands out
due to its exceptional specific strength, corrosion resistance, low-temperature tolerance,
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high-temperature endurance, and remarkable biocompatibility. In
the aerospace field, titanium alloy has been mainly used in aircraft
structural components, lips, tubes, fasteners, satellite shells, rocket
tubes, and rocket engine shells, etc., especially, the proportion of
titanium alloy in the structure of the fifth-generation advanced
fighter F-22 in the United States has reached 41% (Boyer, 1995;
Liu et al., 2015; Liu et al., 2020). In the field of navigation, titanium
alloy has been used in ship structural parts, submarine shells,marine
water pipelines, etc. (Chen et al., 2005; Song et al., 2020). Moreover,
in the medical field, titanium alloy serves as a crucial material
for artificial substitutes or implants including joints, craniofacial
structures, and dental implants (Hanawa, 2019; Lourenço et al.,
2020; Sarraf et al., 2022). The demand for new high-performance
titanium alloys is increasing due to wide-ranging applications,
particularly in the aerospace fieldwhere high strength and toughness
are emphasized, the marine field where corrosion resistance is
prioritized, and the biomedical field where a high elastic modulus is
sought after.

There are two approaches in traditional material design, namely,
manual design and structural search. Manual design involves the
intuitive creation of new materials based on expert knowledge and
experience, while structural search entails designing novel materials
through structure and calculation methods such as combination
experiments, phase diagram calculations (CALPHAD), and
density functional theory (DFT) (Ji et al., 2014; Mao et al., 2017;
Rao et al., 2022a; Tian et al., 2022; Song et al., 2023). However, these
traditionalmethods require extensive calculations and experimental
trial-and-error processes with high demands for expertise from
material designers, resulting in elevated development costs and low
efficiency.

In the era of rapid advances in data-driven and artificial
intelligence technologies, computer-aided design (CAD) of
novel materials has become feasible (Ren et al., 2018; Yu et al.,
2019; Deng et al., 2020; Wahl et al., 2021; Rao et al., 2022b;
Giles et al., 2022; Jiang et al., 2022; Kandavalli et al., 2023; Li et al.,
2023; Sasidhar et al., 2023; Wei et al., 2023), particularly in
the realm of high-performance alloys. Lei et al. employed a
performance-oriented machine learning design strategy to swiftly
discover a new aluminum alloy that exhibits ductility and
toughness indexes comparable to the state-of-the-art AA7136
aluminum alloy (Jiang et al., 2022). Giles et al. (2022) expedited
the exploration of high-entropy alloys with exceptional high-
temperature yield strength through an intelligent machine
learning model for searching such alloys. Deng et al. (2020)
have promptly identified Cu-Al alloys with tensile strength
exceeding 350 MPa by employing six different machine learning
algorithms. These breakthroughs challenge traditional design
concepts as they eliminate the need for extensive knowledge,
experience, calculations, and trial-and-error experiments while
effectively enhancing design efficiency and reducing costs. This
approach represents a novel alternative to traditional material
design methods in CAD for high-performance alloy materials
where model performance is paramount. It relies on careful
selection and extraction of relevant alloy feature parameters,
sample size considerations, and choice of appropriate machine
learning algorithms; however, it also confronts several challenges.

In terms of feature parameter selection and extraction, it mainly
focuses on alloy composition with complex descriptors, such
as atomic size mismatch or enthalpy of mixing in the design
of high-entropy alloys (Giles et al., 2022). While these complex
descriptors can enhance model performance significantly, their
universal applicability remains limited due to computational
complexities involved. Furthermore, there still exists a scarcity
of samples available for analysis, and even an excellent model
achieving R2 value as high as 0.94 was trained using only 177
samples (Jiang et al., 2022). In machine learning algorithms, the
primary focus lies in algorithm selection, which needs to improve
the performance of algorithms for specific application scenarios.
In computer-aided design of titanium alloys, it becomes applicable
to extract the composition characteristics of alloys and establish
models through algorithm screening. However, challenges exist
in obtaining descriptor characteristic parameters of titanium
alloys, acquiring a larger sample size of titanium alloys, and
selecting superior machine learning algorithms specifically tailored
for titanium alloys. The research primarily emphasizes fatigue
damage analysis and life prediction, low-modulus titanium alloy
prediction, manufacturing defect identification, etc. (Wu et al.,
2021; Zhan et al., 2021; Fotovvati and Chou, 2022; Wu et al., 2022;
Wang et al., 2023). This study specifically focuses on the demand
for high-strength titanium alloys in the aerospace industry, with
limited prior reports on computer-aided such alloys design based on
machine learning.

In this study, elemental essential properties is extracted to
achieve complex alloy descriptors effectively while simplifying
the extraction process and enhancing versatility. Furthermore,
the influence of heat treatment is considered on alloy properties
by extracting characteristic parameters related to heat treatment.
This establishes a novel approach for selecting and extracting
characteristic parameters based on alloy elements, essential
properties as well as heat treatment systems. Regarding sample
size, data sets of significant magnitudes were constructed by
comprehensively reviewing a substantial body of literature. In
terms of machine learning algorithms, six classical models were
adopted, namely, support vector machine, Gaussian process, neural
network, CART, boosting tree and random forest regression.
These algorithms were further optimized through hyperparameter
tuning to enhance model performance. To systematically evaluate
the regression model and facilitate model selection, which
is conducted using five metrics: root mean squared error
(RMSE), mean absolute error (MAE), mean squared error (MSE),
coefficient of determination(R2) and training time. Consequently,
a comprehensive model framework was established. Moreover,
an intelligent search space encompassing 18 elements such as
Ti, Al, Sn, Mo, V, Mn, Zr, Ni, Si, Nd, B, Cu, Fe, Nb, C, Cr,
Y, W was formulated. Accordingly, the second section presents
the construction of the dataset, algorithmic model, optimization
process, and model evaluation method. The third section provides
the results of the model algorithm and selects the optimal model
based on thorough evaluation. Furthermore, model verification is
conducted using a test set. Finally, a comprehensive framework
for the complete model is presented. The fourth section provides a
general discussion.
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2 Material and methods

