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The preparation and tribological behavior of the titanium metal matrix (Ti-
6Al-4V) composite reinforced with tungsten carbide (WCp) and graphite (Grp)
particles were investigated in this study. The stir casting procedure was used to
fabricate the titanium metal matrix composites (TMMCs), which had 8 weight
percent of WCp and Grp. The tribological studies were designed using Taguchi’s
L27 orthogonal array technique and were carried out as wear tests using a pin-
on-disc device. According to Taguchi’s analysis and ANOVA, themost significant
factors that affect wear rate are load and distance, followed by velocity. The
wear process was ascertained by scanning electron microscopy investigation of
the worn surfaces of the composite specimens. Pearson’s heatmap and Feature
importance (F-test) were plotted for data analysis to study the significance of
input parameters on wear. Machine learning classification algorithms such as k-
nearest neighbors, support vector machine, and XGBoost algorithms accurately
classified the wear rate data, giving an accuracy value of 71.25%, 65%, and
56.25%, respectively.
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1 Introduction

Titanium alloys are widely used in many technical applications due to their excellent
combination of high hardness, wear resistance, strength, corrosion resistance, stiffness,
and low density (Jiao et al., 2018; Suresh et al., 2018; Cao and Liang, 2020). Titanium
alloys are widely utilized for their exceptional strength-to-weight ratio to lower energy
consumption, increase productivity, and extend product life inthe automotive, aerospace,
sports, transportation, and medical equipment industries (Attar et al., 2018; Chao et al.,
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2019; Perundyurai Thangavel et al., 2020). Titanium metal matrix
composites (TMMCs) can be broadly classified into two types based
on the shape and distribution of reinforcements: continuously
reinforced TMMCs and discontinuously reinforced TMMCs
(Guo et al., 2012; Jiao et al., 2018; Hayat et al., 2019). WC, Al2O3,
TiB, CNTs, SiC, FE3O4, B4C, TiC, Gr, and other ceramic
particles and whiskers commonly reinforce TMMCs (Li et al., 2015;
Zhang et al., 2016; Sun et al., 2020).

Frary et al. (Frary et al., 2003) reported that the mechanical
and physical properties of pure titanium reinforced with 10
weight percent WP were comparable to those of the Ti-6Al-4V
(Ti64) alloy. A study by Choe et al. (Choe et al., 2005a; Choe et al.,
2005b) found that the size of the WP significantly influences
the mechanical characteristics of WP/Ti composites. A range of
microstructures with good tensile strength and elongation were
produced as a consequence of Wang et al.’s investigations of the
varied size distribution of TiC reinforcement to titanium by DED
(Wang et al., 2018). Using Ti/B4C composite powder feedstocks, Xia
et al. produced TiB + TiC reinforced titanium in situ. They also
thoroughly examined the development of the in situmicrostructure
and the interaction zone between the titanium and ceramic
reinforcement (Xia et al., 2017).

Furthermore, in situ B4C/BN reinforced Ti6Al4V composites
were studied by Gupta et al. The main issue was wear performance,
and strengthening reduced the sliding coefficient of friction (COF)
by half compared to the Ti6Al4V matrix (Gupta et al., 2018).
Using an in-situ approach, Choi et al. produced hybrid composites
of Ti6Al4V alloy with reinforcements TiB and TiC that had a
constant reinforcement allocation. The results showed a significant
relationship between reinforcement content and more excellent
TMC wear resistance, with more reinforcement content resulting
in lower wear loss (Kim et al., 2011). After electroless plating to
manufacture copper-coated CNTs, Wang et al. (2017) used spark
plasma sintering procedures to create copper matrix composites.
The results showed that electroless plating significantly improved
the mechanical properties by enhancing the element link between
copper and carbon nanotubes and enabling uniform dispersion
of CNTs.

