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Extracellular matrices direct the formation of mineral constituents into
self-assembled mineralized tissues. We investigate the protein and mineral
constituents to better understand the underlying mechanisms that lead to
mineralized tissue formation. Specifically, we study the protein–hydroxyapatite
interactions that govern the development and homeostasis of teeth and
bone in the oral cavity. Characterization would enable improvements in the
design of peptides to regenerate mineralized tissues and control attachments
such as ligaments and dental plaque. Progress has been limited because
no available methods produce robust data for assessing organic–mineral
interfaces. We show that tooth enamel pellicle peptides contain subtle sequence
similarities that encode hydroxyapatite binding mechanisms by segregating
pellicle peptides from control sequences using our previously developed
substitution matrix-based peptide comparison protocol with improvements.
Sampling diverse matrices, adding biological control sequences, and optimizing
matrix refinement algorithms improve discrimination from 0.81 to 0.99 AUC in
leave-one-out experiments. Other contemporary methods fail regarding this
problem. We find hydroxyapatite interaction sequence patterns by applying the
resulting selected refined matrix (“pellitrix”) to cluster the peptides and build
subgroup alignments. We identify putative hydroxyapatite maturation domains
by application to enamel biomineralization proteins and prioritize putative novel
pellicle peptides identified by In-StageTip (iST)mass spectrometry. The sequence
comparison protocol outperforms other contemporary options for this small
and heterogeneous group and is generalized for application to any group of
peptides. As a result, this platform has broad impacts on peptide design, with
direct applications to microbiology, biomaterial design, and tissue engineering.

KEYWORDS

pellicle, organic–mineral interface, biomineralization, oral health, computational
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Frontiers in Materials 01 frontiersin.org

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2024.1436379
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2024.1436379&domain=pdf&date_stamp=2024-12-19
mailto:jmseto@lbl.gov
mailto:jmseto@lbl.gov
mailto:jong.seto@asu.edu
mailto:jong.seto@asu.edu
mailto:ram@compbio.org
mailto:ram@compbio.org
https://doi.org/10.3389/fmats.2024.1436379
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2024.1436379/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1436379/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1436379/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1436379/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1436379/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Keeper et al. 10.3389/fmats.2024.1436379

1 Introduction

The mechanisms that drive protein and hydroxyapatite mineral
interactions in tooth and bone remain elusive. We understand
that this organic–inorganic interface is crucial for biological
growth and development as well as structural and mechanical
functionality (Weiner and Wagner, 1998; Fratzl and Weinkamer,
2007; Seto et al., 2012; Seto et al., 2014). In this study, we
introduce a generalized approach for detecting patterns in peptide
sequences and apply the method to describe amino acid sequence
features that may control interactions with forming and mature
hydroxyapatite.

The enamel pellicle is a layer of peptides derived from saliva
that binds directly to and coats tooth enamel, and it is bound by
early colonizer dental plaque bacteria. Sequences for the enamel-
binding peptide constituent of the human enamel pellicle (pellicle
peptides) have been described (Siqueira et al., 2007; Vitorino et al.,
2007; Vitorino et al., 2008; Siqueira and Oppenheim, 2009).
The salivary proteome, from which these pellicle proteins arise,
have a diversity of utility in health including being tapped as
readily available diagnostic samples, for example, to detect cancer
(Hu et al., 2008).

Physiologic details of enamel binding have been explored
to the extent of measuring the adhesion strength of the saliva-
derived enamel pellicle and oral bacteria (Mei et al., 2009). Specific
peptides have been designed to replace this pellicle handle by
which oral microbial flora adhere to the tooth (Li et al., 2009),
yet the mechanisms of peptide to enamel adhesion are still poorly
understood.

From clues in nature, a type of hydroxyapatite
interaction is described in the following. Comparison
of the aspartate–serine–serine (DSS) repeats in dentin
phosphoprotein (DPP) to the hydroxyapatite unit cell hints
at a template of carboxylates interacting with calcium and
hydroxyls interacting with phosphates. Similar or enhanced
affinities are observed upon mutation to residues bearing
the same functional groups but different side-chain lengths
(Yarbrough et al., 2010).