In this study, the framework comprises three sections: feature
engineering based on titanium alloy, machine learning algorithm
model, and the evaluation and selection of models. Specifically,
feature engineering involves the extraction of meaningful features
from raw data.

2.1 Feature engineering based on titanium
alloy

2.1.1 Collection of original data
Original data consists of two aspects: one aspect is the

national standard “Designation and composition of titanium and
titanium alloys” (GB/T 3620.1-2016), which provides information
on titanium alloy grades and their chemical composition. The
other aspect involves extensive literature, where 66 relevant
sources are carefully selected, primarily focusing on forged or
rolled bars. The data comprises 60 titanium alloys, encompassing
18 elements, as shown in Supplementary Appendix SA1.
To represent these alloys effectively, the proportion of
each element is considered as a feature set consisting
of 18 dimensions.

Meanwhile, heat treatment has a significant effect on the
microstructure and properties of titanium alloys. In this study,
two heat treatment systems are retained from selected literature,
encompassing parameters such as initial heat treatment temperature
and duration, subsequent heat treatment temperature and duration.
The employed heat treatment system encompasses solution, aging,
and all their possible combinations. Consequently, a total of four
distinct dimensions are considered in this analysis. In cases where
no heat treatment or only one type of heat treatment is applied, data
points without any corresponding treatments are assigned a value
of zero.

The original dataset comprised a total of 397 samples across
22 dimensions. In this study, the model predicts the ultimate
strength as the performance indicator for titanium alloy, and
the corresponding ultimate strength values were collected for
each sample.

2.1.2 Process of feature design
The essential properties of the elements in the alloy play a

crucial role in determining its performance, thus highlighting
their significance. In this study, feature engineering is employed
to design the fundamental characteristics of titanium alloy,
encompassing parameters such as melting point, density, atomic
weight, atomic number, electronegativity, and atomic radius.
However, considering that there are 18 elements in the dataset and
each element corresponds to six essential characteristics, this leads
to a total of 108 features or dimensions, resulting in a dimensional
challenge for the dataset. To address this issue effectively while
preserving relevant information integrity, a weighted summation
method is adopted to reduce these 108 dimensions down to
six dimensions. Consequently, each titanium alloy is associated
with a set of essential features comprising weighted values
for key attributes including melting point (Tm), density (ρ),
atomic weight (u), atomic number (Z), electronegativity (X), and

atomic radius (R). These weighted values are calculated using
Formulas 1–5 through 6.

Tm =∑n
i=1
(Tmi ×wi) (1)

ρ =∑n
i=1
(ρi ×wi) (2)

u =∑n
i=1
(ui ×wi) (3)

Z =∑n
i=1
(Zi ×wi) (4)

X =∑n
i=1
(Xi ×wi) (5)

R =∑n
i=1
(ri ×wi) (6)

Where Tmi represents the melting point value of the ith element,
and wi represents the weight of the melting point for that
specific element. The value denotes the content proportion of
each element in titanium alloy, with a total of 18 elements
(n = 18). Similar formulations are used for others. Figure 1
presents the distribution of physical property constants in titanium
alloy. The values of constants are presented in Supplementary
Appendix AS2.

Through the process of original data collection and feature
design, the dataset consists of a total of 28 features, that is,
28-dimensional. The detailed information about these features is
presented in Table 1.

2.1.3 Process of feature selection
In this study, feature selection encompasses both supervised and

unsupervised analysis. Within the realm of unsupervised analysis,
feature correlation analysis is employed to calculate the correlation
coefficients between any given features X and Y, as depicted in
Formula 7.

rX,Y =
Cov(X,Y)

√D(X) ×√D(Y)
(7)

Where Cov (X,Y) denotes the covariance between features X and Y,
D(X) represents the variance of feature X, and D(Y) represents the
variance of feature Y.

In the supervised analysis, the Minimum Redundancy
Maximum Relevance (MRMR) algorithm is employed to compute
the mutual information between the feature set and ultimate
strength, quantifying feature correlation and ranking them
accordingly (Peng et al., 2005). For comprehensive selection in the
final feature choice, both supervised and unsupervised analysis
outcomes are utilized with model accuracy as the target.

2.1.4 Standardization of data
Features originate from diverse scales and encompass

multiple dimensions in the dataset. To mitigate the influence
of dimensionality, data necessitates processing. Data processing
techniques are commonly categorized into normalization and
standardization. In engineering applications, standardization is
typically preferred. Within this dataset, the data without heat
treatment is imputed with zeros. When normalization is performed
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FIGURE 1
Distribution of physical property constants in titanium alloy: (A) Tm; (B) ρ; (C) u; (D) Z; (E) X; (F) R.