By using electroless nickel plating and SPS to create composites
of graphite flakes and copper, Ren et al. dramatically increased
the bonding at the graphite/copper base contact. According to
the findings, the bending characteristics and coefficient of thermal
expansion were significantly improved by installing the NieP
transition layer (Chen et al., 2017). When 0.35wt% of multi-walled
carbon nanotubes (MWCNTs) was added, Kondoh et al. discovered
that the tensile parameters, such as strength and yield, increased
by up to 27% and 42%, respectively, in contrast to those of pure
titanium (Kondoh et al., 2008). Wang et al. used an 823 K sintering
temperature in conjunction with a spark plasma sintering technique
to create a TMC composite. The findings demonstrated that when
the volume fraction of MWCNTs reached 0.4 weight percent, the
material’s compressive strength and yield strength both attained
their maximum values.Then, when theMWCNT content was raised
even further, the compressive strength dropped (Wang et al., 2015).
Jin et al. studied the production of pure titanium powder with
TiB2 reinforcing particles using a selective laser melting method.
All sorts of wear characteristics, including adhesion, abrasion, and
oxidation, were improved due to the Ti/TiB2 composites (Jin et al.,

2021). The titanium and ZrO2 nanoparticle composites that Abd-
Elwahed et al. produced were made via powder metallurgy. The
results demonstrated that raising the usual load improved the
bonding, wear, and friction properties, increased the total amount
of ZrO2 nanoparticles, and enhanced the sliding wear rate (Abd-
Elwahed et al., 2020). An et al. assessed the tribological behaviors of
TMC coatings at high temperatures. The findings demonstrate that
delamination, plowing, and oxidation wear processes occur at 500 C
together with increased wear rates for TMC coatings (An Qi et al.,
2019).

Regarding hardness and wear resistance at room temperature,
An et al.’s tests (An et al., 2018; An Q. et al., 2019) show that the
hybrid TiBand TiC particles boosted with titanium coating and
inter-growth ceramic structures outperform the TiB/Ti64 coating.
Farias concentrated on how the tribological characteristics of
the TiC reinforcing particles with open porosity in TMCs were
affected by spark plasma sintering. The study’s findings revealed
that adding TiC particles enhanced tribological characteristics
like wear resistance, coefficient of friction, and nano hardness
(Farías et al., 2019). Insufficient bonding between the reinforcement
particles and matrix might cause ceramic particles to function
as an abrasive material, as per the findings of Ram Prabh
et al. The dimensions, mass, and morphology of the alternative
phase reinforced particles, the equivalent material, the load, the
microstructure, the environment, and the humidity can all impact
the wear resistance of composite materials (Ram et al., 2014). Room
temperature research was done by Huang Xie, who also carried
out sliding wear trials on TMCs with mild steel grade 35. Iron
oxide additives, independent of load, rarely improve the TMC’s
wear performance because they require lubricating capabilities. The
MLG/Fe2O3 nanocomposite and MLG with Fe2O3 mechanical
combination may significantly improve the wear performance
(Xie et al., 2021).

Zhou et al. examined the effect of graphene/Fe2O3
nanocomposites on the tribological performance of the TC11
alloy. They found that on the injured surface, a thin, stable double
tribolayer consisting of layers primarily composed of MLG and
Fe2O3 was created, significantly reducing wear and friction. This
research shows that adding specific nanoparticles to materials can
improve their tribological properties (Zhou et al., 2017). Titanium
hybrid composites with single and multiple reinforcements were
created by Lixia Xi et al. and fabricated using SLM. The hybrid
composite result set between the reinforcements and matrix
generated the interfacial structure. The wear resistance and CoF
characteristics are enhanced when TiC and TiN reinforcement
particles are introduced (Xi et al., 2021).

Prakash considered removing this property lag. Titanium alloy
(Ti-6Al-4V) is used to fortify boron carbide (B4C) ceramic particles
using powder metallurgy (PM). As a result of this research, a
newer composite was created and tested, improving hardness,
corrosion resistance, and reduced density. The wear performance
of the composite specimens is more affected by the applied loads
than by the amount of B4C added. Scanning electron microscopy
results demonstrate that the B4C-reinforced Ti-6Al-4V composite
has better wear resistance than the unreinforced Ti alloy and
shows signs of mildly worn surfaces (Soorya Prakash et al., 2016).
Hu investigated and analyzed the quality of the components, the
processes by which microstructures form, and the efficacy of
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workpiece wear in TiB-reinforced Ti matrix composites, which
were produced using the LENS approach. The results suggest
that TiB-TMCs, with their innovative microstructures and TiB
reinforcement, exhibited superior wear performance compared
to bulk components composed of commercially pure titanium.
Furthermore, by varying the laser power, the characteristics of the
produced components were improved with fewer internal defects,
leading to better wear performance (Hu et al., 2017). Using titanium
alloy reinforcement to improve the grapheme’s ultimate compressive
strength, tensile strength, wear resistance, thermal conductivity, and
diffusivity, Gurbuz et al. investigated the properties of tribological,
mechanical, and thermal aspects (Gürbüz et al., 2021).

