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Natural plant fibers are hierarchical structures with multi-level microstructures.
With advances in compositematerial science, these fibers have beenwidely used
in various polymer products. Therefore, it is crucial to quantitatively understand
the relationship between their microstructures and mechanical behavior. This
paper utilizes the Mori-Tanaka micromechanics model, viscoelasticity theory,
and Zakian’s inversion method to study the impact of plant fiber microstructure
on the viscoelastic behavior of multiscale structures. At the microscopic scale,
themacromolecular polymer (matrix) and cellulose (fiber) are first homogenized.
The second homogenization involves the cell wall microstructure, and the third
homogenization considers the porosity of the cell wall and lumen to predict
the effective modulus of fiber bundles. By applying the principle of elastic-
viscoelastic correspondence, the viscoelastic mechanical parameters of plant
fibers are calculated. The study examines the effects of cellulose crystallinity and
lumen porosity on the structural stiffness and viscoelastic properties of fibers,
identifying these factors as key influences on the mechanical behavior of plant
fibers. Given their significant economic potential, the feasibility of using tobacco
plant fibers as bio-based materials is also explored.

KEYWORDS

natural plant fibers, hierarchical structure, micromechanics and homogenization, Mori-
Tanaka model, Zakian inversion, viscoelastic behavior, tobacco leaves

1 Introduction

With the continuing development of material science and emerging demand of
biotechnology, natural plant fibers are extensively employed in the engineering and high-
tech industries. It is demonstrated that natural fibers exhibit significantly high mechanical
properties, such as bast fibers (flax/ramie) exhibit almost high Young’s modulus as the
synthetic glass fibers (Dicker et al., 2014; Sathishkumar et al., 2013; Symington et al., 2009);
while synthetic glass fibers possess tensile strength as 1,800 MPa.

The excellent performance of natural plant fibers is generally considered due to
their hierarchical microstructures with constituents across several different scales. For
instance, a typical plant fiber is composed of cellulose, hemicellulose and lignin,
etc., (Jamir et al., 2018). With the continuing advancement of spectroscopic, scattering
and imaging methods, more details about the microstructures of tissue or subcellular
structures become available. The hierarchy of the microstructures generally guarantee
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their corresponding effective mechanical response under external
stimuli or mechanical loading (Zhao et al., 2021; Chen et al.,
2022a). Despite the variety of species, most natural fibers share a
common hierarchy of microstructures (Alves Fidelis et al., 2013). A
typical fiber consists of fiber cells, formed by central lumen that
is surrounded by cell walls and connected by middle lamellae.
What’s more, the cell wall is composed of a primary and several
secondary layers. The S2 layer contains amorphous lignin and
hemicellulose regions mixed with cellulose microfibrils with
random distribution and rotary angle. It is also demonstrated that
the microfibril angle plays a key role in affecting the mechanical
properties of fibers (Bledzki and Gassan, 1999). Within these
microfibrils it contains two areas, highly ordered fiber regions
(crystalline) and disordered regions (amorphous-like) (Figure 1B)
(Moon et al., 2011). Nanofiber (Figure 1C), the highly ordered
crystalline regions, as the smallest fiber unit in plant fibers, the
mechanical properties of plant fibers are largely influenced by
it. At the molecular scale, cellulose nanofibers are composed of
linear chains of dehydrated glucose rings. In individual glucose
molecules, carbon atoms are bonded to oxygen atoms and hydroxyl
groups. The extensive hydrogen bonding between hydroxyl groups
of glucose units contributes to the high tensile strength and
insolubility of cellulose, rendering it a crucial structural component
in plant cell walls and a valuable material in diverse applications
(Figure 1A). Higher plant nanofibers have a cross-sectional size of
only 2-3 nm (Song et al., 2020; Newman et al., 2013; Thomas et al.,
2013), whereas microfiber has a cross-sectional size in the range
of 20–40 nm (Nishiyama et al., 2002; Nishiyama et al., 2003). A
growing number of studies are beginning to embrace the 18-
chain nanofiber model of plant microfibers, it is believed that
microfibers are synthesized by enzyme complexes containing six
groups of three synthase units (Nixon et al., 2016; Vandavasi et al.,
2016), whereas crystalline and disordered fiber bundles coexist
in every cross-section of the microfibers (Atalla and VanderHart,
1999; Sturcová et al., 2004). Nanofibers have very excellent
mechanical properties, with a tensile stiffness of 140 GPa and
a density of 1.56 (Sturcova et al., 2005). Most recent work has
estimated the mechanical behavior of cellulose nanofibrils through
molecular dynamic simulations (Tashiro and Kobayashi, 1985;
Dri et al., 2014).

