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10 Years of Frontiers in materials:
interface engineering for
aqueous zinc-ion batteries

Jia-Ning Yang† , Han Tian† , Kai-Xue Wang* and
Jie-Sheng Chen*

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China

Aqueous Zinc Ion Batteries (ZIBs), characterized by their high theoretical
capacity, cost-effectiveness, and robust safety profile, stand out as one of
the most promising contenders for the next-generation of electrochemical
energy storage applications. Nevertheless, the commercialization of ZIBs
encounters obstacles of unsatisfactory energy density and suboptimal
cycling stability, which are related to the unstable interfaces of Zn
anodes and cathodes. Herein, the research advances in Zn anodes
and cathode materials and corresponding interface engineering in
recent years are systematically reviewed. The rationalization of these
research can guide further investigations in the design of cathode/anode
materials in ZIBs.
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1 Introduction

With the rapid depletion of fossil fuel resources and the exacerbation of the
greenhouse effect, the challenges of energy shortages and environmental pollution
have emerged as pivotal impediments to the sustainable development of human
society (Zhang et al., 2021; Lv et al., 2023). Renewable energy sources such as wind
power, solar energy, and tidal energy are gaining widespread attention. However,
the intermittence and instability of renewable energy restricts their practical large-
scale applications. In recent years, lithium-ion batteries have progressively asserted
their dominance in the commercial rechargeable battery market, driven by attributes
like high energy density, prolonged lifespan, and well-established manufacturing
technologies (Schmuch et al., 2018). Notwithstanding their commercial success,
lithium-ion batteries confront several challenges, including the constrained availability
of lithium resources, elevated costs, safety apprehensions, and environmental
pollution stemming from flammable and toxic organic electrolytes (Zhang et al.,
2023). These issues significantly impede the continued advancement and widespread
deployment of lithium-ion batteries. In contrast to lithium-ion batteries, which
raise safety concerns, aqueous zinc-ion batteries exhibit a multitude of advantages,
including higher safety levels, lower costs, and a more convenient manufacturing
process. Consequently, ZIBs are positioned to emerge as the next-generation of
environmentally friendly rechargeable batteries (Zhang et al., 2023). Nevertheless,
the commercial adoption of ZIBs encounters substantial challenges attributed to
two prevalent issues of limited energy density and suboptimal cycling stability.
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The storage mechanism in ZIBs primarily revolves the
zinc plating/stripping processes on the anode interface and
the reversible insertion/extraction of cations on the cathode.
Currently, the zinc anode in ZIBs encounters challenges associated
with zinc dendrite growth, low Coulombic efficiency (CE) due
to side reactions, and inadequate lifespan (Cao et al., 2020).
Specifically, irregular Zn2+ tip effects in ZIBs may lead to the
uncontrolled growth of zinc dendrites, breaching the separator
and causing internal short circuits. Furthermore, side reactions,
including zinc corrosion and hydrogen evolution reactions (HER),
induce the irreversible zinc plating/stripping and electrolyte
consumption. On the other hand, cathode materials significantly
influence the cost and electrochemical performance of ZIBs.
The most commonly reported cathode materials mainly include
manganese-based oxides, vanadium-based oxides, prussian
blue analogs (PBAs), and transition metal dichalcogenides
(TMDs). However, all of these cathode materials have their
corresponding inherent drawbacks (Wang et al., 2021b). For
instance, manganese-based oxides and vanadium-based oxides
are susceptible to the dissolution of active materials, while PBAs
and TMDs usually exhibit relatively low capacity and working
voltage. Additionally, strong interactions between Zn2+ and the
cathode lattice impede the diffusion kinetics of Zn2+, resulting
in the irreversible embedding of Zn2+ in the lattice of the
cathode materials.

In this review, we have consolidated the most recent efforts and
developments on the electrode materials and interface engineering,
aiming at attaining high energy density and prolonged lifespan
in ZIBs. First, the challenges confronting zinc anode and recent
advancements in establishing stable zinc anode interfaces are
delineated. Subsequently, a brief overview of research progress
of cathode materials is provided. This review would serve as a
valuable resource for both current and future researchers, fostering
advancements in the field of and catalyzing research and applications
in ZIBs.