[0,1], the feature with heat treatment would be skewed towards
extreme values of 1 and 0, failing to accurately represent the
overall distribution of samples in the data set. Henceforth,
standardization is selected as a data processing approach, such as
employing Formula 8, which centers the dataset around a mean
value of 0 while maintaining a normal distribution with a standard
deviation of 1.

Z =
C− μ
σ

(8)

The feature vector Z is represented as the standardized version of
the original arbitrary feature vector C, where μ represents the mean
value of feature vector C, and σ represents its standard deviation.

2.1.5 Partitioning of the dataset
The dataset in this research is divided into three parts: the

training set, the validation set, and the test set. The training
set is utilized for model training, while the validation set serves
the purpose of model evaluation, hyperparameter tuning, and
mitigating overfitting risks. On the other hand, the test set is
exclusively employed for model evaluation and testing.

2.2 Machine learning algorithm model

The model was constructed using six machine learning
algorithms in this study, namely, support vector machine
regression, Gaussian process regression, neural network regression,
CART tree regression, boosting tree regression, and random
forest regression.

2.2.1 Support vector machine regression
Support vector machine regression (SVR) is a classic machine

learning algorithm for regression proposed by Drucker et al., in
1997 (Drucker et al., 1997), and further developed by Smola et al.,
in 2004, where the theoretical framework and implementation of
SVR was presented (Smola and Schölkopf, 2004). Similar to the
SVM classification algorithm, the hyperplane used for classification
often cannot completely divide the sample space, which can lead to
overfitting even if it is possible to achieve complete division. In SVR,
an error tolerance interval band ε is defined, and samples within this
band are considered correct predictions without loss calculation. By
partitioning the sample space D = {(x1,y1), (x2,y2),… (xn,yn)}, SVR
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TABLE 1 Dataset features.

No. Feature Significance No. Feature Significance

1 Tm Weighted value of the melting point/°C 15 Nd Nd content/wt%

2 ρ Weighted value of the density/g/cm³ 16 B B content/wt%

3 u Weighted value of the atomic weight 17 Cu Cu content/wt%

4 Z Weighted value of the atomic number 18 Fe Fe content/wt%

5 X Weighted value of the electronegativity/Pauling scale 19 Nb Nb content/wt%

6 R Weighted value of the atomic radius/pm 20 C C content/wt%

7 Al Al content/wt% 21 Cr Cr content/wt%

8 Sn Sn content/wt% 22 Y Y content/wt%

9 Mo Mo content/wt% 23 W W content/wt%

10 V V content/wt% 24 Ti Ti content/wt%

11 Mn Mn content/wt% 25 ST Temperature of heat treatment 1/°C

12 Zr Zr content/wt% 26 SH Duration of heat treatment 1/h

13 Ni Ni content/wt% 27 AT Temperature of heat treatment 2/°C

14 Si Si content/wt% 28 AH Duration of heat treatment 2/h

aims to find an optimal hyperplane that minimizes the discrepancy
between f(x) and y, as shown in Formula 9.

f(x) = wTx+ b (9)

Where w represents the normal vector indicating the direction
of the obtained hyperplane, and b denotes the displacement term
representing the distance from the original point of the hyperplane,
SVR computes the loss between f(x) and y outside the interval band.
The regression problem is formulated in Eq. 10.

min

w,b
1
2
‖w‖2 +C∑n

i=1
lε(f(xi) − yi) (10)

The regularization constant C > 0 is utilized to balance the
minimization of the normal vector with the minimization of the
error, while lε denotes the error tolerant interval incorporating ε
insensitive loss function as defined in Formula 11.

lε(z) =
{
{
{

0, if |z| ≤ ε

|z| − ε,otherwise
(11)

By incorporating relaxation variables, the Lagrange multiplier
method, and kernel functions, SVR can be mathematically
formulated as Eq. 12.

f(x) = ∑n
i=1
(α̂i − αi)k(xi,xj) + b (12)

Where αi represents the Lagrange multiplier, the estimate of αi
is denoted as α̂i, k(xi,xj) denotes the kernel function, which is a

fundamental technique in SVR, and refers to the transformation
that maps the indivisible features of the original space to a
higher-dimensional divisible space. Since the kernel function
implicitly defines the feature space, the specific form of feature
mapping remains unknown for a given sample space. Therefore,
selecting different kernel functions often yields varying performance
outcomes for regression models within specific sample spaces; an
inappropriate selection may lead to reduced model performance.

The kernel function is considered as a crucial hyperparameter
in this research, and the model is optimized by tuning this
hyperparameter. Several commonly used kernel functions are
selected, including linear, Gaussian, quadratic, and cubic kernels
defined in Formulas 13–16. By adjusting these kernel functions, the
optimal SVR regression model is identified.

k(xi,xj) = x
T
i xj (13)

k(xi,xj) = exp(−
‖xi − xj‖

2

2σ2
) (14)

k(xi,xj) = (xTi xj)
2 (15)

k(xi,xj) = (xTi xj)
3 (16)

2.2.2 Gaussian process regression
Gaussian process regression (GPR) is a Bayesian non-parametric

probabilistic regression model that utilizes a kernel function.
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The application of Gaussian processes for data fitting was first
introduced by O’Hagan in 1978 (OHagan, 1978). Rasmussen et al.
(2005) provided a comprehensive theoretical framework for the
Gaussian process regression model in machine learning in 2006.
The problem of nonlinear Gaussian regression is formulated
using Eq. 17.

y = f(x) + ε (17)

Where ε represents the additive noise term, ε ∼ (0, σ2), where σ2

can be estimated from the sample data. The variable y denotes the
predicted value corrupted by noise, while f(x) follows a Gaussian
distribution as described in Eq. 18.

f(x) ∼ GP(m(x),k(x,x′)) (18)

Wherem(x) represents themean function and takes the value 0.The
covariance function k(x,x’) captures the relationship between two
features x and x’. In this regression model, Bayesian and maximum
likelihood estimation methods are employed to solve for optimal
parameters.