The most direct knowledge about the mechanical behavior of
natural fibers is generally via experimental measurement. Shinichiro
Iwamoto (Iwamoto et al., 2009) measured the elastic moduli of
single microfibers from tunicate (Halocynthia papillosa) cellulose
by atomic force microscopy (AFM). Šturcová et al. (2005) used
Raman spectroscopic technique to measure the elastic modulus of
tunicate cellulose. X-ray diffraction (XRD) and scanning electron
microscopy (SEM) techniques have also been used in the study of
the micromechanical properties of microfiber materials (Tabet and
Abdul, 2013; William et al., 2016). To circumvent the laborious and
costly AFM and XRD testing, researchers introduced mechanical
models to quantitatively understand the microstructural hierarchy
from a bottom-up perspective and several parameters that could
be influential in determining the effective properties, such as
lumens’ volume fraction, cellulose crystallinity, cell wall-related
phase volume fractions, etc. From this point of view, multiscale
micromechanics models happen to be suitable for this task, while
the most classical micromechanics tools, such as Mori-Tanaka

(M-T) model, composite cylinder assemblage (CCA), etc., Karin
Hofstetter started to apply the continuummicromechanics approach
to develop a multi-scale elastic model of wood, which can predict
the macro elastic properties of wood (Hofstetter et al., 2005),
afterwards the multiscale model was extended to predict the elastic
limit state of wood (Hofstetter et al., 2008). At the microscopic
scale, the acquisition of data on the mechanical parameters of
materials is a great challenge, the inverse modeling approach
to continuous media micromechanics provides a new solution
idea to calculate nanoscale phase properties in reverse through
higher length scales (Schwiedrzik et al., 2016). Elasticity-based
continuous media micromechanics model has gradually been
applied from wood to a variety of materials with hierarchical
microstructures, such as bone materials (Fritsch et al., 2009;
Chen et al., 2022b), crop stemmaterials (Gangwar et al., 2021), plant
culm materials (Zhao et al., 2018), plant culm materials (Gangwar
and Schillinger, 2019), etc. For example, tobacco, a crop of great
economic value, contains cellulose in the leaf plates, ribs and stems,
providing structural strength to ensure proper stem and leaf growth
(Djafari, 2017). As shown in Figure 2, cellulose is mainly found
in phloem cells and xylem cells (Yao and Chen, 2017). A deeper
comprehension of the mechanical properties of plant fibers with
high cellulose content, including jute, flax and cotton, will facilitate
the breeding of plant varieties with enhancedmechanical properties.
Furthermore, this understanding is crucial for augmenting the
wind resistance, disease resistance and harvesting efficiency
of plants.

In addition to the existing literature, most papers consider
the elastic properties of natural constituents, with fewer attention
is focused on the elastoplastic behavior. However, there seems
scarce literature paying attention to the viscoelastic properties
of the natural fibers whose major constituents are natural
viscoelastic organic materials. It is thus the purpose of this
work to investigate the elastic-viscoelastic properties of natural
fibers from micromechanics perspective. In order to facilitate the
theoretical implementation, the recently developed Mori-Tanaka
model is introduced to fulfill the micromechanics simulation and
homogenization of natural microstructures, where plant fibers
from several species are summarized and categorized. What’s more,
the elasticity-viscoelasticity corresponding principle is introduced
and implemented into the micromechanics model to study the
viscoelastic behavior of heterogeneous biomaterials. The multiscale
viscoelastic problem and homogenization are firstly solved and
conducted in the Laplace domain and the solutions are then
transferred into the time domain via analytical formulae proposed
by Zakian in the 1960s.

The remainder of the paper is organized as follows: Section 2
provides details on the multiscale microscopic hierarchical model
of plant fibers, the viscoelastic correspondence principle and M-T
models. Section 3 describes the submicroscopic, microscopic, and
macroscopic scales of plant fibers, the homogenization process,
and lists the corresponding component andmechanical parameters.
The predictions of the multiscale fine-scale mechanical model
developed in this paper are compared with literature data to
verify the correctness of the computational model. Section 4
analyzes the effects of cellulose content and lumen porosity on
the mechanical properties of plant fibers. Section 5 concludes
this manuscript.
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FIGURE 1
Structural illustration of celluloses. (A) The monomeric units and typical functional groups of celluloses, the numbers 1–6 represent the carbon atoms
in the monomeric glucose molecule, (B) Idealized cellulose microfibril with a configuration of crystalline and amorphous regions, and (C) cellulose
nanocrystals after dissolving the disordered regions by acid hydrolysis.

FIGURE 2
Multiscale modelling of tobacco plants. (A) Typical growing tobacco crop. (B) Cross-section of a typical stem of a tobacco plant, (C) Transverse SEM
photographs of tobacco stems (Yao and Chen, 2017)