Measuring the particular wear rate is crucial to the material
selection and optimization process. Engineers can choose the best
materials for a given application by comparing the wear rates of
several magnesium or magnesium alloys with other materials.
This is especially crucial in sectors like manufacturing, aerospace,
and automotive, where wear resistance significantly impacts the
longevity and dependability of components. Artificial Intelligence
(AI) has yielded many benefits and made significant strides
in several industries, including manufacturing and healthcare.
Artificial intelligence (AI) has shown to be extremely useful
in the medical industry for tasks including disease diagnosis,
therapy planning, medication development, and patient monitoring
(Mathews, 2019; Buccino et al., 2023a; Buccino et al., 2023b;
Yang et al., 2023). A type of artificial intelligence called machine
learning algorithms has been widely used to evaluate complex
medical data, spot trends, and generate precise forecasts. As a result,
there has been an improvement in the precision of diagnoses, the
creation of customized treatment programs, and the general quality
of patient care.

Similarly, AI has considerably changed operations in the
manufacturing sector by facilitating predictive maintenance,
increasing productivity, and streamlining procedures (Maleki et al.,
2022; Maleki et al., 2023). Demand forecasting, supply chain
optimization, automation, and quality control have all benefited
from using machine learning algorithms. These applications have
improved operational effectiveness, lowered production costs,
and improved product quality. The integration of Evolutionary
Computing with Machine Learning algorithms has received very
little research attention despite the remarkable advancements in
AI and Machine Learning. Evolutionary computing is a subfield
of artificial intelligence that uses methods from natural evolution,
including genetic algorithms, particle swarm optimization, and
ant colony optimization, to tackle challenging optimization
issues. Combining machine-learning techniques and evolutionary
computing has excellent promise in several fields. Researchers
can more effectively handle complex optimization and prediction
tasks by combining the adaptive search capabilities of Evolutionary
Computing with the learning and predictive powers of Machine
Learning algorithms. This integration can be further implemented
in various material science and manufacturing domains
(Dhungana et al., 2019; Dhungana et al., 2021; Sadek et al., 2021;
Dhungana et al., 2022; Mishra and Jatti, 2023a; Dhungana et al.,
2023; Greco et al., 2023). This hybrid technique can help find the
best solutions in complex problem spaces, increase the precision
and effectiveness of optimization algorithms, and improve feature
selection in machine-learning models.

Estimating the precise wear rate of Hybrid Metal Matrix
Titanium alloy is essential in sectors where wear resistance is
a vital component. While machine learning has demonstrated
potential in predictive modeling, evaluating their performance
and choosing which algorithm works best for this particular
use case is necessary. Furthermore, there needs to be a more
thorough analysis and comparison of various algorithms and a
paucity of research in this area. Thus, comparing the effectiveness
of machine learning algorithms, namely K-Nearest Neighbouring
(KNN), Support VectorMachine (SVM), andXGBoost classification
in forecasting the precise wear rate of the Hybrid Metal Matrix
Titanium alloy is the topic this research study attempts to address.

This study used the stir castingmethod to create a titanium alloy,
Ti-6Al-4V, with reinforcements made of tungsten carbide (WC) and
graphite (Gr) hybrid metal matrix composite. Process variables like
load, sliding velocity, sliding distance, and tribological experiments
were performed based on the Taguchi L27 orthogonal array.