The covariance function, denoted as k(x,x’), plays a pivotal
role in the model and significantly influences its performance.
It is also referred to as the kernel function k(x,x’). In this
study, the kernel function is treat as a hyperparameter and
optimize the model by adjusting five different types of kernels:
quadratic rational (Formula 19), square exponent (Formula 20),
Matern 5/2 (Formula 21), Matern 3/2 (Formula 22), and exponent
(Formula 23).

k(x,x′) = σ2f [1+(
(x− x′)T(x− x′)

2αl2
)
−α

] (19)

The symbol α denotes the scaling coefficient, σf represents the
standard deviation of the sample, and l signifies the size of the
feature length.

k(x,x′) = σ2f exp [−
1
2
(x− x′)T(x− x′)

l2
] (20)

k(x,x′) = σ2f(1+
√5(x− x′)T(x− x′)

l
+
5(x− x′)T(x− x′)

3l2
)

exp(−
√5(x− x′)T(x− x′)

l
) (21)

k(x,x′) = σ2f(1+
√3(x− x′)T(x− x′)

l
)exp(−

√3(x− x′)T(x− x′)
l

)

(22)

k(x,x′) = σ2f exp
[[

[

−
√(x− x′)T(x− x′)

l
]]

]

(23)

2.2.3 Neural network regression
The artificial neural network is a network formed by connecting

artificial neurons according to a specific topology, which originated
from the MP model proposed by McCulloch et al., in 1943

(McCulloch and Pitts, 1943), as well as the perceptron neural
networkmodel introduced byRosenblatt in 1958 (Rosenblatt, 1958).
These models marked the beginning of the development boom
for artificial neural networks. However, it was proven in 1969
that perceptrons were incapable of solving higher-order predicates,
such as the XOR problem (Minsky et al., 1969). Consequently,
the field of artificial neural networks experienced a decline until
Hopfield’s proposal of the Hopfield neural network model in 1982
and Rumelhart et al.’s introduction of the BP algorithm in 1986
(Hopfield, 1982; Mcclelland et al., 1986; Rumelhart et al., 1986),
which sparked a research upsurge. In this study, a backpropagation
(BP) neural network is employed for regression (NNR), where each
neuron’s threshold was set as θ = (θ₁, θ₂,… θm). Here, m represents
the number of non-input layer neurons within the neural network
structure. The current output Yj of neuron j is expressed using
Formula 24.

Yj = f(∑
k
i=1

wijXi − θj) (24)

Where f is the activation function, i=(1,2, … k), j=(1,2, … ,m).
The value of k corresponds to the number of neurons located
above the current neuron j. The weight wij denotes the synaptic
connection strength from the ith neuron in the preceding layer to
the jth neuron, Xi represents the output value of the ith neuron in
the preceding layer, and θj signifies the activation threshold of the
current neuron.

The weights and thresholds of the BP neural network are
iteratively calculated and updated using the gradient descent
strategy, leading to the attainment of optimal model values. In this
study, the neural network regression model is empirically defined
as depicted in Figure 2A, comprising one input layer, one output
layer, and three hidden layers.The input layer consists of 28 neurons,
while the output layer comprises a single neuron; each hidden layer
encompasses 10 neurons.

The neural network regression model encompasses numerous
crucial hyperparameters, which are devised based on empirical
knowledge that may not be deemed as ideal or relatively optimal.
Hence, the optimal hyperparameters are fine-tuned by adjusting
the parameters of the neural network model and iterating through
Bayesian optimization to minimize mean squared error. The range
for parameter adjustment is presented in Table 2.The regularization
intensity value of 378 corresponds to the aggregate number of
training and validation samples.

2.2.4 CART regression
The CART algorithm, proposed by Breiman et al., in 1984

(Breiman et al., 1984), is a classic machine learning algorithm. It
comprises two processes: the generation of decision trees and the
pruning of decision trees. In the sample feature space, the data is
divided into M units (R1, R2, … RM), where each unit i has an
output value defined as ci. The regression tree model is represented
by Formula 25.

f(x) = ∑M
i=1

ciI(x ∈ Ri) (25)

Where I(x∈Ri) represents the adaptation function for spatial feature
partitioning, which is optimized by minimizing the square error
and determining the optimal output value of each partition unit
as the average of all observed values. The optimal feature j and
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FIGURE 2
The neural network regression model structure: (A) the neural network regression model based on experience; (B) the neural network regression
model based on hyperparameter optimization.

segmentation point s on the partitioned feature are solved using
Formula 26.

min
j,s
[min

c1
∑

xi∈R1(j,s)
(yi − c1)

2+min
c2
∑

x2∈R2(j,s)
(yi − c2)

2] (26)

The optimal value of c1 in R1 is indicated by Formula 27, while
the optimal value of c2 in R2 is denoted by Formula 28.

̂c1 = ave(yi|xi ∈ R1(j, s)) (27)

̂c2 = ave(yi|xi ∈ R2(j, s)) (28)

By evaluating the loss function, pruning is performed iteratively
from the leaf nodes to the root node of the generated decision tree.