2 Materials and methods

2.1 Multiscale framework and RVE
characterization

Similarmulti-scalemicrostructures exist between different plant
fibers (Figures 3A, B). Jute fiber, for example, exists in its natural
state as fiber bundles in the flax stem. The cellular fibers in jute
fibers are thick walled hollow structures (Figures 3C, D), The

cellular fibers in jute fibers consist of a primary wall, a secondary
wall and a hollow lumen, cell fibers are tightly connected to
each other by the middle laminae (Li et al., 2000; Bos, 2004).
The plant secondary wall occupies most of the thickness of the
cell wall and is divided into three layers from the outside to
the inside, called s1, s2, and s3 layers, each of which possesses
different thickness and microfibril helix angle (MFA), in which the
S2 layer is the thickest (Gorshkova and Morvan, 2006). The S2
layer contains amorphous lignin and hemicellulose regions and is
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FIGURE 3
Biofibers with hierarchy across several scales, (A) Chemical structure of cellulose chains, (B) SEM images of microfibrils in bamboo fibers, (C) SEM
images of jute fiber cross-section, (D) Hemp oil-based bio-composite with jute fiber reinforcements by Konigsberger is licensed under CC BY 4.0.

mixed with right-handed helical cellulose microfibers (Figure 1B)
(Bledzki and Gassan, 1999).

Based on the hierarchical nature of plant fibers, we primarily
considered the S2 layer of plant cell walls. We simulated plant
fibers using four types of representative volume elements (RVEs)
across three observation scales. Differences between various plant
fibers are mainly reflected in lumen volume fraction, cell wall
thickness, and microstructural component content. While there are
differences in the geometrical shapes of plant fibers, this study
assumes all fiber geometries are cylindrical models to focus on other
factors impacting mechanical properties. Assuming the fibers are
transversely isotropic materials, we considered a uniform random
distribution of microfibers in the plane. The “polymer network
RVE” consists of four spherical phases: hemicellulose, lignin, pectin,
and ash (including waxes, oils, fats, and inorganic fractions), as
illustrated in Figure 4A. A “cellulose RVE” models nanocellulose as
an infinitely long array of cylinders embedded in an amorphous
cellulose matrix (Figure 4B). Crystalline cellulose nano protofibrils
align with amorphous cellulose fibers oriented in the coordinate
base r,t, and l.l being longitudinal along the axis of the protofibrils.
At the single micron scale, we consider “the cell wall RVE” to
consist of infinitely long cylindrical cellulose microfibrils embedded
within a polymer network matrix (Figure 4C). “The fiber RVE”
is modeled as a cell wall matrix phase containing infinitely long
cylindrical inner cavity pores aligned with the longitudinal fiber
direction (Figure 4D).

2.2 Elastic-viscoelastic correspondence
principle

The elastic-viscoelastic correspondence principle is employed
in this work to obtain the viscoelastic solution and effective
properties in the time domain for hierarchical bio-microstructures.
The basic idea is taking advantage of the similar patterns of strain-
displacement and compatibility relations of elastic problem in time
domain and viscoelastic problem in the Laplace domain. Through
Laplace transformation, the stress-strain integral relationship in the
time domain is simplified into an almost linear expression in the

Laplace domain. Then the viscoelasticity in the Laplace domain is
solved in a similar fashion as the linear elasticity in the time domain.
Herein the problem is to obtain the effective moduli of natural
fibers after establishing the microstructural RVE and corresponding
solutions of localized problem. Finally, the effective moduli in the
Laplace domain are transferred into the time domain through
inverse methods, where an efficient inversion method proposed by
Zakian (1969) is employed for the homogenized relaxation moduli
and creep compliances in the time domain. The advantage of the
correspondence principle is to circumvent the incremental integral
step-by-step that is usually bothered by the divergence problem and
large-scale computation.

Regarding transferred problem, the initial displacements, strains
and stresses in the time domain is replaced by the corresponding
quantities in the Laplace domain, e.g., and the elastic stiffness
matrix elements by their corresponding Carson-Laplace transforms,
where: uij→ ûij(s),εij→ ̂εij(s),σij→ σ̂ij(s),Cijkl→ sĈijkl(s), in which s
is denoted as the Laplace variable.

The solution of RVE at each level in the Laplace-transform
domain finally yields the effective relaxation moduli that usually
generating the averaging stress components under strain loading
in six directions following the homogenization theory. It should
be noted that the homogenized strain loading applied at a higher
level ε(t) = ε0H(t) is transferred to Laplace domain as ̂ε(s) = ε0/s.
The homogeneous stress-strain relationship in the Carson-Laplace
domain is shown in Equation 2:

σ̂ij(s) =
1
V
∑

k= f ,m
sĈ(k)ijkl ̂ε

(k)
kl dV
(k) = ∑

k= f ,m
v(k)sĈ(k)ijkl

̂ε(k)kl (1)

After obtaining the effective relaxation moduli in the Carson
domain, the solution is further inversely transfer to the real
domain, which is accomplished through the adopted inverse
transformation technique proposed by Zakian. A few basic steps
are followed:

1) The history time interval is divided into several increments t =
[t1, t2, t3, ..., tN], at each time increment the Laplace parameter
is assigned as Equation 2, where αj is essentially complex value
offered in Table 1 (Chen et al., 2017).
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FIGURE 4
Multiscale micromechanics representation of plant fibers by means of four scale separated RVEs across three scales of observation. (A) Polymer
network RVE, (B) Cellulose RVE, (C) Cell wall RVE, (D) Fibers RVE.