2 Materials and methods

The primary matrix material used was the titanium alloy Ti-
6Al-4V; Table 1 shows the chemical composition of the matrix
values for this alloy. The particles reinforced with WC and Gr have
been selected. The average size of the graphite particles was 25 μm,
whereas the WC particles were 45 μm. The required amount of Ti-
6Al-4V titanium alloy was melted in a graphite crucible using an
electrical furnace. The reinforcing particles were heated to 500°C to
remove the moisture. A specific quantity of reinforcing particles was
mixed with the titanium alloy. The hybrid composite material was
regularly blended. After the hybrid composite was inserted into the
prepared die at 800°C, it was left to solidify at room temperature.

The sample’s microstructures and worn surfaces were examined
using optical and scanning electron microscopy. Microhardness
tester of model-Microhardness tester from OMNI tech, MVH-1
automatic test load 10 gm to 1,000 gm employed for microhardness
measurement. As indicated in Figure 1, the composite specimens’
dry sliding wear qualities were evaluated using the DUCOM pin-
on-disc sliding wear testing apparatus (Manufacturer: DUCOM,
Bangalore, India). The ASTM G99-95 rules were followed when
conducting the dry sliding wear testing. The pin was cleaned with
acetone, and its initial mass was measured with a digital electronic
balance. After that, the pin was held up against a revolving EN-32
steel disk (counter face) with 65 HRC hardness throughout the test.
Figure 2A,B depicts the casted and machined samples, respectively.

Throughout the testing, adjustments were made to the distance,
velocity, and average load. At the end of each test, the pin’s ultimate
mass was measured after being cleaned with acetone. We calculated
the mass loss of the pin due to sliding wear by taking the difference
between its initial and final masses. The volume loss owing to wear
was calculated using the density values linked with the pin. Next, the
wear rate of the composite pins was ascertained.

The following is the process for carrying out the wear test:
First, the test sample is carefully weighed on a state-of-the-art

digital balance, and its original mass is recorded. The specimen is
then securely secured using the notch, and its surface is positioned so
that it makes contact with the disk.The track radius is thenmodified
to meet the unique requirements of the test. Following proper
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TABLE 1 Chemical composition of Ti6Al4V.

Alloying elements Ti Al V Fe O N C

Chemical content (wt%) 85.096 7.75 6.5 0.34 0.02 0.04 0.05

FIGURE 1
Wear test on disc (Mishra and Jatti, 2023b; Mishra et al., 2023)

FIGURE 2
(A) Cast wear pins. (B) Machined wear pins.

specimen positioning specified normal loads are supplied, and the
sliding velocity is set in compliance with the test parameters. The
test is then run to cover the specified distance over a computed time
interval. For every test, the pin volume loss was determined using

the pin-height loss method. Each test was conducted three times to
guarantee repeatability, and the average of the three tests was used
to determine the wear rate using Eq. (1). This process is repeated
for other specimens with varying volume percentages and could be
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TABLE 2 Input process parameters.

Level Sliding
speed (m/s)

Load (N) Sliding
distance (m)

1 2 20 500

2 4 30 1,000

3 6 40 1,500

tested under various conditions. This method makes it possible to
compare wear characteristics under various circumstances.

The wear parameters chosen for the testing based on machine
capacity, literature analysis, and pilot trials are shown in Table 2.
Pilot experiments were conducted to ascertain the practical limits of
the previously indicated parameters necessary for the wear to occur
in a steady state. Referring toASTMG99-95, the pin used in thewear
test is 30 mm long and has an 8 mm diameter.

Wearrate(mm3/Nm) = (Volumeloss∗Hardness)/

(NormalLoad∗Slidingdistance) (1)

The Taguchi technique aims to minimize variation in a process
through robust experiment design. The main objective of the
procedure is to provide the maker with high-quality output at a low
cost. Dr. Genichi Taguchi of Japan developed the Taguchi method
and has persisted in using that variation. Thus, both the producer
and society are impacted by low process quality. He developed
a system for designing experiments to investigate how different
parameters affect the mean and variance of a process performance
characteristic that shows how well the process is doing.

Taguchi’s experimental design gathers the necessary data to
identify the variables significantly influencing product quality
with minor experimentation, saving time and resources. This is
accomplished using orthogonal arrays to organize the variables
influencing the procedure and the magnitudes at which they should
be shifted. Key process factors were identified using analysis of
variance. An L27 orthogonal array was chosen for the current
experiment, as indicated in Table 3.