2 Zn anode in ZIBs

2.1 Issues in Zn anode

In the neutral or slightly acidic electrolyte, such as in
ZnSO4 electrolyte, Zn metal undergoes the redox reaction at
the anode/electrolyte interface to generate Zn2+ through the
donation of electrons, and then Zn (OH)42− forms through the
incorporation of Zn2+ with OH− (Figure 1A). The continuous
dissolution of Zn anode in ZnSO4 aqueous electrolyte ultimately
results in the formation of Zn4SO4(OH)6·xH2O (ZSH) on the
anode surface (Zhu et al., 2023). Additionally, given the fact that
the standard electrode potential of Zn2+/Zn (−0.76 V) is lower
than that of H+/H2 (0 V), HER would occur in advance of the
Zn deposition reaction (Figure 1B). In aqueous ZnSO4 electrolyte,
the main side reactions possibly occurred on the Zn anode
are as following.

Zn ‐2е‐ ↔ Zn2+ (1)

2H+ + 2е‐ ↔ H2 (2)

3Zn2+ + 6OH‐ +ZnSO4 + xH2O ↔ Zn4SO4(OH)6 · xH2O (3)

In addition to HER and ZHS, the unstable thermodynamics
also lead to spontaneous corrosion reactions on the Zn surface.
Both chemical corrosion and electrochemical corrosion occur
simultaneously upon the direct contact of the electrolyte and the
electrode (Tian et al., 2023).

Dendrite growth is another important issue in the development
of ZIBs. The dendrite growth would potentially compromise battery
life span, Coulombic efficiency (CE) and specific capacity, thereby
hampering practical applications (Hong et al., 2023). Dendrite
growth is mainly originated from the nonuniform distribution of
electric field on the Zn electrode surface, associating with the
irregular surface imperfections that act as nucleation sites for growth
(Figure 1C). In addition, the inhomogeneous distribution of zinc
ions in the electrolyte near the electrode would also contribute to
the non-uniform deposition of Zn atoms (Figure 1D), leading to
uncontrolled dendrite formation and the subsequent risk of short
circuits (Cao et al., 2022). Dendrite growth would be promoted by
the tip effect, Zn2+ prefers to deposit on the tip of the dendrite
formed at the initial nucleation site. Consequently, the dendrite
growth increases the risk of penetrating the separators, leading to
a short circuit. Furthermore, zinc dendrite would be detached from
the electrode surface upon cycling, consequently contributing to the
formation of “dead” zinc (Qian et al., 2022).

Therefore, the metallic Zn anode encounters issues such as
dendrite growth, HER, surface corrosion, and the formation of by-
products in ZIBs. Importantly, these associated issues would create
a close and intricate impact on the anode performance (Zhang et al.,
2020). The growth of dendrites increases would increase the active
surface area of Zn anode, accelerating both hydrogen evolution
and corrosion reactions. The formation of “dead Zn” would further
intensify the consumption of electrolyte, leading to the generation of
more by-products. Therefore, in order to improve the performance
of Zn anode, these issues should be considered thoroughly and
well addressed.

2.2 Anode interface engineering

Many efforts have been devoted to mitigating the issues of
zinc anode mentioned above, and many effective strategies have
been proposed in the literature. In this section, effective strategies
based on the interface engineering for the protection of Zn anode,
including polymers, inorganic substance, alloying, and electrolyte
additives, are summarized.

2.2.1 Polymers
Polymers with properties of flexibility, abundant polar groups,

and eco-friendly are prospected to be a promising agents to modify
the surface of Zn anodes (Hong et al., 2022b). Adsorption sites
induced by the functional groups of polymers play a crucial role
in transferring Zn2+ along the polymer chains to the reaction
interface, ensuring the uniformdistribution of Zn2+ at themolecular
scale through fast ion transport rates. For example, an ion-selective
polymer glue was designed and coated on the Zn surface (Jiao et al.,
2021). This polymer layer suppresses the contact of the Zn anode
with the electrolyte, effectively blocking water diffusion while

Frontiers in Materials 02 frontiersin.org

https://doi.org/10.3389/fmats.2024.1376865
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Yang et al. 10.3389/fmats.2024.1376865

FIGURE 1
(A) Schematic diagram of ZHS formation on anode surface (Li et al., 2020) (B) In situ investigations of the HER (Qiu et al., 2019) (C) The mechanisms of
“tip effect” (Li et al., 2023c) (D) Simulation results of dendrite growth (Wang et al., 2023).