Relatively few proteins directly interact with tooth and bone
hydroxyapatite. Statherin is known to inhibit hydroxyapatite
nucleation and crystal growth, butwhen exposed to a hydroxyapatite
surface, it enables for its C-terminal to interact with oral
bacteria, promoting adhesion (Goobes et al., 2006). In addition
to proteins such as DPP, domains responsible for direct
hydroxyapatite interactions are sparsely characterized. No atomic
resolution structures of proteins that physiologically interact with
hydroxyapatite are available, except for osteocalcin (PDB entry
1q8h), so structural analysis for these proteins is elusive. A recent
in silico study has demonstrated that polyproline domains in
collagen can orient along hydroxyapatite surfaces (Cutini et al.,
2019). Neither the DSS repeats of DPP nor the γ-carboxy
glutamic acids of osteocalcin are present in the pellicle peptides
or enamel-forming proteins, so no homology-based inferences
are found.

While no obvious similarities are found among the pellicle
peptides (Siqueira and Oppenheim, 2009), this set of 78 peptides
from 29 proteins comprises the largest andmost diverse information

on hydroxyapatite interactions. From the previous work, we
ascertain that specific amino acid residues do have an effect on
nucleation and crystal growth (Briegel and Seto, 2012; Picker et al.,
2012). We hypothesize that patterns in the sequences of enamel
pellicle peptides can drive the discovery of protein–hydroxyapatite
interactions and infer possible formation mechanisms of
oral tissues.

We anticipate that the mechanisms underlying
peptide–hydroxyapatite interactions produce nontrivial similarities
in the protein sequences, which can drive the training of a sequence
comparison algorithm to successfully discriminate enamel-binding
pellicle peptides from control sequences. However, physiologic
peptides that do not bind tooth enamel have not been directly
observed, so we fabricate decoy sets as the negative control instances
to feed the algorithm. The regions of the source protein sequences
least likely to bind enamel are those areas from which the pellicle
peptides are not derived; they are exposed to the same environment
that enables enamel interactions, and therefore, it is likely that
they would be observed if they did bind enamel. We derive
the decoy control set from these protein regions. Omission by
lack of observation is not sufficient evidence to identify absent
function (enamel binding), but discrimination frompellicle peptides
would provide evidence for differential evolution and validate
the approach.

Previously, we exploited the sequence similarities of phage
display peptides that bind to inorganic surfaces to program
an amino acid substitution matrix and subsequently designed
peptides with enhanced binding affinity to that surface
(Oren et al., 2007).

Although the pellicle set has amino acid content patterns
(Figure 1), sufficient position-specific patterns to enable
construction of a multiple sequence alignment as necessary
for the application of commonly used sequence comparison
algorithms such as PSI-BLAST or hidden-Markov models (HMMs)
are not available, nor are neural networks able to perform
better than random networks in leave-one-out experiments
(Scikit-learn; Supplementary Figure S1). The Needleman–Wunsch
algorithm does not require a strong pairwise alignment to
construct a comparison, and thus, it may capture more diffuse
sequence similarities, as in a heterogeneous set of enamel
binding peptides.

The Needleman–Wunsch dynamic programming algorithm
finds the optimal global alignment for two protein sequences
with respect to the scoring system being used (Needleman and
Wunsch, 1970), which includes a substitution matrix and penalties
for opening or extending gaps in the alignment. The more
popular Smith–Waterman algorithm is essentially a variant of
the Needleman–Wunsch algorithm with negative matrix values
set to 0, such that local alignments are optimized (Smith and
Waterman, 1981).

Optimal gap penalties are found using a simple grid search.
Finding the optimal matrix values by which to score the potential
alignment of two sequences is the challenge (Kawashima et al.,
2008). The combination of 39 integer values (from −19 to
19) for each of the 210 possible amino acid substitutions
in a symmetric matrix, 39210, is too many to enumerate
(39400 if asymmetric). Substitution matrices can be calculated
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FIGURE 1
Discrimination of enamel pellicle peptides. The scoring of 49 pellicle peptides (red) from 49 control sequences (blue) in a modified leave-one-out
experiment is shown for amino acid content and the top 20 and worst 10 performing substitution matrices. Each row represents the application of one
matrix, for which normalized scores are plotted for each pellicle and control sequence. Better discrimination is seen at the top, with pellicle peptides
assigned higher scores (red to the right) and controls assigned lower scores (blue to the left). No overlap for the profiles of pellicle and control markers
would indicate perfect discrimination. Most matrices discriminate more accurately than amino acid content (at bottom), demonstrating the importance
of the sequential and spatial arrangement of residues.

directly by comparative analysis between sets, but alignments
must already be known. Unless the set is large enough to
represent the relevant evolutionary relationships, this approach
has the propensity to become too specific to the dataset,
i.e., overtraining.