TABLE 1 Complex coefficients employed in Zakian’s inversion formula
from Laplace transform to time domain (Chen et al., 2017).

j Kj αj

1 −36902.08210 + 196990.4257i 12.83767675 + 1.666063445i

2 +61,277.02524 + 95408.62551i 12.22613209 + 5.012718792i

3 −28916.56288 + 18169.18531i 10.93430308 + 8.409673116i

4 +4,655.361,138–1.901528642i 8.776434715 + 11.92185389i

5 +118.7414011–141.3036911i 5.225453361 + 15.72952905i

s(j) = αj/ti(j = 1,2,3,4,5) (2)

2) The viscoelastic relaxation moduli at each time increment
are then obtained by Equation 3, Where Kj is also complex
coefficient whose values are listed in Table 1.

C∗ijkl(ti) =
2
ti

5

∑
j=1

Re[KjĈ
∗
ijkl(αj/ti)] (3)

The following subsection briefly review the micromechanics
and homogenization theory that we employ in this work to predict
the time-domain relaxation functions based on the aforementioned
inverse technique.

2.3 Micromechanics Mori-Tanaka theory

In the 1970s, Mori and Tanaka introduced the M-T model
for predicting the effective moduli of composite materials. The

model is based on the premise of average stresses within the
material and is grounded in the classical Eshelby solution. This
solution describes the presence of inhomogeneities embedded in an
infinitely large matrix and considers macroscopic loads sustained
at infinity.

For typical plant layered materials, we consider layering
inhomogeneities as fibers, especially cellulose and cell walls in this
paper. The main theory of the M-T model is as follows: given
the small size of the fibers in the infinite matrix domain, it is
reasonable to assume that the average strain in the matrix is equal
to the macroscopic applied strain εm = ε. The Eshelby-type strain
concentration matrix establishes A( f)m∞ to link between the average
fiber strain and the matrix ε f = A

( f)
m∞εm, where A( f)m∞ is a crucial

parameter in the Eshelby model that describes a fiber embedded
into an infinite matrix phase, used to transform the average strain
in the matrix phase into the average strain in the fiber phase, it
can be calculated using the Eshelby tensor and the elastic moduli of
the matrix and the fibers (Chen et al., 2021; Gao et al., 2024). Thus,
the following Equation 4 relation can be obtained for two-phase
composites:

ε = v fε f + vmεm⇒ ε = [v fA
( f)
m∞ + vmI]εm (4)

At a particular scale in the hierarchical structure, v f and vm
represent the volume fractions of the fiber phase and matrix phase,
respectively. The relationship between them is v f + vm = 1.

Substitution of Equation 4 into ε f = A( f)ε yields Equation 5:

ε f = A( f)[v fA
( f)
m∞ + vmI]εm (5)

where A( f) is the fiber’s strain concentration matrix relating the
averaging fiber strain with the macroscopic strain concentration
strain (Chen et al., 2021; Gao et al., 2024). Subsequently, The
strain concentration matrix of the two-phase composite
shown in Equation 6 can be calculated by substituting ε f =
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FIGURE 5
Flow chart of homogenization of plant fibers.

A( f)m∞εm into Equation 5:

A( f) = A( f)m∞[v fA
( f)
m∞ + vmI]

−1
(6)

Finally, using the homogenization equation, the homogenized
stiffness matrix of the two-phase composite can be
derived as Equation 7:

C∗ = C(m) + v f(C( f) −C(m))A
( f)
m∞[v fA

( f)
m∞ + vmI]

−1
(7)

In this equation, C( f) and C(m) represent the elastic matrices of
the fiber and matrix, respectively.

The elastic moduli of the composite can be calculated directly
by using the strain concentration matrix A( f)m∞. In this study, the M-
T model is applied using the simplified expression of Equation 7 to
create and homogenize the multiscale microstructure of the plant
tissue. The resulting effective properties can then be used as inputs
in higher-level microstructural analyses.

3 Numerical validations of multiscale
model

3.1 Multiscale elastic coefficients of plant
fibers

The mechanical and multifunctional behavior of plant fibers is
closely related to the optimized multilevel fine structure at each
scale. Based on the theory of fiber-matrix composites, a multi-
scale structural model of the fine structure of plant fibers has been
developed.Themodel begins at themicroscopic level by considering
cellulose filaments composed of crystalline and amorphous cellulose
located in the S2 structural layer of the fibroblast wall. The cellulose
filaments and surrounding polymer network at the microscopic
scale form the microstructure of the plant cell wall, and the cell wall

and surrounding lumen form the highest-level structure of the plant
fiber. In this progressive multiscale framework, the homogenized
effective stiffness matrix is passed as input data to higher level
microstructures through the M-T model to finally obtain the
macroscopic effective moduli, and the flow chart of plant fiber
homogenization is shown in Figure 5. In this section, we explain the
progressive homogenization mainly through the M - T model.