allowing rapid Zn2+ ion migration and thereby facilitating the
uniform electrodeposition. A multifunctional polymeric interphase
composed of polyamide (PA) and zinc trifluoromethane sulfonate
(Zn (TfO)2)was also developed (Zhao et al., 2019).ThePA layerwith
abundant hydrogen bonding effectively hinders the direct contact of
water molecule with Zn, suppressing the side reactions and dendrite
growth. A semi-interpenetrating network (s-IPN) structure with
hydrophilic and robust polymer network was generated for the
protection of Zn anode (Ye et al., 2023). Benefiting fromepoxide and
amine groups in s-IPN, the symmetric batterieswithmodified anode
showed high cycling stability of over 2,000 h.

Usually, the single unamended polymer protective layers are
not sufficient to significantly improve the cycling performance and
mechanical property of Zn anodes. Therefore, the modification of
single polymers was proposed to enhance Zn anode property. For
example, the self-adaptable poly (dimethylsiloxane) (PDMS)/TiO2−x
coated Zn anode (Figure 2A). (PDMS)/TiO2−x was designed to
dynamically adapt to volume changes and inhibited dendrite
growth, consequently stabilizing the Zn surface (Guo et al., 2022).
Rapid and uniform transfer of Zn2+ were induced by the synergistic
effect of oxygenvacancy-rich TiO2−x and PDMS.

2.2.2 Inorganic substances
Inorganic nonmetallic materials have been employed as non-

conductive coatings onmetallic Zn anode, which benefits from their
rapid ion conductivity and chemical inertess (Hong et al., 2021),
thus effectively stabilizing the anode interface and increasing anode
performance (Figure 2B). Liu et al. (2021) proposed a Zn-metal
oxide Ohmic contact interface model to improve the reversibility of
Zn anodes. Zn anodes modified by the metal oxides with high work
function, such as CeO2, TiO2, WO3, and MoO3, distinctly attract
the cations to diffuse inward. The interface modified Zn anode

with CeO2 layers exhibited rapid Zn2+ diffusion kinetic, enhanced
Coulombic efficiency, and dendrite-free Zn2+ deposition.

In recent years, inorganic salts have emerged as a viable
option for interface protection of Zn metals. Amorphous zinc
phosphate (AZP) nanofilm with flexible thickness was generated
as a solid electrolyte interphase (SEI) for Zn anode (Li et al.,
2023b). Consequently, numerous shortened pathways for rapid
Zn2+ transportation were constructed by the amorphous layer. The
nanofilm with hydrophobic propterty effectively prevents the direct
contact of water with the Zn anode, thereby retarding the interfacial
HER and suppressing associated corrosion and passivation.

A robust inorganic interface with strong adhesion on the
Zn surface can also be fabricated by a simple acid etching
method. Four types acids, including oxalic acid, phytic, citric,
and phosphoric acid were used to regulate the interfaces of Zn
anodes (Wang et al., 2021a). With more exposing (002) plane,
high corrosion-resistance and suppressed dendritic deposition were
achieved. The zinc phosphate@Zn (PPZ@Zn) electrode with high
extent of texturing and compact coating endowed stable Zn
stripping/plating interfaces.

2.2.3 Alloying
Alloying with one or more metal elements provides an

effective method for enhancing the protection of the Zn
electrode. Mechanical strength, corrosion resistance, and electrical
conductivity would be improved by these alloy anodes (Hong et al.,
2022a). The involvement of the electrochemically inactive metal
elements, such as Cu, Ag, and Mn in the alloys reduces the atomic
defects in the Zn anodes. This reduction in defects not only hinders
the formation of by-products and inhibits corrosion on the Zn
surface but also significantly lowers the nucleation energy barrier.
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FIGURE 2
(A) Schematic illustrations of (PDMS)/TiO2−x coating and protective mechanism (Guo et al., 2022), (B) Zn deposition process on Zn@Ca-Mont and
Zn@Zn-Mont anodes (Hong et al., 2021) (C) grain boundary engineering (Zhao et al., 2023a) (D) the EDL structure and Zn deposition behavior
regulation in PMCNA (Feng et al., 2023).