One technique that performed well for the phage display-
derived inorganic surface-binding problem was the exploitation of
a substitution matrix calculated with a widely diverse set of proteins

(e.g., BLOSUM62 and PAM250) and refinement of the values to
the dataset (Oren et al., 2007). Refinement may not resolve to a
near optimalmatrix, as coarse integer-based scoring functions result
in local maxima and weak trajectories to guide the improvement.
Therefore, in this study, we sample many starting matrices from
the diverse set in AAindex (Kawashima et al., 2008). In this work,
we examine whether a sequence analytic algorithm can select and
refine a substitution matrix to discriminate functional peptides of
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dissimilar lengths from controls, find these peptides from within
their source proteins, and identify mechanistic patterns in these
natural sequences.

2 Methods

2.1 Datasets

Acquired enamel pellicle peptides. The peptides taken to be
true pellicle constituents in this work are 29 salivary proteins
observed within a set of 78 peptides from various studies described
by Siqueira and Oppenheim in 2009. For using them in our
bioinformatics experiments, we aligned the peptide sequences,
removed 100% redundant sequences, and combined overlapping
portions from the same protein. The resulting new pellicle
peptide fragment set includes 49 peptides that are 8–36 residues
in length (Supplementary Table S1).

Control sequences. For controls in training and back-
testing, we used fragments of the 29 proteins not observed
within the 78 acquired enamel pellicle peptides. We retrieved
random fragments matching the number and length of the
peptides in regions not overlapping the pellicle peptide sequences.
When intervening stretches were not abundant or long enough
to derive a matching set, we retrieved additional fragments
from random other proteins in the set. The resulting decoy
control set includes 49 peptides that are 8–36 residues in length
(Supplementary Table S2).

Additional negative sequences from other proteins. To increase
information content for matrix training and enhance relevance
to non-pellicle proteins, we derived additional presumed non-
functional sets matching the pellicle peptide set in length and
quantity. One set was produced by extracting random parts of any
human protein secreted in the saliva (Supplementary Table S3).
Additional sets were constructed from random sequences by the
combination of amino acids selected to mimic the composition in
UniProt (The UniProt Consortium, 2007; Supplementary Table S4).
We attempted training with and without each of the additional
background sequence sets. Additional negative sequences
were included as controls during training and not during
assessment. Wherever the use of these sequences did not
disrupt training, they were included to enhance relevance to
other proteins.

2.2 Training protocol

Similarity calculations. The total similarity score function
(TSSF) is the primary output metric used to differentiate
between pellicle peptides and control sequences. Matrices, gap
values, and training paths were optimized by maximizing TSSF.
The TSS is applied as the sum of Needleman–Wunsch scores
(Needleman and Wunsch, 1970) for all alignments between
two sets, normalized by the peptide length and the number
of sequences in each set (Oren et al., 2007). Previously, we
used the difference of the TSS for functional peptides to
themselves (TSS.ff) and functional to non-functional peptides
(TSS.fn; TSSF = TSS.ff – TSS.fn; Oren et al., 2007). Here, we

considered TSS for non-functional to themselves (TSS.nn) and
non-functional to functional TSS (TSS.nf) as the difference (TSSF
= TSS.ff + TSS.nn – TSS.fn – TSS.nf) or the quotient (TSSF =
TSS.ff∗TSS.nn/(TSS.fn∗TSS.nf)). We also attempted training to
maximize the difference between the third lowest (to allow for
outliers) scoring pellicle peptide and the third highest scoring
control sequence.

Gap penalties. Gap penalties were trained by selecting the
maximal score in an integer grid-based search [-16, -1] for the gap
open penalty and [-8, -1] for the gap extend penalty. Gap penalties
were only trained before altering substitution matrices, and not
iteratively, due to their potential volatility during a training process.

Amino acid substitution matrices. We took starting
matrices from 75 amino acid substitution matrices
in AAindex (Kawashima et al., 2008).Matrix elements are perturbed
as integers within the range from -19 to 19.