This study classifies and predicts the wear rate of hybrid
metal matrix composite using KNN, SVM, and XG Boost machine
learning classification techniques. To build a confusion matrix and
AUC-ROC curves for further in-depth analysis and to precisely
assess the wear rate using classification, sample data was constructed
using a synthetic data generation tool in MATLAB based on
the experimental data. The classification method is a supervised
learning technique that categorizes new observations using training
data. Using the dataset or supplied observations, a program learns
how to categorize fresh observations into various classes or groups
in the classification process. The data in the current study is divided
into two groups according to whether the value exceeds or falls short
of the 0.084 average of all wear rate values. The confusion matrix
was plotted using the Python metrics module from the sklearn
package. In order to achieve precise outcomes for data prediction,
the dataset was split into two sections: 80 percent of training data and
20 percent of random test data. The confusion matrix is composed
of three types of data: False positives (FP) and False negatives (FN),
which reflect wrongly forecasted data or suggest that there was an

error in the prediction process; and True positives (TP) and True
negatives (TN), which represent successfully anticipated data. K-
fold (k = 1) was considered for the number of neighbors (k), and
KNN, SVM, and XGBoost classification was performed to obtain
a wide range of classification data. Pearson’s heatmap analysis and
feature importance plot (F-test) were plotted further to understand
the significance of features on wear loss. A flowchart explaining
heatmap analysis is depicted in Figure 3.

The current study uses a k-nearest neighbor (kNN) classification
method, which finds the closest Euclidean distance between the
average value and each wear rate value (refer to Figure 4A).
For the kNN classification method, there are various types of
hyperparameter options, such as:

a) The number of neighbors decides the number of nearest
neighbors to classify each value or point in the target dataset.

b) Distance metric, which is used to measure distance between
2 points.

c) Distance weight decides whether the distance is equal or
inverse (1/distance).

SVMswere created to solve binary classification issues.However,
when computationally demanding multiclass problems become
more common, several binary classifiers are built and coupled to
create SVMs that can carry out these multiclass classifications using
binary methods. The SVM classifier function (SVC) is defined
using input parameters like the type of kernel used, the margin,
and the hyperplane. Once the data is trained using the SVM
classifier function, the test data is predicted based on the trained and
validated data. The workflow of the SVM classification algorithm is
depicted in Figure 4B. XGBoost is a scalable and accurate gradient-
boosting solution that pushes the computational boundaries of
boosted tree algorithms, primarily accelerating computational speed
and machine learning model performance. As part of an ensemble
approach meant to produce superior predictions with imbalanced-
class data, Extreme Gradient Boosting, or XGBoost, has become
increasingly popular as a prediction algorithm in recent years.
XGBoost classification is similar to the F-test as it selects the best
features to predict the data after it trains and validates the training
dataset. It continues until the best feature, which has the most
significance on the data, is selected, and no features remain in
the dataset to evaluate. The workflow of the XGBoost classification
algorithm is depicted in Figure 4C.The values are recorded after the
dataset is collected using wear loss experiments. Heatmap analysis
and F-test are done to identify the most significant features of the
dataset. Then, supervised machine learning algorithms, in this case,
classification algorithms like kNN, SVM, and XGBoost, are used to
classify the data based on the training and validation dataset, and
the data is predicted using the trained model. The results are then
analyzed for the best wear loss rate based on the best features.

3 Results and discussions

In order to estimate the precise wear rate of hybrid composites,
this section presents the wear rate results together with statistical
analysis and a machine learning technique. The experimental
parameters used for the studies are shown in Table 3, together with
the corresponding observed wear rate values.
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TABLE 3 Experimental layout with observed values.