Metallic Cu, characterized by excellent chemical/physical
stability and cost-effectiveness, is considered an effective element
for the generation of alloy anodes. Zhou et al. (2022) demonstrated
a strategy to address issues on Zn surface by electrochemically
depositing Zn onto the Cu surface. Xu et al. (2021) generated a
robust protective layer by immersing Zn plate into an aqueous
solution of CuSO4. Owing to the strong zincophilicity and inert
nature of Cu, alleviated interface corrosion and inhibited dendrite
growth were realized. Simultaneously, the structural features of
Zn-Cu could tune uniform nucleation and deposition of Zn2+

to suppress dendrite growth, thereby endowing alloying anode
with lowered nucleation overpotential and polarization, prolonged
cycling stability and increased CE. The reduction potential of Sn is
−0.14 V, higher than that of Zn (−0.76 V vs. SHE). Sn was selected
to generate a protective layer on the Zn foil (Li et al., 2021a). The
alloy anode fabricated increases the hydrogen precipitation energy
barrier and lowers the deposition energy barrier, promoting the
Zn2+ deposition kinetics.

Recently, Zhao et al. (2023a) developed a conventional
metallurgical process for the construction of Zn-Ti alloy anode. The

grain boundary of metallic Zn was modified by the construction of
the Zn-Ti dual-phase alloy (Figure 2C). In this alloy, Ti-containing
solid solutions and intermetallic compounds was formed and
thermodynamically stabilized at grain boundaries. Moreover,
the Ti-containing alloy anode with high interface zincophilicity
substantially inhibited intergranular corrosion and HER during
cycling, diminished nucleation energy barrier, and promoted
favorable nucleation mode.

2.2.4 Electrolyte additives
Apart from the direct interface engineering of the Zn anodes,

the incorporation of additives into the electrolyte is regarded as
another effective strategy for the in-situ construction of stable
interface. For instance, polyacrylamide (PAM), a low-cost polymer
containing ketone units, was employed as an effective electrolyte
additive (Zhang et al., 2019). The overpotential of zinc nucleation
was significantly reduced and the stability of zinc deposition as
enhanced. Liu et al. (2023) found that cetyltrimethyl ammonium
bromide (CTAB) not only adsorbed onto the zinc anode surface,
thereby regulating Zn2+ deposition orientation and inhibiting
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dendrite formation, but also modified the solvation structure of
Zn2+ to reduce HER. Feng et al. (2023) designed a polymer additive
(PMCNA) engineered by copolymerizing 2-methacryloyloxyethyl
phosphorylcholine (MPC) and N-acryloyl glycinamide (NAGA)
(Figure 2D). PMCNA adsorbed onto the Zn anode surface, forming
a interface protective layer in situ to resist side reactions and guided
Zn nucleation depositing along the (002) plane.

In addition to organic molecules, metal ions have been used
as additives added into liquid electrolytes to enhance the anode
stability. For instance, Hu et al. (2022) reported that CeCl3, when
used as an additive, could effectively inhibit the growth of Zn
dendrites.They revealed thatCe3+can be preferentially adsorb on the
surface of the Zn anode, forming H2O-poor electrical double layer
that inhibits side reaction through the electrostatic shielding effect.
Specifically, the Ce3+ ions accumulated around the Zn protrusions,
forming an interfacial “electrostatic shield” with a regional positive
electric field.The electric field prevented the further accumulation of
Zn2+ ions through the electrostatic force, impeding the deposition of
Zn2+ ions and rendering the even Zn plating upon cycling.

Anode interface engineering aims to impede the direct
interaction between zinc and the electrolyte, thereby effectively
mitigating dendrite formation, corrosion, and side reactions
(Wu et al., 2024). Polymer and Inorganic nonmetallic materials
as coatings exhibit sufficient conductivity and compatibility with
Zn metal. Nonetheless, thinner coatings may be prone to cracking
and shedding, compromising anode stability, while excessively thick
coatings could elevate impedance and hinder ionic conductivity.

For the Zn alloy anodes, it is significant to optimize the
deposition time, solution concentration, and voltage to dictate alloy
property (Du et al., 2023). The researchers predominantly focus
on binary alloys rather than ternary alloys. Therefore, further
exploration of binary alloys is warranted.

Electrolyte additives is regarded as an effective strategy for the
in-situ construction of stable interface (Zhao et al., 2023b).However,
the presence of additives in the electrolyte may impact Zn ion
migration, leading to decreased ionic conductivity and complicating
the interface of the anode. Therefore, optimizing the concentration
of additives poses a challenge for this strategy.