There are five main categories of different plant fibers in
nature—bast, grass, leaf, fruit and straw, Konigsberger et al. (2023)
collected and calculated the contents of the main components of
26 plant fibers from those five groups. To emphasize a conservative
estimation and parametric analysis of fiber materials under non-
ideal conditions, we selected the fiber fraction corresponding to
the minimum homogeneous fiber stiffness/strength for modeling
calculations, thereby avoiding the underestimation of material
weakening effects under actual working conditions due to excessive
fiber content. As shown in Table 2, it calculated cell wall-related
phase volume fractions according to the minimum homogenized
fiber stiffness/strength. These data were used as input parameters
in our model to calculate the homogenized modulus of the fibers
under different microstructures. In the polymer network’s RVE, we
calculate the homogeneous moduli by taking a weighted average
based on the volume fraction of each component. This approach
ensures that each component’s contribution is accounted for in the
final result. For the cellulose RVE, we consider amorphous cellulose
as the matrix and crystalline cellulose as the dopant phase. By using
the proposedmultiscaleM-Tmethod,we can obtain a homogeneous
modulus. For the cell wall RVE, we considered the polymer network
as the matrix and cellulose as the inhomogeneity. We were able to
use the M-T method obtain the homogeneous modulus of the cell
wall RVE. For the fiber RVE, we consider the cell wall as the matrix
and the pores as the inhomogeneity, and obtain the homogeneous
modulus of cellular fiber RVE by the M-T method. The tissue-
independent elastic phase mechanical properties of plant fiber cells
are shown in Table 3.
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Figure 6 displays the predicted results of the axial moduli of
elasticity of the cellular fiber bundles in the literature. The red
triangular markers represent the calculated results of the M-T
model, which are in good agreement with the predicted results.
This indicates the accuracy of the calculated results of the M-
T model. The optimum range of the M-T model is smaller
than the literature results, because only the variation in the
eigenvalues of the lumen content of plant fibers is considered in
the M-T multiscale computational model. In the polymer network
calculations, the eigenvalues of the substance components are regard
as their average values, whereas the range of eigenvalues of the
substance components of plant fibers counted in the literature is
somewhat larger.

Additionally, as shown in Table 4 we compared the calculated
axial Young’s moduli of fibers with existing literature. Zhao
numerically calculated the mechanical properties of bamboo fibers
at varying fiber contents (0-1), obtaining a modulus of 32.55 GPa
at a fiber content of 0.93 (Zhao et al., 2018). This value differed by
only 3.29 GPa from our M-T model, resulting in a relative error of
approximately 10%. The comparison demonstrates good agreement
between the two results. Similarly, Nilsson tested the mechanical
properties of flax fibers using tensile loading experiments (Nilsson,
2006). The cellulose content in the flax test fibers varied between
64% and 78%. The axial Young’s modulus of flax fibers measured
by Nilsson was 67.1 GPa, while our M-T model yielded a modulus
of 91.94 GPa with a cellulose content of 0.96. The slightly higher
modulus from our model can be attributed to the higher cellulose
content assumed in our calculations compared to the values reported
in the literature.

In Figures 7–9, we present the ranges of homogenized transverse
Young’s modulus, transverse shear modulus, and axial shear
modulus of plant fibers calculated based on the data from Table 2.
The minimum values are derived from the fibers’ minimum lumen
content, and the maximum values are derived from the maximum
lumen content. Since the minimum, intermediate, and maximum
lumen content for rice and wheat are all zero, the model can only
calculate a single modulus value, which is represented as a short
black line in the figures. Specifically, Figure 7 shows the statistically
predicted transverse elastic modulus of plant fibers using the M-
T model. The mean modulus predicted by the model is connected
by short black straight lines. Bast fibers exhibit transverse modulus
of elasticity ranging from 3 GPa to 19 GPa. Grass fibers exhibit
transverse moduli of elasticity ranging from 3 GPa to 16 GPa. Leaf
fibers exhibit transverse moduli of elasticity ranging from 6 GPa to
18 GPa. Fruit fibers exhibit transverse moduli of elasticity ranging
from 1 GPa to 10 GPa. Straw fibers exhibit transverse modulus of
elasticity ranging from 1 GPa to 18 GPa.

Figure 8 presents the statistically predicted transverse shear
moduli of the plant fibers using the M-T model. The mean modulus
predicted by the model is connected by short black straight lines.
Bast fibers exhibit transverse shear modulus ranging from 1 GPa to
7.5 GPa. Grass fibers exhibit transverse shear moduli ranging from
1 GPa to 9 GPa. Leaf fibers exhibit transverse shearmodulus ranging
from 2 GPa to 7 GPa. Fruit fibers exhibit transverse shear modulus
ranging from 0.4 GPa to 4.5 GPa. Straw fibers exhibit transverse
shear moduli ranging from 0.2 GPa to 9.5 GPa.

Figure 9 presents the statistically predicted axial shear moduli of
the plant fibers using the M-T model. The mean modulus predicted
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TABLE 3 Tissue-independent elastic phase properties.