S. No. Load (N) Velocity (m/s) Distance (m) Wear rate (mm3/N-mm)

1 20 2 500 0.00021959

2 20 2 500 0.00026440

3 20 2 500 0.00044366

4 20 4 1,000 0.00018150

5 20 4 1,000 0.00009635

6 20 4 1,000 0.00015909

7 20 6 1,500 0.00056914

8 20 6 1,500 0.00007618

9 20 6 1,500 0.00004332

10 30 2 500 0.00014341

11 30 2 500 0.00028083

12 30 2 500 0.00024797

13 30 4 1,500 0.00007569

14 30 4 1,500 0.00006075

15 30 4 1,500 0.00006672

16 30 6 500 0.00017328

17 30 6 500 0.00024498

18 30 6 500 0.00023602

19 40 2 1,500 0.00006797

20 40 2 1,500 0.00005676

21 40 2 1,500 0.00007618

22 40 4 500 0.00023751

23 40 4 500 0.00011876

24 40 4 500 0.00014341

25 40 6 1,000 0.00010531

26 40 6 1,000 0.00009635

27 40 6 1,000 0.00004369

3.1 Statistical analysis

The dry sliding wear test was performed using pin-on-disc
equipment. The analysis of variance and signal-to-noise (S/N) ratio
techniques were used to determine the significant parameters. The
S/N ratios are used to evaluate how noise factors affect performance
metrics. Three S/N ratios are typical and frequently utilized; they

evaluate the degree of variation in the answer data and the degree
to which the average response resembles the target. Theoretically,
higher, smaller, and better are the better of them. Smaller is
better. The guideline was applied in this study to reduce wear rate.
The signal-to-noise ratio, or S/N ratio, gauges the susceptibility
of the quality attribute under study to experimentally induced
uncontrollable events.
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FIGURE 3
Heatmap flowchart.

FIGURE 4
(A) kNN classification flowchart. (B) SVM classification flowchart. (C) XG-Boost classification flowchart.

TABLE 4 Analysis of variance for wear rate.

Source DF Seq SS Adj SS Adj MS F P

Load (N) 2 0.0000001 0.0000001 0.0000001 3.31 0.057

Velocity (m/s) 2 0.0000001 0.0000001 0.0000001 0.49 0.622

Distance (m) 2 0.0000001 0.0000001 0.0000001 3.35 0.056

Error 20 0.0000002 0.0000002 0.0000002

Total 26 0.0000004

An analysis of variance (ANOVA) was performed to investigate
the effects of load, velocity, and distance on the wear rate;
the results are shown in Table 4. The load and the distance
substantially impacted the wear rate, according to the F-test and
p-value results. Table 5 and Table 6 depict the response table
for signal-to-noise ratios and means, respectively. As per the
results, the load followed by distance and velocity affects the
wear rate.

Figure 5Adisplays the plot of thewear rate’s primary influence. It
is evident that the wear rate tends to increase with higher velocities
and normal loads. Furthermore, Figure 5B illustrates the wear rate
interaction plot. The lines intersect to reveal a strong interaction
effect between the wear rate and the load and velocity, load and
distance, and velocity and distance.

Figure 5C displays a residual plot of the particular wear rate.
A standard probability plot denotes a normal distribution for the
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TABLE 5 Response table for signal-to-noise ratios.

Level Load (N) Velocity (m/s) Distance (m)

1 71.94 75.31 72.70

2 76.40 78.33 78.88

3 79.96 74.66 78.78

Delta 8.02 3.67 6.18

Rank 1 3 2

TABLE 6 Response table for means.

Level Load (N) Velocity (m/s) Distance (m)

1 0.000228 0.000200 0.000229

2 0.000170 0.000127 0.000114

3 0.000105 0.000176 0.000116

Delta 0.000123 0.000073 0.000116

Rank 1 3 2

residuals. There was no evidence of data skewness or outliers in
the histogram plot. There were no apparent patterns in the residual
versus ordered plot or the residual versus fitted plot. These findings
imply that differences in time or environmental conditions did not
cause any inaccuracies in the data gathering.

The wear rate indicates the amount of material loss or
wear volume per unit of sliding distance and unit load. Several
wear regimes were found in the wear map by analyzing the
wear rate values. At different combinations of sliding velocities
and normal loads, these wear regimes offer insights into the
predominant wear mechanisms, including adhesive wear, abrasive
wear, delamination, plastic deformation, oxidation, and melting.
Changes in wear rate over relatively modest differences in
parameters like average load, sliding velocity, temperature, and time
are referred to as wear transitions. Wear transition charts usually
identify and characterize various wear regimes or mechanisms. Low
wear rates and mild contact conditions with a mix of adhesive
and oxidative wear predominate are characteristics of the mild
wear regime. On the other hand, the severe wear regime is
characterized by elevated wear rates and usually arises from more
rigorous working circumstances. Numerous mechanisms, including
abrasive wear, plowing, and delamination, can contribute to
severe wear.