3 Cathode materials

3.1 Energy storage mechanisms

The energy storage mechanisms of lithium and sodium ion
batteries have been well elucidated, which generally include
intercalation, alloying, and conversion mechanisms. For ZIBs,
six mechanisms have been delineated (Figure 3A), such as Zn2+

insertion/extraction, reversible chemical conversion reactions, Zn2+

and H+ co-insertion/extraction, dissolution/deposition reactions,
ion coordination and multiple-ion insertion/extraction (Xu et al.,
2012; Pan et al., 2016; Li et al., 2020; Li et al., 2023).

3.2 Cathode materials

The electrochemical performance of a battery system is
significantly contingent upon the type, structure, and surface

properties of the electrode material. The charge storage process
hinges on the migration of Zn2+ ions between two electrodes
for ZIBs, hence, it is imperative to develop high-performance of
cathodes for ZIBs. Recently, manganese-based oxides, vanadium-
based oxides, prussian blue analogs and transition metal
dichalcogenides were received considerable research interest
for ZIBs.

3.2.1 Manganese-based oxides
Due to the advantages of cost-effectiveness, abundant

availability, relatively low toxicity and multivalent states (Mn2+,
Mn3+, Mn4+, Mn7+), manganese-based oxides cathodes have been
extensively investigated as the cathode materials for ZIBs over
the past decade (Fang et al., 2018; Liu et al., 2021; Hong et al.,
2023). MnO2, as one of the most important manganese-based
oxides materials, has a variety of crystal structures, including α-
MnO2, β-MnO2, δ-MnO2 and so on. These structures consist of
[MnO6] octahedra as the basic structural units, interconnected
by shared corners or edges into chain-, tunnel-, and layered-type
configurations.

As the most extensively studied of MnO2, α-MnO2 is composed
of octahedral MnO6 in a double chain style, possessing a 2 × 2
tunnel in its structure. Due to the substantial tunnels in its structural
framework, α-MnO2 could serve as a host material for foreign
cations, including Zn2+ ions. For instance, Pan et al. (Pan et al.,
2016) demonstrated a reversible Zn/MnO2 system where aqueous
ZnSO4 based solution was used as the electrolyte, and α-MnO2
nanofibers were used as the cathodematerials (Figure 3B). For the α-
MnO2 nanofiber cathode, it exhibited an operating voltage of 1.44 V,
a specific capacity of 210 mA h g−1 at 0.2C and a capacity retention
of 92% over 5,000 cycles. Sun et al. (2017) proposed an in-situ
electrodeposition method to prepare a binder-free nanocrystal α-
MnO2 cathode, donated asMnO2@CFP. Stable cycling performance
up to 10,000 cycles at 6.5C with a low capacity decay rate of 0.007%
per cycle was achieved. Meanwhile, the consequent H+ and Zn2+

insertion mechanism in Zn/MnO2 battery chemistry was revealed.
β-MnO2 is characterized by the most stable 1 × 1 tunnel-type

structure constructed by MnO6 octahedra single chains through
the corner sharing. Recent studies have confirmed the excellent
zinc storage performance of β-MnO2. Liu et al. (2019) synthesized
β-MnO2 nanorods through a microwave hydrothermal method.
A high-capacity delivery of 288 mA h g−1 at 0.05C and cycling
stability with capacity retentions of 84.3% after 1000 cycles at 2C
were achieved. The capacity fading of the β-MnO2 cathode was
primarily attributed to the formation of inactive ZnMn2O4 after
long-term charge/discharge cycling. Zhang et al. (2017) reported
a high-performance rechargeable aqueous ZIBs system with β-
MnO2 cathode, which delivered a high capacity of 225 mA h g−1

at 0.65C. The tunnel-structured manganese dioxide polymorphs
underwent a phase transition to layered zinc-buserite on first
discharging, enabling subsequent intercalation of zinc cations in the
latter structure.