Refinement paths. We evaluated three substitution matrix
refinement paths. We perturb the starting matrix values by either
greedy or modified Monte Carlo trajectories. The greedy algorithm
considers all possibilities and then chooses the path that makes
most improvement (increased TSSF). We also attempted either
local maximization by using the minimum unit of the matrix
or a modified Monte Carlo search for the global maximum by
using a random value less than the maximum difference in the
matrix, with the decision of keeping each sequential step made
after local maximization. We also attempted refinement paths
wherein the importance of query versus dataset amino acid and
overall trends in amino acid type were simultaneously examined,
rather than amino acid-type combinations (e.g., the target position
being an alanine versus both query and target being alanine),
as all sequential combinations of mutating columns, rows, and
cells of the matrix. Refinement paths were followed until changes
no longer resulted in improvements. Monte Carlo refinement
was stopped after five consecutive attempts failed to make an
improvement.

2.3 Assessment

Leave-one-protein-out experiments. We attempted to
discriminate pellicle peptides from control sequences
by theTSS (Figure 1). To assess the accuracy,we performedmodified
leave-one-out experiments, where, while scoring a peptide, we
remove all sequences (pellicle peptides and controls) from the same
protein. A normal leave-one-out experiment involves removing one
constituent from the set, training on the rest, scoring the constituent,
and repeating for each instance. Here, peptides are separated by
protein such that in the benchmark, the algorithm never learns
from and applies information to peptides from the same protein
because sequences in the same protein are likely to contain mutual
information.

Statistical metrics. The receiver operating characteristic
(ROC) compares the sensitivity (true positives) across all
ranges of specificity (true negatives; Figure 2A). The precision
recall curve compares the precision at all ranges of recalled
selections (Figure 2B). The Matthews correlation coefficient (MCC)
(Matthews, 1975) measures the correlation of true positives, false
positives, false negatives, and true negatives. The MCC curve plots
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FIGURE 2
Refinement improves enamel pellicle peptide discrimination in a modified leave-one-out experiment. The β-3D-Ali-trained (solid red line, see key
below panels a–c) and PAM250-trained (blue coarsely dashed line) matrices demonstrate increased predictive ability across three rigorous metrics
from the β-3D-Ali (red dashed line) and PAM250 (blue thinly dashed line) matrices, respectively. Comparison is given to the worst performing matrix
(ExposedContext = KOSJ950113). (A) Receiver operating characteristic curve. (B) Precision recall curve. (C) Matthews correlation coefficient (MCC)
curve. The complexity of each MCC curve informs the capacity for improvement: the untrained matrices both show a large local minimum, which is
lost with improvement in the correlated trained curve. (D) Score distributions (as in Figure 1) show greater separation of pellicle peptide (red) and
control sequence (blue) scores after training.

this correlation across a range of thresholds (e.g., 0.01 steps from
0 to 1) for indicating a true or positive result (Horst, 2010). The
complexity of an MCC curve informs the capacity for improvement
by further training and identifies the threshold cutoff score that
results in the most informative predictions (Figure 2C). Area under
the ROC curve (AUC) and one-tailed unpaired unequal variance
Student’s t-test (p values) were used to test the significance.

Amino acid content calculation. To evaluate whether sequential
orientation (position) influences enamel binding, we assessed the
accuracy of scoring each amino acid in a query peptide by the
proportion of the amino acid type in pellicle peptides versus controls.

2.4 Application to full protein sequences

We evaluate the ability to recapture pellicle regions from full
protein sequences by generating a score for each residue in the
protein, considering the surrounding region. We applied the sliding
window approach for each unique length of pellicle peptides. For
this problem, it is uncertain whether it would be better to choose

segments of one particular length or to exhaustively create segments
of all pellicle peptide lengths. Even then, it is not known how to
consider the similarity scores for the various segments to which each
particular residue contributes. For both a single window length (the
median of all peptide lengths) and enumeration of the lengths, we
evaluated the application of the mean of the similarity scores for
overlying segments and the maximum score for each. Maintaining
consistent fragment lengths between the query and comparison
sets avoids a difficult normalization problem. We compared the
predictive ability of residue scores to recapture the pellicle peptides
from the entire protein sequences, again using the leave-one-
protein-out approach (Figure 3).