Plowing removes material due to the interaction of microscopic
asperities on one surface with another, which causes abrasive wear.
Rough surfaces or the presence of hard particles are linked to this
mechanism. Oxidative wear is caused by the interaction of the
alloy with ambient oxygen, producing oxide layers on the alloy
surface. Increased wear rate and surface deterioration may result
from this mechanism.The term “delamination” describes how layers

FIGURE 5
(A)Main effects plot for wear rate. (B) Interaction plot for wear rate. (C)
Residual plots for wear rate.

come away from the surface of a substance. It frequently happens
in areas with a concentration of localized tension, which causes
wear debris and surface roughness to accumulate.This phenomenon
is known as plastic deformation, when a material deforms and
flows due to an applied average load. A two-dimensional graph
of the wear rate values is displayed in Figures 6A–C. The color
represented the wear rate values. This image made the analysis
of wear rate variations under various test settings possible. These
wear maps help determine prevailing wear regimes, comprehend
the wear mechanisms, and choose the best materials and operating
settings for specific applications. This investigation found that the
wear rate decreased at lower velocity and load values and increased
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FIGURE 6
(A) Contour plot of wear rate versus load, velocity. (B) Contour plot of
wear rate versus load, distance. (C) Contour plot of wear rate versus
velocity, distance.

at higher velocity and load values. The wear map’s varied colored
zones correspond to distinct wear rates at varying velocities and
loads. The transition lines were used to define the zones by the
experimental setup.

The ideal velocity and load combination that reduces wear rate
can be found through wear map analysis, making it possible to
identify operating situations where the material exhibits excellent
wear performance. This knowledge is a reference for technical
applications using the hybrid metal matrix composite alloy. This is
especially important in the automotive, aerospace, and biomedical
industries, wherewear resistance is critical. For the present study, the
wear rate is lower between 3.5 and 4.5 m/s velocity and 25 N–35 N

load; see Figures 6A,B shows that the wear rate is lower between
27.5 N and 40 N load and 1,000 m–1,500 m distance. Figure 6C
shows that the wear rate is lower between 2 and 4.5 m/s velocity and
1,250 m–1,500 m distance.

3.2 Optical and SEM analysis

The optical micrograph of the composite is shown in Figure 7A.
The sample has excellent compactness and is free of micro-fissures
and pores. The WCp-Grp reinforcement was evenly distributed
throughout the composites to permit its presence in the Ti-6Al-4V
matrix. The Ti-6Al-4V matrix has uniformly distributed tiny WCp-
Grp reinforcements, even though Titanium Composites Interaction
does not observe any reactions. It is important to note that
WCp and Grp do not combine to form a straightforward binary
combination but produce a new interface structure. The average
value of Vickers Microhardness for the hybrid composite obtained
using a microhardness tester is 892 VHN.

SEM analysis of the wear surfaces developed into dry sliding
wear in the steady state regime provides a crucial tool for accurately
characterizing the wear behavior of the composites. Figure 7B shows
the composites’ worn-out surface following wear.The extraordinary
hardness of the composite means that the worn-out surfaces are
barely perceptible. This example has a very smooth surface because
the WCp and GRp reinforcement particles are securely bonded to
the matrix phase at that level. It is also clear that reinforcements
have not worn down only a little. The self-lubricating action of
the tribo surface reinforcements causes this. The worn surface
of the composite makes the presence of laminated layers quite
evident. In this picture, the layer has changed the easily observable
sliding surface. The surfaces also appear smooth because of the
reinforcing component.

3.3 Wear rate prediction using machine
learning classifier

Data was categorized using machine learning based on the
taper angle of the square slots in the stainless steel plate. Using
Python libraries, Pearson’s heatmap and F-test plots were created
to determine the feature importance of input parameters, including
load, velocity, and distance. Pearson’s heatmap analysis is plotted as
shown in Figure 8A, which depicts the minimal significance of load
and velocity on the wear rate.