δ-MnO2 is constructed by co-angled [MnO6] octahedrons,
forming a two-dimensional infinite layer. Recently, layered δ-MnO2
was also received consierable interest as cathode materials for
ZIBs. Remarkably high battery performances was demonstrated
and attributed to the large interlayer distance (approximately
7.0 Å) of δ-MnO2. Yao et al. (2023) reported a two-step strategy to
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FIGURE 3
(A) Schematic diagrams of the storage mechanism for cathodes in ZIBs (Li et al., 2023) (B) Illustration of synthesis process of MnO2@CFP (Sun et al.,
2017) (C) Illustration of the synthesis of AMO (Yao et al., 2023) (D) Schematic illustration of the energy storage mechanism in the Zn||ZVO and
Zn||Ov-ZVO batteries (Ye et al., 2023) (E) TEM images of CuMn-PBA DSNBs (Zeng et al., 2022) (F) Illustration of the preparation process and the crystal
structure of D-MoS2-O (Li et al., 2021b).

prepare pre-intercalation of ammonium ions in layered δ-MnO2
nanosheets, denoted as AMO, as the cathode material for ZIBs
(Figure 3C). The AMO delivered a reversible Zn storage capacity
of 128.7 mA h g−1 over 10000 cycles at 4 A g−1 without significant
capacity decay. Furthermore, the intercalated ammonium ions serve
as the interlayer pillars to expand the lattice spacing of AMO and
form hydrogen-bond networks, thus relieving the Jahn–Teller effect
and enabling fast Zn2+ ion diffusion kinetics.

3.2.2 Vanadium-based oxides
Vanadium-based oxides are widely investigated as cathode

materials for ZIBs due to the manifold vanadium oxidation states
(Vx+ (x = 2, 3, 4, 5)) and diverse redox properties. The fundamental
V–O coordination polyhedra assemble into different frameworks
of vanadium oxides, with V coordination polyhedra transformed
from tetrahedron through square pyramid, trigonal bipyramid and
regular octahedra. The changes in both complex polyhedra and
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V oxidation states can be systematically tuned to accommodate
Zn2+ ions, resulting in outstanding electrochemical performance
(Wang et al., 2023; Wang et al., 2023).

V2O5 exhibits a layered structure bound together by weak van
der Waals forces, showing a square-pyramidal coordination of V5+

linked to five oxygen atoms. The layered structure of V2O5 could
facilitate the intercalation of Zn2+ and thus has been extensively
investigated as an intercalation host for ZIBs. Ye et al. (2023)
fabricated oxygen vacancy-enriched V2O5 structures, denoted as
Ov-ZVO, by hydrothermal method followed by further annealing.
It was revealed that the presence of oxygen vacancies reduced
Zn2+ diffusion barriers and weakened the interaction between
Zn and O atoms in Ov-ZVO (Figure 3D), thus leading to the
excellent electrochemical performance. A remarkably high specific
capacity of 402 mA h g−1 at 0.1 A g−1 and impressive energy output
of 193 W h kg−1 at 2673 W kg−1 were demonstrated. In another
investigation by Qi et al. (2023), a conductive polypyrrole (PPy)
was incorporated with V2O5, resulting in PPy-intercalated V2O5
(PPy-V2O5). The intercalated PPy served to prevent structure
collapse, contributing to the structure and cycling stability.
A high reversible capacity of 450.6 mA h g−1 at 0.5 A g−1 and
excellent capacity retention of 90.0% at 10 A g−1 after 8500 cycles
were achieved.

V2O3 is recognized as a promising electrochemical energy
storage material with high capacity. V2O3 has a 3D structure-like
tunnels formed by the edge-sharing of the adjacent octahedron with
two common VO6 octahedra. These tunnels would facilitate the
intercalation of cations. The V-V chain allows for the transfer of
vanadium 3 days electrons, inducing high electronic conductivity.
The high electronic conductivity is an important property for
application as a cathode material in ZIBs. Zhu et al. (2021)
designed a vanadium defective V2O3 (Vd–V2O3) by a hydrothermal
method and an ensuing annealing process. The vanadium
vacancies created permanent sites for the preoccupation of a small
amount of Zn2+, enhancing the stability of lattice and mitigating
deterioration during the process of Zn2+ insertion/extraction.
The Vd–V2O3 exhibited a capacity of 196 mA h g−1 at
0.1 A g−1 and achieved 30,000 stable cycles with a capacity
retention rate of 81%.

3.2.3 Prussian blue analogs
Prussian blue analogs with features of substantial open

structures, versatile ion-storage capabilities and abundant redox-
active sites have garnered attention for application in ZIBs
(Hurlbutt et al., 2018; Li et al., 2022). The general formula of
PBAs is AxM′y [M″(CN)6]z ∙nH2O, where M′ and M″ represent
transition-metal ions in the divalent or trivalent state, and A can
be Li+, Na+, or Zn2+ ions. In the PBAs structure, M′-coordinated
and M″-coordinated transition metal ions are interconnected by
C≡N, forming a rigid open framework with a large interlayer
for hosting A ions or water molecules, as well as 3D diffusion
tunnels for A ions.