The pruned subtree, denoted as {T0,T1, … Tk}, is determined based
on a calculated subtree loss function using Formula 29.

Cα(T) = C(T) + α|T| (29)

The cost of pruning, denoted as C(T), is the square
error associated with any subtree T, while |T| represents the
complexity of the model in terms of the number of leaf nodes.
Here, α is a weight parameter that balances model fitting and
complexity, ultimately determining the generalization ability of
the model.

In this study, the termination condition of the CART algorithm
was defined as the minimum leaf size, which represents the number
of samples in a leaf node. Initially, this value is set to 12 based on
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TABLE 2 The range of hyperparameter optimization.

Regression model Hyperparameter Range

NNR

Number of hidden layer {1,2,3}

Activation function {Relu, Tanh,None, Sigmoid}

Number of neurons in hidden layer 1 [1,300]

Number of neurons in hidden layer 2 [1,300]

Number of neurons in hidden layer 3 [1,300]

Intensity of regularization [1e−5,1e5]/378

ER

Ensemble learning method {Bagging, Boosting}

Number of learners [10,500]

Learning rate [1e−3,1]

Number of sampled predictors [1,28]

empirical knowledge for model regression. However, it is important
to note that this initial setting may not be optimal or ideal. The
hyperparameter for the minimum leaf size of the CART regression
model was adjusted accordingly. Bayesian optimization and iterative
processes were employed to optimize the hyperparameter based on
minimizing mean squared error. Consequently, the minimum leaf
size was set to [1,378/2].

2.2.5 Ensemble tree regression
The Boosting tree algorithm, proposed by Friedman et al., in

2000 (Friedman et al., 2000), is considered one of the most high-
performing ensemble learning algorithms. Boosting tree is an
ensemble algorithm based on decision trees and utilizes a boosting
technique that employs additive models and forward distribution
algorithms, following a sequential approach. The weak learners are
combined into strong learners by linearly combining basis functions
with weights. In this boosting tree regression model, which uses
the CART algorithm as the basis function, which is defined by
Formula 30.

fM(x) = ∑
M
m=1

T(x,Θm) (30)

Where T(x,Θ) is the decision tree generated by CART algorithm.
M represents the number of decision trees and Θm represents the
weight of the mth decision tree. The current model of the boosting
tree is defined as f(m-1)(x), and thus, Formula 31 illustrates theweight
of themth decision tree.

Θ̂m = argmin
Θm
∑N

i=1
L(yi,η(fm−1(xi) +T(xi;Θm))) (31)

The loss function is defined as the mean squared error, and the
optimal weight corresponds to the weight that minimizes the mean
squared error. Here, η denotes the learning rate. The boosting tree
model involves several crucial hyperparameters. Based on empirical
knowledge, the minimum leaf node is set to be 8, with a total of 30
learners and a learning rate of 0.1 for boosting tree regression.

Random forest, proposed by Breiman in 2001 (Breiman,
2001), is a bagging ensemble algorithm based on decision
trees. Bagging involves generating multiple decision trees by
randomly selecting and replacing feature and sample sets, and
the predicted values of all decision trees are averaged during
prediction, thereby parallelly combining the basis functions. In
this random forest regression model, the CART algorithm is
employed as the basis function and consider several important
hyperparameters. Based on empirical knowledge, the minimum leaf
node hyperparameter is set to 8 and use 30 learners for random
forest regression.

However, the empirical values in the regression models of
the boosting tree and random forest may not be inherently
optimal or ideal. The hyperparameters of the model were
adjusted and iterated using Bayesian optimization to optimize the
optimal hyperparameters, based on the minimum mean squared
error. The range of hyperparameter adjustments is presented
in Table 2.

2.3 Model evaluation

In this study, five methods were employed to assess the machine
learning regression model: root mean squared error (RMSE), mean
absolute error (MAE), coefficient of determination (R2), mean
squared error (MSE), and training time (T).

2.3.1 Root mean squared error
The root mean squared error is a widely used metric for

evaluating regression models, which quantifies the average
degree of deviation between predicted and true values as
expressed in Formula 32.

RMSE = √
∑n

i=1
(yi − ŷi)

2

n
(32)
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FIGURE 3
(Continued).

Where n denotes the number of samples, yi represents the ith
true value to be predicted, and ŷi denotes the ith predicted
value. The formula reveals that a smaller RMSE value indicates a

closer proximity between the predicted and true values, thereby
signifying an enhanced fitting degree and performance of the
regression model.
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FIGURE 3
(Continued). Feature engineering based on titanium alloys: (A) heat map of unsupervised feature correlation coefficients; (B) ranking of feature
correlation under supervision; (C) histogram of normalized features.

2.3.2 Mean absolute error
The mean absolute error is a commonly employed

metric for evaluating regression models, quantifying the
mean discrepancy between predicted and true values as
defined in Eq. 33.

MAE =
∑n

i=1
|yi − ŷi|

n
(33)

The formula reveals that a smaller MAE value corresponds to
a narrower discrepancy between the predicted and true values,
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TABLE 3 Optimization outcomes of hyperparameters for SVR and GPR models.

