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The 4-Octahedra model

Edgar Abarca Morales*

Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

This work comprises a generalization of a simple geometric model originally
developed to describe coupled rotations of corner-sharing octahedra in the
surface layer of Sr2RuO4 under uniaxial compression. The main objective of the
model is to establish a link between the experimental global strain configuration
and the possiblemicroscopicmechanisms and compatible geometries by which
the octahedra accommodate the applied strain. In achieving this, a useful
and intuitive parametrization of four-site two-dimensional systems of corner-
sharing octahedra has been established, which can be readily extended to three
dimensions and N > 4 inequivalent sites or directly employed to analyze the
octahedral configuration of many perovskites, transition metal oxides (TMOs),
and layered compounds.
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1 The 4-Octahedra model

1.1 Introduction

The presence and tuning of octahedral rotations and distortions in many forms of
transition metal oxides (TMOs) built from corner-sharing octahedra, including bulk
systems, thin films, layered compounds, and heterostructures, have a profound effect on
their electronic properties (Morales et al., 2023; Liao et al., 2016; Paris et al., 2020; Aso et al.,
2013; Ali et al., 2022; Angel et al., 2005; Lu et al., 2013; Herklotz et al., 2016; Thomas et al.,
2017; Petrov et al., 2013; He et al., 2010). Describing, reproducing, and classifying the
relevant octahedral geometry and its evolution are thus key aspects in explaining the
observed responses, serving both as the input for theoretical calculations and in the design
of novel experiments.

Models of corner-sharing octahedra are common in the literature on perovskites and
TMOs (Glazer, 1972; Woodward, 1997; Howard and Stokes, 1998; Hammonds et al., 1998).
Nevertheless, most of them consist of static visualizations and symmetry classifications
derived from crystallographic solutions of particular structures—essentially, a series of
coordinates defining the transition metal octahedra or the symmetry operations associated
with a certain octahedral configuration. Some models are able to track the evolution in the
octahedral configuration when a constraint is imposed on the system (Qian et al., 2020) but
rely on classical elastic energyminimization to find an optimal geometry rather than explore
all the possible outcomes compatible with the applied constraint. Moreover, the models are
mostly focused on perovskites (Glazer, 1972; Woodward, 1997; Howard and Stokes, 1998;
Qian et al., 2020), and the notation introduced for classifying the octahedra can be quite
elaborate without a solid background in group theory (Howard and Stokes, 1998).

Instead, in this study, we develop a purely geometric two-dimensional model with a
special focus on layered compounds such as Ruddlesden–Popper phases but also applicable
to certain perovskites and other systems of corner-sharing octahedra. The individual
octahedral configuration is rigorously parametrized and directly mapped to the global
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configuration of the lattice, including not only rigid rotations but
also bond length and non-orthogonal distortions of the octahedra.
This mapping has the advantage of tunability because octahedral
manipulation is normally achieved by applying a macroscopic
constraint to the lattice, such as doping, uniaxial or epitaxial
strain, or interface engineering (Morales et al., 2023; Liao et al.,
2016; Paris et al., 2020; Aso et al., 2013; Ali et al., 2022; Angel et al.,
2005; Lu et al., 2013; Herklotz et al., 2016; Thomas et al., 2017;
Petrov et al., 2013; He et al., 2010), which ultimately has an effect
on the local octahedral configuration. Moreover, the model is
easy to use and, in combination with theoretical methods such as
density functional theory or tight-binding calculations, can serve
as a benchmark for testing the effect that particular octahedral
distortions have on the electronic structure derived from the
underlying geometry (Morales et al., 2023).