2.5 Cluster analysis

To study the sequence patterns identified in training, we derived
sequence clusters by analyzing the network of comparisons between
all enamel pellicle peptides using the best selected and refined
matrix. We filtered the resulting similarity scores by the threshold
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FIGURE 3
Enamel pellicle peptide recapture from complete proteins. Predictions of enamel affinity by the refined β-3D-Ali matrix (pellitrix) for each residue are
plotted in blue for each enamel pellicle protein. Scores represent the mean of the similarity scores between all peptides derived from other proteins
(modified leave-one-out experiment) and all possible overlapping sequence fragments of lengths matching the pellicle peptides (sliding window
fragmentation). Experimentally derived pellicle peptides are shown as red blocks. Overlap of high blue bars with the red blocks denotes the recapture
of pellicle peptides from the parent protein. Protein length (AAs) and per-residue recapture accuracy (AUC) are listed on the right.

cutoff that gave the maximum information in the benchmark
according to the MCC plot (Figure 2c). We then input the supra-
threshold similarities as force vectors into a clustering algorithm.We
depicted the resulting network using cluster analysis in Cytoscape
(Shannon et al., 2003). Subcluster networks were identified from the
graph and aligned by CLUSTALW (Larkin et al., 2007) using the
same substitution matrix (Figure 4).

2.6 Software

All codes were written in Python version 2.7. The
Needleman–Wunsch algorithm implemented as ggsearch35 was
taken from the FASTA suite version 35.4.11 (Pearson and Lipman,
1988). Statistical tools employed in the assessment were written
locally and extensively checked against both SPSS and STATA.
Figures were depicted with gnuplot (Williams et al., 2012;
gnuplot.info) and R (R Core Team, 2017).

2.7 Pellicle peptide characterization

Sample collection. De-identified samples were collected with
consent under the UCSF IRB exempt protocol (Siqueira and

Oppenheim, 2009). Briefly, 2 hours after prophylaxis with pumice
and limitation from eating, teeth were rinsed with sterile deionized
water and scraped with micropipette tips, which were vortexed in
10 mM PBS and pooled.

In-StageTip (iST) mass spectrometry. Samples were transferred
into urea lysis buffer, treated with trypsin/lysC, reduced with
TCEP, and alkylated with 2-chloroacetamide in a “single pot”
system to minimize sample loss and contamination; then, they were
placed in 0.1% acetic acid and 80% acetonitrile until LC/MS mass
spectrometry (Thermo Scientific LTQ-OrbitrapVelo,ThermoFisher
Scientific) (Kulak et al., 2014).

Peptide data analysis. MaxQuant and Perseus (Cox and
Mann, 2008) were applied to identify and assess the validity of
source protein sequences for each observed peptide amid the
human proteome.

3 Results

3.1 Selected and refined peptide
discrimination

We demonstrate the ability of the matrix sampling and
refinement protocol to optimize the performance in discriminating
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FIGURE 4
Cluster analysis of the enamel pellicle peptide sequence similarity network. It shows the relation of the 78 peptide sequences (nodes) clustered with
edge weights given by the trained β-3D-Ali matrix (pellitrix) similarity scores. The initial network was generated from an all-against-all matrix of these
scores, for which edges were defined as any similarity score above the threshold cutoff corresponding to the maximum Matthews correlation
coefficient given in Figure 2C. The magnitude of similarity between the pairs of peptides is shown as increasing from green to violet (edges). Protein
names that appear multiple times indicate alternate peptides derived from the same protein. Node placement was adjusted slightly to enable viewing of
protein names. The multiple sequence alignments display trends for each subcluster (circles), which suggest that residue patterns for stabilizing
extended beta strand and polyproline helix conformations; mediating calcium interactions by adjacent carboxyl and amide residues; mediating
phosphate interactions by alternating hydroxyl moieties; and pi interactions and/or hydrophobic exclusion by aromatic moieties.

the pellicle from control sequences (Figures 1, 2). Three
statistical metrics verify the marked improvement of two highly
different substitution matrices (Figure 2). The β-3D-Ali matrix
(MEHP950102)was selected for optimal peptide discrimination and
refined from an AUC of 0.92 (p = 3.4∗10−15) to 0.99 (p = 3.4∗10−26).
We present the optimized substitution matrix and values changed
during training in Supplementary Table S5. The PAM250 matrix
(DAYM780301) was refined from an AUC of 0.76 (p = 5.0∗10−7)
to 0.84 (p = 4.5∗10−10). We extended the refined β-3D-Ali matrix
(“pellitrix”) to estimate the likelihood of any single residue binding
tooth enamel and calculated the recovery of the pellicle peptides
(0.75 AUC; Figure 3). We analyzed pellicle peptide similarities with
those of the refined selected matrix to gain mechanistic insights
into pellicle–enamel interactions (Figure 4). Finally, we applied
pellitrix to predict biomineralization interactions in enamel matrix
proteins (Figure 5) and prioritize novel peptides observed in the
enamel pellicle (Figure 6).