Regression
model

Dataset Kernel
function

RMSE MAE R2 MSE T(s)

SVR Validation

Linear 169.81 105.82 0.51 28,837 9.9007

Gaussian 90.253 54.581 0.86 8,145.5 1.1467

Quadratic 113.8 63.465 0.78 12,951 62.253

Cubic 2,959.9 503.83 −148.39 87,61,100 56.21

GPR Validation

Rational
quadratic

57.338 35.339 0.94 3,287.7 5.0902

Squared
exponential

71.49 40.345 0.91 5,110.9 3.8299

Matern 5/2 66.104 37.993 0.93 4,369.7 3.8287

Matern 3/2 62.661 36.644 0.93 3,926.4 3.8182

Exponential 54.745 33.64 0.95 2,997.1 4.0143

indicating an enhanced level of fitting and performance for the
regression model.

2.3.3 Coefficient of determination
The coefficient of determination, a crucial evaluation index of

regression models, quantifies the correlation between dependent
and independent variableswhile representing the explanatory power
of the regression model for the dependent variable. The calculation
is presented in Formula 34.

R2 = 1− SSE
SST
= 1−
∑n

i=1
(yi − ŷi)

2

∑n
i=1
(yi − μ)

2
(34)

The sum of squares of error (SSE) represents the discrepancy
between the predicted values and the true values in the model.
On the other hand, the total sum of squares (SST) represents
the overall deviation between all predicted true values and
their mean value. Here, μ denotes the average value of all
true values. It is evident from this formula that R2 typically
ranges between 0 and 1, indicating a prediction error lower
than that of mean reference. As R2 approaches 1, it signifies a
higher goodness-of-fit for the regression model, implying superior
performance. Conversely, when R2 is negative, it suggests poor
predictive ability and greater prediction errors compared to mean
reference.

2.3.4 Mean squared error
The mean squared error is a widely used metric for evaluating

regression models, quantifying the discrepancy between predicted
and true values as computed in Formula 35.

MSE =
∑n

i=1
(yi − ŷi)

2

n
(35)

The formula reveals that a smaller MSE value corresponds
to a closer proximity between the predicted and true values,

indicating an enhanced level of fitting and performance for the
regression model.

2.3.5 Training time
Thetraining timereflects themodel’s complexityandencompasses

the time taken from the initiation to completion of training. On a
consistent hardware platform, shorter training times indicate higher
efficiency in model learning. For models with substantial time
requirements, the training time serves as a crucial evaluation metric.

2.4 Model selection

Given this emphasis on model prediction accuracy, the training
time serves as a mere reference, while the optimal model is selected
based on various hyperparameter optimized models using RMSE,
MAE, R2, and MSE.

3 Results and discussion

The experiment was conducted using MATLAB software. To
enhance the model’s generalization ability, the training set and
validation set were obtained through a ten-fold cross-validation
approach, where 5% of the dataset (19 samples) was randomly
selected for testing purposes while the remaining 95% (378 samples)
was divided into training and validation sets.

3.1 Feature engineering based on titanium
alloys

3.1.1 Feature selection
The unsupervised feature correlation coefficient results are

presented in Figure 3A. It is evident that features Z and u, as
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FIGURE 4
The response of the true value and predicted value of the model following hyperparameter optimization: (A) SVR; (B) GPR; (C) NNR; (D) CART; (E) ER.

well as X and Cr, exhibit a relatively high degree of correlation
with correlation coefficients exceeding 0.9, which is a correlation
threshold of experience.

The ranking results of feature correlation based on the
supervised MRMR algorithm are presented in Figures 3A, B
comprehensive analysis is conducted by considering the features

Frontiers in Materials 12 frontiersin.org

https://doi.org/10.3389/fmats.2024.1364572
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


An et al. 10.3389/fmats.2024.1364572

associated with the supervised comparison. Specifically, Z exhibits
a feature correlation score of 0.1395, u has a score of 0.1270, X
is assigned a score of 0.1083, and Cr demonstrates a score of
0.1899. These features are all evaluated as significant contributors
to the model’s performance. In order to construct a high-precision
predictionmodel, all 28 features are retained without any exclusion.

3.1.2 Standardization of data
After standardization, the data for each of the 28 features

conforms to a normal distribution with a mean value of 0 and a
standard deviation of 1, a random selection of 4 features was made
to construct the histogram, as illustrated in Figure 3C.

3.2 Machine learning algorithm model

3.2.1 Support vector machine regression
In the support vector machine regression model, the

hyperparameters were optimized to include linear, Gaussian,
quadratic and cubic kernel functions. The resulting performance
metrics including RMSE, MAE, R2 andMSE as well as training time
T are presented in Table 3.

The optimal hyperparameter of the model is determined to be
the Gaussian kernel function, as evidenced by the smallest values
of RMSE, MAE, and MSE, along with an R2 value of 0.86 (Table 3).
The model performance is unsatisfactory when the hyperparameter
selects the cubic kernel function, as indicated by an R2 value of
−148.39, which exceeds the mean reference error and indicates poor
prediction accuracy. Figure 4A illustrates the comparison between
real and predicted values for this particular response.

3.2.2 Gaussian process regression
In the Gaussian process regression model, the hyperparameters

of the model were adjusted to incorporate rational quadratic,
squared exponential, Matern 5/2, Matern 3/2, and exponential
kernel functions. The performance metrics including RMSE, MAE,
R2, MSE, and training time T were presented in Table 3.

The optimal hyperparameter of the model is determined to be
the exponential kernel function, as evidenced by the smallest values
of RMSE, MAE, andMSE, along with an impressive R2 value of 0.95
(Table 3). The corresponding responses between real and predicted
values are visually depicted in Figure 4B.