In a study conducted by Zeng et al. (2022), Cu-substituted
Mn-PBAs double-shelled nanoboxes (CuMn-PBA DSNBs) were
prepared by using efficient tannic acid etching and cation
exchange methods (Figure 3E). The distinctive hollow structures,
Cu substitution and Mn vacancies in the CuMn-PBA DSNBs
electrode contributed to the improved Zn ion storage properties.

A notable rate capability (116.8 mA h g−1 at 0.1 A g−1) and superior
cycling stability (96.8% retention after 2000 cycles) were achieved.
Yang et al. (2023) proposed the epitaxial growth of Fe on Mn-
hexacyanoferrate to construct a core–shell double-atom-redox
PBA (Mn@FeHCF). The in-situ surface reorganization effectively
suppressed Jahn–Teller distortion and prevented Mn dissolution
into the electrolyte in the core Mn-PBA. Mn@FeHCF delivered a
high discharge capacity of 166 and 117 mA h g–1 and a capacity
retention of 72.4% and 83.9% over 400 and 4800 cycles at 0.1 and
2 A g–1, respectively.

3.2.4 Dichalcogenides
Transition metal dichalcogenides (TMDs) are typically 2D

layered structures constructed by weak van der Waals forces.
Transition metal dichalcogenides are denoted as MX2, where
M represents transition metals (e.g., V, Mo, Ti and W) and
X denotes chalcogen atoms (S, Se and Te). Generally, TMDs
can be classified into three crystal phases of 1T, 2H, and 3R
with the different arrangements of the TMDs monolayers. The
different arrange of the monolayers would lead to different
properties (Lee et al., 2021; Yang et al., 2022; Shuai et al., 2023).
Due to their sufficient spacing layer, large theoretical capacity
and fast ion transfer kinetics, TMDs have been investigated as
ZIB cathode. For example, He et al. (2017) demonstrated that
nanosheets of VS2 can accommodate 0.23 Zn2+ per formula units,
giving a specific capacity of 190.3 mA h g−1 at 0.05 A g−1. Tan et al.
(2022) employed a one-step hydrothermal method to fabricate
1T-VS2 nanospheres assembled from nanosheets. The distinctive
hierarchitectures of 1T-VS2 delivered a high reversible capacities
of 212.9 and 102.1 mA h g−1 at 0.1 and 5 A g−1, respectively. An
ultralong cycling life with 86.7% capacity retention over 2000 cycles
at 2 A g−1was also achieved.

In addition to VS2, MoS2 has also been explored as a cathode
material for ZIBs. Li et al. (2021b) reported a molecular engineering
strategy (Figure 3F) which involves structure defects manufacturing
andO-doping to enlarge interlayers and unlock basal planes ofMoS2
(donated as D-MoS2-O). It was demonstrated that the incorporation
of defects and O-doping in MoS2 reduced Zn2+ migration barriers,
leading the improved electrochemical performance. Superior rate
performance (261 mA h g−1 at 0.1 A g−1 with 102.4 mA h g−1 at
10 A g−1) and cycling stability (90.5% capacity retention after 1000
cycles) were achieved.

3.3 Critical issues and improvement
strategy for cathode materials

3.3.1 Cathode dissolution
The cathode materials for ZIBs are plagued by active materials

dissolution during cycling, resulting in significant capacity decay.
Consequently, preventing cathode dissolution is a critical step
in enhancing the electrochemical performance of ZIBs. For
instance, the dissolution of Mn arises from disproportionation and
irreversible phase changes for the Mn-Based oxides, resulting in the
structural collapse and the rapid decay of battery capacity. To address
the issue ofMndissolution, various strategies have been investigated,
including material doping, structural modifications, and coating
(Figure 4A) (Nolis et al., 2018; Venkatkarthick et al., 2020). As for
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FIGURE 4
(A) TEM images of carbon-coated MnO2 (Islam et al., 2017) (B) The crystal structures of V2O5·nH2O (Yan et al., 2018) (C) Schematic illustration of the
fabrication process of a pristine Zn3V2O7(OH)2·2H2O (ZVO) cathode and the HfO2-coated ZVO by ALD (Guo et al., 2019) (D) Schematic illustration of
reversible Zn2+ intercalation/deintercalation during the electrochemical discharge/charge process in Co0.247V2O5·0.944H2O (Ma et al., 2019).