3.2 Matrix sampling

AAindex (Kawashima et al., 2008) matrices discriminated
pellicle peptides from control sequences with the performance
ranging from discriminating the majority of pellicle peptides to
none (Supplementary Table S6). Figure 1 shows the distribution of
scores for pellicle peptides and control sequences for the top twenty
matrices, the worst ten, and scoring by amino acid content. The
β-3D-Ali matrix most accurately separated pellicle peptides from
controls, and along with the PAM250 matrix, it was used for
further analysis.

3.3 Matrix refinement

The refinement protocols improved the performance
of the task of sorting pellicle peptides from control
sequences for both the PAM250 and β-3D-Ali matrices
(Figure 2; Supplementary Table S7).

Similarity calculations. All three subtraction-based similarity
calculations resulted in improvement in the PAM250 and β-3D-Ali
matrices, whereas the quotient-based similarity calculation did not
result in improvement. The most significant improvements in the
matrices arose consistently from including the relation of control
sequences to themselves and to the pellicle peptides in the total
similarity score (TSSF = TSS.ff + TSS.nn – TSS.fn – TSS.nf).

Refinement paths. The best and most consistent matrix
refinement protocol was achieved by a greedy path, exhausting
improvements from changing all values in each column together,
exhausting improvements similarly in the rows, and then optimizing
whole columns and rows with the modified Monte Carlo search.
The greedy algorithm uses more processor time than a random or
Monte Carlo path, as both the positive and negative trajectories for
each positionmust be considered before progressing to the next step.
Each training combination reaches completion in 4 h on a 4.8-GHz
processor (∼10,000 pairwise comparisons per minute).

The order of starting permutations with the matrix row (query
amino acid type) or column (pellicle/control amino acid type)
affected the performance of the matrix. Only a few random paths
starting with rows improved the performance, while many training
conditions improved the accuracy when starting with columns.
Adding Monte Carlo perturbations of columns and then rows as
a last set of steps after the described greedy path improved the
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FIGURE 5
By-residue likelihood of hydroxyapatite interactions for enamel matrix proteins. The refined selected matrix was applied to find the similarity of the
region surrounding each residue to the enamel pellicle peptides. Scores are normalized to the highest and lowest scores observed for all peptides and
control sequences. Length of the proteins is shown on the right. High scoring regions likely correspond to functional areas that interact with mature or
maturing enamel. Low scoring areas may carry out functions not consistent with mature enamel, such as hydroxyapatite nucleation and
endoprotease cleavage.

FIGURE 6
Pellitrix scores for novel peptides observed in the enamel pellicle by iTS mass spectrometry. A total of 15 pellicle peptides (re-observed) and five control
sequences (controls observed) occurred within 1,265 sequences. Scores for the remaining sequences (novel peptides) are plotted in context. The 92
peptides with scores above the range of control sequences are likely to contribute physiologically to the enamel pellicle (Supplementary Table S9).

performance in nearly all cases, whereas Monte Carlo perturbations
of the cells never did.

Training dataset combinations. Inclusion of the additional
background sequences into the controls improved the
discriminatory performance of both PAM250 and β-3D-Ali
matrices slightly (AUC ∼1%) with statistical significance (p < 0.01).

Relationship of improvement to matrix distance. Across all
matrices, the magnitude of improvement ranged from 0.002 to 0.41
AUC, with many nearing perfect discrimination. The arithmetic
distance between the matrices before and after training correlated
to improvement (Pearson’s R = 0.55; Supplementary Figures S2–S4).

Preferences of the trained matrix. Pairwise amino acid
substitution scores for the identical residue and for the mean
of all possible residue substitutes indicate the importance of
matching each particular amino acid type in the final selected
and trained matrix (Supplementary Table S8). For example, it is
preferred that glutamic acid is aligned with another glutamic acid
(score = 2.00), but self-match is penalized for leucine (−1.40) and
arginine (−2.00).

3.4 Protein binding region recapture

The accuracy of pellicle peptide recapture from the full protein
sequence depended largely on the formalism. Comparing protein
segments of the median pellicle peptide length (14 residues) with
pellitrix achieved 0.75 AUC for the mean score and 0.54 AUC for
the maximum. A similar difference was found for enumerating all
lengths: 0.69 AUC for the mean and 0.54 AUC for the maximum.
A caveat to this experiment should be noted: while the leave-one-
out design avoids comparing peptides directly to any part of their

source protein sequence, the information trained into the matrix in
the selection and refinement steps cannot be removed and so biases
this experiment. Without training, the β-3D-Ali matrix achieves an
AUC of 0.73 using the mean of the multiple sliding windows, which
is again the highest of all matrices (Supplementary Table S7).