As shown in Figure 8B, a feature is deemed insignificant if its
F-test value is below the F-distribution value. However, any F-test
value of an input parameter over the critical F-distribution will be
regarded as a significant feature or input parameter. The k-nearest
Neighbors (kNN) method predicts the label or value of a new data
point by considering the labels or values of its k-nearest neighbors
in the training dataset. In the current analysis of wear loss, the
values below the average value of wear loss were considered as 1,
and the values above the average value were considered as 0, refer to
Figure 9A. Wear loss should be minimal as it will give better results.
The prediction accuracy of the kNN classification of wear loss was
71.25%, refer to Table 7.

Frontiers in Materials 09 frontiersin.org

https://doi.org/10.3389/fmats.2024.1375200
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Jatti et al. 10.3389/fmats.2024.1375200

FIGURE 7
(A) Optical micrograph for hybrid composite. (B) Wear track on pin surface for experiment no.7.

Support vector machine classification or support vector
classification segregates or separates the data by a 2-D hyperplane
across the data points. The data used in SVM classification may be
either linear or non-linear. An SVM classifier has various kernels
that can be configured. We can designate the kernel as “linear” for
a linear dataset. It classifies the values above the average wear loss
(0) and those below the average wear loss (1); refer to Figure 9B.
The prediction accuracy of SVM was found to be 65%; refer
to Table 8.

A distributed gradient boosting library optimized for maximum
efficiency, versatility, and portability is called XGBoost. It uses
the Gradient Boosting framework to implement machine learning
algorithms. Figure 9C depicts the confusion matrix for XGBoost.
The prediction accuracy of the XGBoost classifier was found to be
56.25%, refer to Table 5c.

4 Conclusion

Using the stir casting method, a novel hybrid composite
Ti-6Al-4V/WCp/Grp was created, and its tribological behavior
was examined. The following are the key findings of
the study:

i. The load and the distance significantly impacted the wear rate,
with velocity following suit, as indicated by the F-test, p-value
findings, and ANOVA.

ii. Based on the wear maps, the wear rate for the current
investigation is lower between 3.5 and 4.5 m/s velocity and
25 N–35 N load.

iii. The composite’s optical micrograph demonstrates the sample’s
outstanding compactness and lack of pores andmicro-fissures.
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FIGURE 8
(A) Heatmap for wear rate. (B) Feature importance plot for wear rate.

It is evident that for the WCp-Grp reinforcement to exist in
the Ti-6Al-4V matrix, it was dispersed equally throughout the
composites.

iv. At the steady state regime, the WCp and GRp reinforcement
particles are firmly attached to the matrix phase, resulting in

a smooth surface, as revealed by SEM characterization of the
wear surfaces developed into dry sliding wear. Furthermore,
reinforcements have remained relatively high. This is brought
about by the tribo surface reinforcements’ self-lubricating
properties.
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FIGURE 9
(A) Confusion matrix for kNN classifier. (B) Confusion matrix for SVM
classifier. (C) Confusion matrix for XGBoost classifier.

v. The results showed that the XGBoost classifier had a prediction
accuracy of 56.25%, and the SVM had a prediction accuracy
of 65%. It was discovered that the kNN classification has a
prediction accuracy of 71.25%.

TABLE 7 KNN algorithm performance metrics.

Class Precision Recall F1-score Support

0 0.63 0.61 0.62 31

1 0.76 0.78 0.77 49

Accuracy - - 0.71 80

Macro avg 0.70 0.69 0.70 80

Weighted avg 0.71 0.71 0.71 80

TABLE 8 SVM algorithm performance metrics.

Class Precision Recall F1-score Support

0 0.59 0.32 0.42 31

1 0.67 0.86 0.75 49

Accuracy - - 0.65 80

Macro avg 0.63 0.59 0.58 80

Weighted avg 0.64 0.65 0.62 80

Future scope of the work includes synthesis of WCp-Grp
reinforced Ti6Al4V matrix composite with higher percentage of
reinforcement. Further enhancing the accuracy of the machine
learning classifiers by hyper-parameters tuning.
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