vanadium compound, soluble intermediate and the intimate contact
between crystal water in V-based oxides and electrolyte contribute
to vanadiumdissolution (Figure 4B).This challenge can be alleviated
by incorporatingV2O5 sol into the electrolyte.Moreover, approaches
such as ion pre-intercalation and ion-exchange induced phase
transitions have demonstrated efficacy in further fortifying the
crystal structure of the material, thereby enhancing its stability in
aqueous solutions.

3.3.2 By-products formation
The intercalation of H+ ions during discharge initiates the

creation of basic zinc salts (BZS) on the surface of the cathode
material, which are a type of layered double hydroxide (LDH).
The precise composition and characteristics of the resulting BZS
precipitate are contingent upon the electrolytes employed in
battery operation. The emergence of by-products during battery
cycling can give rise to several issues (Jia et al., 2020; Wang et al.,
2021b). For instance, the by-products formed on the positive
electrode surface hinder charge transfer at the electrolyte/cathode
interface. Besides, irreversible charging and discharging processes
resulting from the detachment and incomplete reversibility
of ZSH formed by H+ intercalation. Therefore, building an
artificial solid electrolyte interphase on the surface of the

cathode materials can be effectively reduce the generation of
by-products (Figure 4C).

3.3.3 Limited ion diffusion kinetics
As a type of multivalent battery, ZIBs faces challenges stemming

from the strong electrostatic interaction between the cathode and
Zn2+ ions, despite its inherent high specific capacity attributed
to the involvement of multiple electrons in redox reactions.
Compared with monovalent ions, Zn2+ ions own higher charge
density, leading to electrostatic attraction with cathode materials,
resulting in lower diffusion kinetics (Yong et al., 2020). Moreover,
during deep charge/discharge cycles, a portion of Zn2+ ions tend
to become trapped by electronegative atoms within the host
lattice, inducing structural instability and reduced capacity in
subsequent cycles. Introducing metal ions or water molecules into
the cathode material layer offers a potential solution to alleviate
the electrostatic interaction between multivalent Zn2+ ions and the
host framework (Figure 4D). The method serves to decrease the
high charge density of Zn2+ ions and reduce the activation energy
required for charge transfer at the electrode interface. Furthermore,
defect engineering can effectively decrease the electron density
surrounding Zn2+ ions, thereby facilitating both ion diffusion and
electron transfer processes.
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4 Conclusion and prospects

ZIBs have garnered significant research attention due to their
high safety, cost-effectiveness, material abundance, and superior
ionic conductivity, showing immense promise for large-scale energy
storage. In this review, we have summarized the significant
protection methods of the Zn surface, including polymer interface,
inorganic interface, alloying anode, and electrolyte additives. In
addition, we have underscored the pivotal scientific challenges
related to electrode materials and provided an overview of recent
advancements in electrode design strategies for cathode materials.

Significant efforts have been devoted to engineering interfaces
to protect Zn anodes. Firstly, the anode/electrolyte interface should
be hydrophobic, acting as a waterproof coating. Additionally, it
is crucial that the anode/electrolyte interface includes a rapid ion
channel to facilitate ion diffusion. Therefore, moving forward, our
focus should be on constructing an ideal interface with a thinner
thickness, adequate mechanical strength, and stable chemical
properties.

For the cathode, the fundamental mechanisms underlying
electrochemical reactions in ZIBs, particularly with Mn-based
cathodes, require further elucidation. As mentioned earlier, the
Zn2+ storage mechanisms of Mn-based materials are currently
contentious and subject to debate. Ambiguous interpretations may
arise due to the lack of rigorous protocols and standardized
characterization techniques, impeding the effective design and
investigation of high-performance electrodes and electrolytes for
ZIBs. There is an urgent need to employ multiple electrochemical
approaches, advanced characterization techniques, and precise
theoretical calculations to address this challenge.

We hope that this review serves as a catalyst for the
dissemination of insights garnered from prior studies, fostering
momentum towards bridging the disparity between the current state
of ZIBs and the impending requirements for practical applications
in the future.
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