3.5 Pellicle peptide sequence cluster
analysis

Application of pellitrix to compare all 78 pellicle peptides
to each other resulted in a network of context-specific sequence
similarities (Figure 4). Multiple sequence alignments constructed
with pellitrix illustrate in each column the amino acid types
that can function similarly within the specific context of
protein–hydroxyapatite interactions.

3.6 Novel pellicle peptide prioritization

A total of 1,265 unique peptides from the pooled pellicle
sample were observed at least twice by iST secondary mass spec
(MS/MS), identified by MaxQuant, and judged as significant by
Proteus (Supplementary Table S9). Figure 6 shows that the range of
pellitrix scores for these peptides falls within that of pellicle peptides
and control sequences. The mean score falls at the center of the
range (0.52), and the highest control sequence score corresponds
to 1.5 standard deviations from the mean for the novel peptides.
Fifteen of the 49 pellicle peptides and five control sequences were
observed.
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4 Discussion

4.1 Advancement in biomineralization

The ability of many amino acid substitution matrices to
accurately discriminate enamel pellicle peptides from control
sequences (Figure 1) demonstrates the presence of discernable
sequence patterns, which likely underlie the common function of
enamel hydroxyapatite binding. Cluster analysis (Figure 4) suggests
peptide groups likely to share similar mechanisms and sequence
patterns to facilitate them. The refined selected matrix can be
used to analyze sequences for the likelihood of contributing
to protein–hydroxyapatite interactions in peptides (Figures 2, 6),
whole protein sequences (Figures 3, 5), and to design novel peptides.

Novel peptides may be designed with controllable binding
affinities, used as a supplementary pellicle coat to control the
attachment of oral microbial flora, or as an adjuvant vehicle for
controllable delivery of saliva replacements such as anticariogenic
antibiotics or remineralizing agents (Yarbrough et al., 2010).

4.2 Advancement in bioinformatics

The improvements we introduced to our protocol to develop
peptide similarity detection tools increased the final trained
matrix discriminatory ability from 0.81 AUC with the old
protocol to 0.99 AUC with the new protocol. Meanwhile, standard
sequence comparison methods failed regarding this problem
(Supplementary Figure S1). MCC plot analysis indicates that the
training of this matrix has approached saturation (Figure 2C).
The most significant improvements arose from sampling many
starting substitution matrices, incorporating all peptide and control
comparisons into the total similarity scores, and Monte Carlo
optimization of columns and rows after greedy refinement. This
approach may be able to learn patterns in any group of functional
peptides and is available as a software application called Mat4Pep
for use and development.

4.3 Matrix sampling

The discriminatory performance across the matrices may
indicate relevance to the context for which the matrix was
calculated. Matrices built for general protein sequence comparison
exhibited intermediate performance. The best performance came
from a matrix built specifically to align β-strands in 38 3D-Ali
protein structure families (Mehta et al., 1995), while matrices
derived in parallel from random coils performed third, and that
for α-helices ranked 16th. These secondary structures match
observations that regions that interact with hydroxyapatite
adopt beta-strand or polyproline type-II extended conformations
(Jin et al., 2009; Carneiro et al., 2016).

4.4 Protein binding region recapture

Application of scores to the derivative proteins (Figure 3) shows
successful modeling of a significant subset of enamel binding

mechanisms. High scoring regions at locations where pellicle
peptides have not been measured are predictions of areas that may
bind enamel, for example the amino terminal regions of α-actin 2,
cystatin-A, S100-A14, and histone H2As 1-A and 1-D (Figure 3).

Recapture of pellicle peptides from whole protein sequences
is better than average for 21 of 29 proteins, with a by-residue
AUC of 0.75 across all proteins. The poor performance of the
PAM250 matrix (AUC = 0.31) highlights the uniqueness of
sequence traits within these peptides of such rare function, and
therefore, the importance of using similarity matrices with maximal
relevance to any particular group of proteins under study. This
analysis demonstrates the novel ability to understand, predict, and
potentially design protein and hydroxyapatite interactions.