3.2.3 Neural network regression
The results of the neural network regression, including RMSE,

MAE, R2, MSE, and training time T, are presented in Table 4.
Additionally, Figure 5A illustrates the iterative outcomes of the
hyperparameter optimization algorithm. It is evident from the
figure that convergence occurs during the third iteration and yields
optimized hyperparameters as follows: two hidden layers with a
Tanh activation function; 257 neurons in hidden layer 1 and 216
neurons in hidden layer 2; Intensity of regularization set at 0.2791.
The optimized neural network regression model is depicted in
Figure 2B.

The optimized NNR model has exhibited significant
performance enhancement, as evident from the results presented
in Table 4. Notably, there has been a substantial reduction in the
values of RMSE, MAE, and MSE, while R2 has increased from 0.65

to 0.93. Figure 4C illustrates the comparison between actual and
predicted values.

3.2.4 CART regression
The performance evaluation of CART tree regression models,

including RMSE, MAE, R2, MSE and training time T, is presented in
Table 4. The iterative results of the hyperparameter optimization
algorithm are illustrated in Figure 5B. It can be observed
from the figure that the algorithm achieves convergence after
three iterations with optimized hyperparameters: a minimum
leaf size of 2.

The optimization of the model has led to a noticeable
improvement in performance, as evident from the data presented in
Table 4. Specifically, there has been a reduction in RMSE, MAE, and
MSE values, indicating enhanced accuracy. Moreover, the R2 value
has increased significantly from 0.84 to 0.89. Figure 4D illustrates
the correlation between actual and predicted values.

3.2.5 Ensemble tree regression
The performance metrics, including RMSE, MAE, R2, MSE, and

training time T of the boosting tree and random forest regression
models in the ensemble tree regression approach are presented in
Table 4. The iterative results of the hyperparameter optimization
algorithm are illustrated in Figure 5C. It can be observed from
the figure that the algorithm converges at the 23rd iteration
with optimized hyperparameters as follows: Boosting algorithm is
employed for ensemble learningmethod with a total of 497 learners,
minimum leaf size set to 7, learning rate set to 0.0675, and number
of sampled predictors limited to 5.

The performance of the empirically defined random forest
regression model is superior to that of the boosting tree
regression model, as evident from Table 4 prior to hyperparameter
optimization. Moreover, the random forest regression model
exhibits smaller values for RMSE, MAE, and MSE compared to
the boosting tree regression model. Additionally, the R2 value
of the random forest regression model surpasses that of the
boosting tree regression model by 0.01. Subsequent optimization
resulted in decreased RMSE, MAE, and MSE values along with an
increased R2 value of 0.94, leading to a more refined and optimized
model. Figure 4E illustrates the comparison between real and
predicted values.

3.3 Model selection

The optimized Gaussian regression model with exponential
hyperparameter exhibits superior performance compared to all
other models, as evident from the results presented in Tables 3, 4.
It achieves a lower RMSE of 54.745, MAE of 33.64, and MSE of
2997.1, outperforming the other optimized models. Additionally, it
attains an impressive R2 value of 0.95 surpasses existing literature
benchmarks (refer to Table 5 for detailed comparisons). This
enhancement can be primarily attributed to this meticulous feature
engineering and comprehensive model optimization based on
titanium alloys.

In order to validate this model, model verification was
conducted on the test set.The RMSE of the model on the test set was
68.53, with an MAE of 42.239, MSE of 4696.3, and R2 value of 0.93,
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TABLE 4 Optimization outcomes of hyperparameters for NNR, CART, Boosting tree, Random forest and Ensemble tree models.

Regression model Dateset Model hyperparameter optimization state RMSE MAE R2 MSE T(s)

NNR Validation
Unoptimized 142.93 81.85 0.65 20,430 12.814

Optimized 64.537 37.798 0.93 4,165 781.62

CART Validation
Unoptimized 97.154 67.808 0.84 9,438.8 2.3318

Optimized 79.753 50.931 0.89 6,360.6 28.908

Boosting tree Validation Unoptimized 88.138 64.91 0.87 7,768.3 3.7272

Random forest Validation Unoptimized 83.934 57.934 0.88 7,045 8.892

Ensemble tree Validation Optimized 60.859 38.913 0.94 3,703.8 293.09

FIGURE 5
Iteration for optimizing model hyperparameters: (A) NNR; (B) CART; (C) ER.
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TABLE 5 The comparison of model R2.

Model Jiang et al. (2022) Giles et al. (2022) Yu et al. (2019) This study

R2 0.94 0.895 <0.9 0.95

TABLE 6 Comparison of predicted and literature values on the test set.

Regression model Alloy composition Heat treatment
process

Literature value Predicted value

GPR

TA10 (Ti0.3Mo0.8Ni) 860°C × 2 h/WQ 500 522.1

TA10 (Ti0.3Mo0.8Ni) 700°C × 0.5 h/AC 557.5 558.7

TA10 (Ti0.3Mo0.8Ni) 550°C × 0.5 h/AC 590 546.4

Ti43 (Ti4Al2.5V1Fe) 850°C × 1.5 h/AC 873 801

TA31 (Ti6Al2Zr1Mo3Nb) 980°C × 1 h/AC + 700°C ×
1 h/AC

897 897.6

Ti-5111 (Ti5Al1Mo1V1Zr1Sn) 1,000°C × 1 h/AC 940 888.7

Ti6Al7Nd 985°C × 1 h/WQ 935 934.9

TB12 (Ti11Mo5Zr4Sn3Nb) 800°C × 1 h/WQ 945 977.9

Ti40 (Ti25V15Cr0.2Si) 850°C × 1 h/WQ + 550°C ×
6 h/AC

970 1,180.2

TC10
(Ti6Al6V2Sn0.5Fe0.5Cu)