Phase Material behavior ρi/(g/cm
3) Bulk modulus/GPa Shear modulus/GPa

Hemicellulose Isotropic 1.46 8.08 3.73

Lignin Isotropic 1.27 5.00 2.31

Pectin Isotropic 1.53 1.00 0.40

Ash(wax/water/fat) Isotropic 2.20 36.30 30.90

Cellulose amorph Isotropic 1.5 6.22 2.07

Cellulose cryst Transversely isotropic 1.59 Stiffness tensor components Cijkl Cc,1111=34.86; Cc,1122=0
Cc,1111=167.79; Cc,2233=0

Cc,1111=5.81

TABLE 4 Comparison of axial Young’s moduli of fibers with literature results.

Literature comparison Fiber type Fiber content Methods Axial Young’s moduli of fiber/GPa

Reference 1 (Zhao et al., 2018) Bamboo 0.93 Numerical simulation 32.55

M-T model Bamboo 0.93 Numerical simulation 35.84

Reference 2 (Nilsson, 2006) Flax 0.64–0.78 Test simulation 67.10

M-T model Flax 0.96 Numerical simulation 91.94

FIGURE 6
Comparison chart of axial elastic moduli. The cyan, orange, green,
blue, and light orange boxes represent bast, grass, leaf, fruit, and straw
plant fibers, respectively (The reference of Konigsberger et al. (2023)
describes the moduli of elasticity of natural plant fibers calculated
using numerical simulations).

by the model is connected by short black straight lines. Bast fibers
exhibit axial shear modulus ranging from 2 GPa to 11 GPa. Grass
fibers exhibit axial shear moduli ranging from 2 GPa to 10.5 GPa.
Leaf fibers exhibit axial shear moduli ranging from 3.5 GPa to
9.5 GPa. Fruit fibers exhibit axial shear moduli ranging from 1 GPa

FIGURE 7
M-T model predictions chart of transverse elastic moduli. The cyan,
orange, green, blue, and light orange boxes represent bast, grass, leaf,
fruit, and straw plant fibers, respectively. The lumen content for rice
and wheat is zero, so the model shows a single modulus value as a
short black line.

to 3 GPa. Straw fibers exhibit axial shear moduli ranging from
1 GPa to 12 GPa.

The above findings demonstrate that plant fibers with varying
polymer content, cellulose volume fraction and lumen content
exhibit significant discrepancies in their mechanical properties.
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FIGURE 8
M-T model predictions chart of transverse shear moduli. The cyan,
orange, green, blue, and light orange boxes represent bast, grass, leaf,
fruit, and straw plant fibers, respectively. The lumen content for rice
and wheat is zero, so the model shows a single modulus value as a
short black line.

FIGURE 9
M-T model predictions chart of axial shear moduli. The cyan, orange,
green, blue, and light orange boxes represent bast, grass, leaf, fruit,
and straw plant fibers, respectively. The lumen content for rice and
wheat is zero, so the model shows a single modulus value as a short
black line.

Conversely, plant fibers of the same species display relatively minor
differences in polymer content, cellulose volume fraction and lumen
content, with fluctuations in their mechanical properties being
considerably less pronounced. The mechanical properties of the
fibers are primarily determined by their component composition,
cellulose content and crystallinity. In general, the tensile strength
and Young’s modulus of plant fibers increase with the increase of
cellulose content (Djafari, 2017). High cellulose content exhibits
high Young’s modulus, while the relative polymer content shows a
negative correlation with the tensile strength and Young’s modulus
of plant fibers (Komuraiah et al., 2014). As illustrated in Figures 7, 8,

TABLE 5 Parameter list of creep function equations for specific
plant fibers.