4.5 Pellicle peptide sequence cluster
analysis

Each cluster in the network analysis displays trends in multiple
sequence alignments (Figure 4). We observe tolerance for swapping
residue identity but maintenance of chemical moieties: adjacent
carboxyl or amide residues may facilitate calcium interactions
(Horst and Samudrala, 2010), and alternating hydroxylmoietiesmay
mediate phosphate interactions. Stretches of prolines may stabilize
extended conformations, facilitating surface interactions. Proline
almost never aligns with glutamine, suggesting non-interchangeable
roles for the two most abundant residues in these peptides. Residue
types most commonly involved in enzymatic catalysis (in order:
EKDHRSTCYNQAFGMLWIVP; Wang et al., 2008) are seldom
aligned with identical amino acid types in these clusters. These
patterns suggest greater structural conservation with variance
allowed for chemical interactions, which fits the presentation of
calcium and phosphate on hydroxyapatite.

4.6 Application on enamel matrix proteins

High scoring regions in five enamel matrix biomineralization
proteins (Figure 5) are predicted to participate physiologically in
enamel development. Low scoring areas may carry out functions
that require staying away from mature enamel, such as mineral
nucleation or cleavage by endoproteases (Horst, 2010). These data
may be used to derive peptides or inform mutation experiments to
drive the mechanistic understanding of enamel development.

Predictions of hydroxyapatite interactions in amelogenin
(Figure 5) coincide with experimental hydroxyapatite binding data
for peptides derived from the amelogenin sequence (Gungormus et al.,
2012). This convergence emphasizes the validity of the protocol in
finding the enamel-binding regions in related proteins.

4.7 Novel pellicle peptide prioritization

Recent advances inmass spectrometry protocols and technology
motivated re-assessment of pellicle peptides. Observation of 15
known pellicle peptides and the highest scoring control sequence
further validate the role of these peptides in enamel interactions
(Figure 6). The pattern of half the control sequence scores falling
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below the range of these peptide scores validates the assumption
of non-interaction and supports the hypothesis that regions with
pellicle proteins that are never observed in the pellicle are evolved
to not bind enamel. High scoring peptides are from keratins,
calmodulins, cystatins, and others (Supplementary Table S9).

4.8 Matthews correlation coefficient plot

The complexity of an MCC curve informs the capacity for
improvement: untrained matrices show large local minima, which
are lost with improvement (Figure 2C). MCC curves for trained
matrices are broader with decreased complexity, suggesting that
these are near the end of the respective training paths. The MCC
plot also shows the cutoff value with the most discriminative ability.

4.9 Comparison to previous work

We extended the methodology for sequence-based prediction
of inorganic surface binding peptides to naturally occurring
peptides observed in the enamel pellicle. Sampling the
amino acid substitution matrix space by selecting among a
diverse set of databases proved efficient and useful. As seen
previously, for artificial phage display-derived inorganic surface
binding peptides (Oren et al., 2007), amino acid substitution matrix
methods can learn contextual patterns, now including physiologic
salivary enamel pellicle peptides.

Further understanding of biomineralization proteins and
peptides may be gained by considering the catalytic activity,
structural features, cleavage sites, post-translation modifications,
and evolutionary conservation in the context of the pellitrix scores.
While no other tool known to us can learn the patterns in such
a small heterogeneous sequence set, the analysis presented here
demonstrates the ability of this approach to predict, and therefore,
interrogate and design protein–hydroxyapatite interactions.

5 Conclusion

We demonstrated that enamel pellicle peptides contain subtle
sequence similarities that likely encode hydroxyapatite binding
mechanisms. With experimental and algorithmic improvements,
our substitution matrix-based peptide comparison protocol
represented the pellicle peptide similarities in an amino acid
substitution matrix (pellitrix) that discriminates pellicle peptides
from control sequences with near perfect accuracy (0.99 AUC). We
showed that pellitrix can recapture the peptides from their source
protein sequences and that this can be applied as a tool to predict
hydroxyapatite interaction regions within relevant proteins. An
analysis of the relationships between the pellicle peptide sequences
indicates that adjacent carboxyl or amide residues facilitate calcium
interactions, that alternating hydroxyl moieties mediate phosphate
interactions, and that stretches of prolines stabilize extended
conformations. This protocol was built as a freely available software
suite called Mat4Pep to learn similarities in any set of peptides for
bioengineering design and analysis of any biological mineralization
functionality. This work has direct implications for areas of study
including peptide design and protein engineering applications.
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