875°C × 2 h/WC + 600°C ×
6 h/AC

1,110 1,046.9

Ti53311S
(Ti5Al3Sn3Zr1Mo1Nb0.3Si)

650°C × 2 h/AC 1,102 1,123.7

Ti-62222s
(Ti6Al2Sn2Zr2Cr2Mo0.15Si)

750°C × 1 h/AC 1,109 1,109.1

TC25
(Ti6.5Al2Zr2Sn2Mo1W0.2Si)

880°C × 1 h/AC + 550°C ×
6 h/AC

1,120 1,144.9

TC21
(Ti6Al2Zr2Sn2Mo1.5Cr2Nb)

903°C × 1 h/AC 1,213 1,213.4

TC9 (Ti6.5Al3.5Mo2.5Sn0.3Si) 970°C × 1.5 h/AC + 530°C ×
6 h/AC

1,257 1,256.4

TC6
(Ti6Al1.5Cr2.5Mo0.5Fe0.3Si)

870°C × 1 h/AC + 550°C ×
4 h/AC

1,270 1,259.1

TC18 (Ti5Al5Mo5V1Cr1Fe) 810°C × 1.5 h/WQ + 600°C ×
5 h/AC

1,295 1,303

TC6
(Ti6Al1.5Cr2.5Mo0.5Fe0.3Si)

900°C × 0.5 h/AC 1,320 1,202.6

Ti3.5Al5Mo6V3Cr2Sn0.5Fe 800°C × 1 h/AC + 560°C ×
0.5 h/AC

1,472 1,350.6

indicating excellent performance. Table 6 presents the prediction
results obtained from the optimized Gaussian regression model
applied to the test set. Figure 6A illustrates both true and predicted
responses, while Figure 6B displays the residuals.

3.4 Comprehensive model framework

The present study introduces a comprehensive computer-aided
design framework for high-performance titanium alloys based
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FIGURE 6
Predict results on the test set: (A) response of true value and predicted value; (B) residual of true value.

FIGURE 7
Comprehensive model framework.

on machine learning, as depicted in Figure 7. This framework
comprises three main components: feature engineering based
on titanium alloys, machine learning algorithm model, and
model evaluation and selection. By utilizing the proposed model,
it becomes possible to generate any titanium alloy sequence
based on the input of titanium and predict its ultimate strength
using the established model architecture. Consequently, the
output will provide the optimal titanium alloy sequence with
superior ultimate strength properties, thereby facilitating the
design process of high-performance titanium alloys. Moreover,

this model also demonstrates capability in predicting the
properties of heat-treated titanium alloys. In theory, the proposed
model has unlimited potential to predict ultimate strength
properties for all conceivable combinations of titanium based
on 18 elements. From a broader perspective, this represents an
inexhaustible search for novel materials in the field of titanium
alloy design. For the purpose of this illustration the designed
Ti6Al4Vx1Six2Mox3Snx4Nd series titanium alloy was subjected
to computer aided high-performance design using the proposed
framework, with x1, x2, x3, and x4 limited to a value range of
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[0.1,5] and a step size of 0.1. A total of 6250,000 combinations were
generated. Among all combinations, Ti6Al4V0.3Si5Mo2.3Sn0.1Nd
exhibited the most optimal performance with an ultimate
strength of 1,139.9 MPa.

4 Conclusion

In this study, a computer-aided framework for designing high-
performance titanium alloys based on machine learning techniques
and an intelligent search space driven by data to facilitate the design
process have been proposed. The main results are summarized
as follows:

(1) In the feature engineering based on titanium alloy, the data
are sourced exclusively from literature, ensuring an open
and comprehensive data acquisition process. This approach
enables a more universal and accessible dataset. Six essential
properties of titanium alloy were meticulously designed to
avoid any dimensionality issues. For feature selection, both
supervised and unsupervised analysis was conducted, resulting
in the establishment of a proprietary dataset for titanium alloy
comprising 397 data samples and 28 features.

(2) The machine learning algorithm model incorporates six
classical regression algorithms to construct the model, and
hyperparameter optimization is employed to enhance its
performance.

(3) The model evaluation and selection process involved the
utilization of five regression model evaluation methods,
ultimately leading to the identification of the optimal Gaussian
regression model with an impressive R2 value of 0.95. This
achievement signifies a higher level of technical proficiency.
Furthermore, the performance of themodel on an independent
test set has been validated, which yielded a satisfactory
prediction result with an R2 value of 0.93.

(4) A comprehensive machine learning framework has been
proposed, and a model for high-performance titanium alloys
has been established. In essence, this model represents an
exhaustive intelligent search capable of exploring titanium
alloys that incorporate any combination of the remaining 18
elements. Furthermore, the proposed framework is utilized
to present a predictive model for a novel titanium alloy,
Ti6Al4V0.3Si5Mo2.3Sn0.1Nd, with an ultimate strength of
1,139.9 MPa.

In future research, the investigation on laser powder
bed fusion additive manufacturing of high performance
titanium alloys with the proposed framework was conducted,
encompassing the examination of printing process parameters
and heat treatment effects on microstructure and mechanical
properties.
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