Style Plant Viscoelastic parameters

A B C

Bast

Banana 4.96437 −0.08075 0.20768

Flax 9.62964 −0.15351 0.2149

Hemp 8.76623 −0.15084 0.21358

Isora 6.87799 −0.12052 0.21252

Jute 7.55365 −0.1775 0.21004

Kenaf 6.54525 −0.15707 0.20907

Ramie 7.38665 −0.08138 0.21306

Sorghum 2.42203 −0.04856 0.2068

Grass

Alfa 3.74241 −0.12538 0.20594

Bagasse 3.57918 −0.12462 0.20441

Bamboo 7.06151 −0.25277 0.20465

Leaf

Abaca 6.18779 −0.1342 0.20775

Curaua 7.13981 −0.11412 0.21193

Henequen 5.56448 −0.1204 0.20707

Phormium 6.11192 −0.12515 0.21078

Pineapple 5.60293 −0.09335 0.20883

Sisal 7.38315 −0.15546 0.21133

Fruit

Coir 4.53419 −0.15592 0.2036

Kapok 0.98275 −0.02575 0.20608

Oil Plam 3.29215 −0.10107 0.20367

Straw

Barley 1.71346 −0.05764 0.20488

Cornhusk 1.87535 −0.04529 0.21046

Cornstalk 2.25703 −0.07611 0.20687

Rice 7.82226 −0.27455 0.20517

Soybean 1.13943 −0.01179 0.20905

Wheat 7.37068 −0.25781 0.20468

flax fibers comprising 32% crystalline cellulose exhibit a transverse
Young’s modulus of 19.26 GPa and a transverse shear modulus of
7.56 GPa. In comparison, sorghum fibres with a lower crystalline
cellulose content (19%) display a transverse Young’s modulus of
4.5 GPa and a transverse shear modulus of 1.71 GPa. The lumen
content exhibits a negative correlation with the Young’s modulus of
plant fibers; as the lumen content increases, the Young’s modulus of
the plant fibers tends to decrease.
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FIGURE 10
Relative creep curves of plant fibers. (A) Bast plant, (B) Glass plant, (C) Leaf plant, (D) Fruit plant, (E) Straw plant.

3.2 Viscoelastic model validation of plant
fibers

Viscoelasticity is the behavior of a material that exhibits strain
accumulation (creep) under constant stress and/or stress reduction

(relaxation) under constant stress. The power law model describing
creep shows two mechanisms for the evolution of strain induced by
a constant stress: (i) a transient elastic response followed by (ii) a
degenerate creep response. The creep function expression can be
expressed by the following three-parameter equation (Equation 8),

Frontiers in Materials 11 frontiersin.org

https://doi.org/10.3389/fmats.2024.1422813
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Li et al. 10.3389/fmats.2024.1422813

whereA is the instantaneousmodulus of elasticity, B is the coefficient
of flexibility associated with the material properties, and C is
the dynamic properties associated with the material creep. In the
absence of experimentally derived creep properties for each of the
macromolecules such as lignin, hemicellulose, pectin, etc., these
phases were treated together and calibrated to the results of the
macroscopic normal creep experiments reported in the literature
(Eitelberger et al., 2012) by fitting the model predictions to the
following parameters of the normal creep softness function for the
plant fiber specific samples, as shown in Table 5.

JTexp = A+B (
t

1 min
)
C

(8)

According to the predicted data in Figure 10, the viscous
moduli of different types of plant fibers shows a decreasing trend
and gradually stabilizes with increasing simulation time, and the
magnitude of the out-of-plane viscous moduli of their plant fibers
is influenced by the content of macromolecular polymer fractions,
cellulose crystallinity and lumen porosity. The instantaneous
modulus of elasticity of the plant fiber, which is the out-of-plane
shear moduli of the plant fiber, can be derived from the curve at
the instant of 0. It can be seen that the instantaneous modulus of
elasticity of the five plant fibers predicted by the viscous model is
close to the result of the out-of-plane shear moduli predicted by the
M-T model, which indicates that the proposed multiscale viscous
model can predict the viscoelastic mechanical properties of plant
fibers very well. Although the modulus predicted by the viscous
model is close to that of the M-Tmodel, the differences mainly arise
from the assumptions and inherent modeling approaches. The M-
T model assumes homogeneity in material properties at each scale
and simplifies the interactions between microstructures based on
the material’s linear elastic behavior. In contrast, the viscous model
accounts for the time-dependent behavior of materials, particularly
considering the heterogeneity of microstructures and the influence
of fiber porosity. These factors can lead to nonlinear viscoelastic
responses, resulting in slight differences from the predictions of
the M-T model.

Agricultural technicians can develop more rational planting,
support, and management strategies to prevent plant damage due
to natural factors such as wind and rain by gaining an in-depth
understanding of themechanical properties of plant cells and tissues.
This understanding can also serve as a reference for similar studies
on other plants.

4 Parametric study

The fiber content of various plants varies significantly. The red
dashed line in the figure indicates the maximum value of the axial
modulus of elasticity predicted by the M-T model for each type
of plant fiber, while the black dashed line indicates the minimum
value of the axial modulus of elasticity predicted by the model
for each type of plant fiber. Figure 11 shows that plants of the
same species generally have a closely related cellulose content. The
average cellulose content of bast plant fibers was about 0.64 and the
average value of the in-plane modulus of elasticity was 70.75 GPa,
the average cellulose content of grass plant fibers was about 0.31

FIGURE 11
Axial elastic moduli plotted against cellulose content. B1-B8 denote
Banana, Flax, Hemp, Isora, Jute, Kenaf, Ramie, and Sorghum,
respectively; G1-G3 denote Alfa, Bagasse, and Bamboo, respectively;
and L1-L6 denote Abaca, respectively, Curaua, Henequen, Phormium,
Pineapple and Sisal, respectively; F1-F3 denote Coir, Kapok and Oil
Plam, respectively; and S1-S6 denote Barley, Cornhusk, Cornstalk,
Rice, Soybean and Wheat, respectively.

FIGURE 12
Effect of average cellulose crystallinity on mechanical
properties of fibers.

and the average value of the in-plane modulus of elasticity was
34.17 GPa, and the average cellulose content of leaf plant fibers
was about 0.62 and the average value of the in-plane modulus
of elasticity was 65.8 GPa. The average cellulose content of fruit-
type plant fibers was about 0.44 and the average value of in-
plane modulus of elasticity was 20.5 GPa, and the average cellulose
content of straw-type plant fibers was about 0.43 and the average
value of in-plane modulus of elasticity was 29.3 GPa, which can
be seen to basically follow the rule that the higher the cellulose
content of plant fibers, the higher the axial modulus of elasticity
of the fibers.
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FIGURE 13
Effect of average lumen porosity on mechanical properties of fibers.

Figures 12, 13 further investigate the effects of cellulose
crystallinity and lumen porosity on bulk moduli and axial young’s
moduli. The model’s predicted data shows that the bulk moduli and
axial moduli of elasticity exhibit a similar trend. The data shows
that plant fibers with bast style have cellulose crystallinity of 0.64,
lumen porosity of 0.12, and bulk moduli of 9.8 GPa.The plant fibers
with grass style have cellulose crystallinity of 0.55, lumen porosity
of 0.16, and bulk moduli of 6.3 GPa. The plant fibers with leaf style
have cellulose crystallinity of 0.6, lumen porosity of 0.05, and bulk
moduli of 9.2 GPa. The plant fibers with fruit style have cellulose
crystallinity of 0.34, lumen porosity of 0.32, and bulk moduli of
4.0 GPa. The plant fibers with straw style have cellulose crystallinity
of 0.6, lumen porosity of 0.42, and bulk moduli of 4.4 GPa. It
can be seen that it basically follows the rule that the greater the
cellulose crystallinity of the plant fiber, the higher the bulk moduli;
at the same time the greater the lumen porosity, the smaller the
bulk moduli.

It has been demonstrated that the mechanical properties of
plant fibres are influenced by two key factors: cellulose crystallinity
and internal cavity porosity. These insights provide new avenues
for innovation in composite fibre materials. Tobacco plants are
a rich source of fibres, which could provide a viable resource
for a range of bio-based applications. This spectrum of potential
applications extends to but is not limited to, the development of
biodegradable plastics, paper products, bio-composite materials,
and even ventures into the energy sector, thereby underpinning
the versatility and utility of tobacco fibres as a sustainable
material resource.

The investigation delineates a pronounced correlation between
the cellulose crystallinity and lumen porosity of plant fibers and
their intrinsic mechanical properties, notably the bulk moduli and
axial Young’s moduli. It has been observed that an augmentation
in cellulose crystallinity correlates with an increase in bulk
modulus, thereby indicating that materials endowed with higher
cellulose crystallinity are characteristically more rigid and exhibit
enhanced resistance to compressive forces. Conversely, an elevation
in lumen porosity is indicative of a proliferation of void spaces
within the fiber’s architecture, which consequentially leads to

a diminished bulk modulus, signifying a decrement in the
material’s rigidity and compressive resilience. This revelation holds
substantial implications for the conceptualization and fabrication
of bio-based composite materials, particularly within arenas keen
on harnessing sustainable resources. The application of these
findings is vast, spanning across numerous sectors including
construction, automotive, packaging, and composite materials
manufacturing, where leveraging these correlations can significantly
aid in engineering materials tailored to possess bespoke mechanical
attributes.

5 Conclusion and outlook

In this study, we examine the relationship between the
multiscale microstructures of plant fibers and their viscoelastic
properties, leveraging theoretical and computational analyses.
We predict the elastic and creep moduli of plant fibers by
homogenizing their structure across three scales: polymer and
cellulose, cell wall, and fiber bundle cells. This approach integrates
the Mori-Tanaka method with viscoelastic correspondence
principles to accurately model the fibers’ behavior. Utilizing
the elastic-viscoelastic correspondence principle, we transform
homogenized elastic solutions into the Laplace domain, and
through reverse engineering with empirical formulas, derive
creep functions for each fiber type. The Zakian inversion
method is then applied to obtain time-domain homogenized
relaxation moduli.

Our model’s initial relaxation moduli predictions closely match
those obtained from established viscoelastic models, confirming
its accuracy against published data. By performing a triple
homogenization of plant fibers, we systematically analyze the effects
of cellulose content, crystallinity, and lumen porosity on the overall
effective moduli. Our results indicate that increasing cellulose
content and crystallinity enhances the moduli, whereas higher
lumen porosity diminishes it. These findings highlight the crucial
influence of microstructural characteristics on the mechanical
properties of plant fibers.

The multiscale viscoelastic model presents opportunities for
advancing bio composite materials. By integrating plant fibers
with tailored matrices at the microscale, it is possible to develop
composites with superior mechanical properties. This approach
could facilitate the innovation of new and enhanced material
formulations. Future research, bridging botany, materials science,
andmechanics, should aim at predicting plantmechanical behaviors
to breed varieties with improved mechanical characteristics,
enhancing lodging resistance, disease resilience, and harvest
efficiency. This direction promises wide-ranging applications and
interdisciplinary collaboration potential.
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