The model construction is divided into three stages, each
involving a different level of generality and applicability:

• Single octahedron: This is the most general stage, focusing
on the parametrization of a single octahedron within
certain conventions to precisely define its arm lengths,
orthogonality deviations, rigid rotations, and apical distortion.
The parametrization is invertible, meaning that one can use the
coordinates of an octahedron in a crystal structure to retrieve
its parameters.
• 4-Octahedra: The single octahedron previously defined is
connected through the corners to form a two-dimensional
lattice. This can be used to model many two-dimensional
systems and some three-dimensional systems by stacking two
or more octahedral planes. Furthermore, the route to expand
themodel to three dimensions andN > 4 inequivalent sites will
be outlined.
• 4-Octahedra under strain: A bipartite 4-octahedra lattice is
subjected to general strain, where the ultimate goal is to find
the space of individual octahedral parameters compatible with
a given macroscopic strain configuration. Some limiting cases
will be solved explicitly, and the solution to the most general
case will be discussed.

1.2 Single octahedron parametrization

We begin by defining a single octahedron as
follows (see Figure 1):

O = (
𝕀
−F
)P+ 16D, (1)

where 𝕀 is the identity matrix in ℝ3.

F =(
1 0 0
0 1 0
0 0 f

), (2)

with f being a positive number, and

P = LGR, (3)

FIGURE 1
Basic single octahedron configuration and the labels employed for its
corners (the −k corner is not visible).

where

L =(
a′ 0 0
0 b′ 0
0 0 c′

), (4)

G = (

1 0 0
cos(γ′) sin(γ′) 0

cos(β′)
cos(α′)−cos(β′)cos(γ′)

sin(γ′)
√1−cos2(β′)−(

cos(α′)−cos(β′)cos(γ′)
sin(γ′)

)
2), (5)

with a′, b′, and c′ representing the arm lengths of the
octahedron (not to be confused with lattice constants) and α′,
β′, and γ′ representing the angles between the arms. If α′ = β′ =
γ′ = 90°, the octahedron is orthogonal, indicating that its arm
lengths are always perpendicular to each other. The matrix R =
RZRXRY is a general rotation in SO(3), employing the covariant
Tait–Bryan Y1=ϕy

X2=ϕx
Z3=θ convention (Berner, 2008; Roithmayr

and Hodges, 2016), with the angles measured with respect to the
reference system in Figure 1. Explicitly,

R = (
sin (θ)sin(ϕx)sin(ϕy)+cos (θ)cos(ϕy) sin (θ)cos(ϕx) sin (θ)sin(ϕx)cos(ϕy)−cos (θ)sin(ϕy)

cos (θ)sin(ϕx)sin(ϕy)−sin (θ)cos(ϕy) cos (θ)cos(ϕx) cos (θ)sin(ϕx)cos(ϕy)+sin (θ)sin(ϕy)

cos(ϕx)sin(ϕy) −sin(ϕx) cos(ϕx)cos(ϕy)
),

where we can recover the rotation angles from R via the
following transformation:

θ = arctan(
R12

R22
), (6)

ϕx = arcsin(−R32) , (7)

ϕy = arctan(
R31

R33
). (8)

The parameter f allows for distortion of an otherwise
centrosymmetric octahedron along the apical direction, a situation
commonly encountered in the outer layers of Ruddlesden–Popper
phases, for example. More exotic non-centrosymmetric distortions
are not included in the model, but they can be considered in
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the F matrix by using a more general definition than Equation 2.
Furthermore,

16 = (1 1 1 1 1 1)T,

andD is a translation vector inℝ3. We define the nucleus of the
octahedron as follows:

A = (
𝕀
−F
)P, (9)

so that the octahedron can be written as

O = A+ 16D. (10)

An example showing the effect of varying the different
parameters of a single octahedron is shown in Figure 2. Next, we
define the octahedron sub-site operators:

S+i = (1 0 0 0 0 0) ,

S+j = (0 1 0 0 0 0) ,

S+k = (0 0 1 0 0 0) ,

S−i = (0 0 0 1 0 0) ,

S−j = (0 0 0 0 1 0) ,

S−k = (0 0 0 0 0 1) .

When these operators act on an octahedron O, they
return the corresponding corner (see Figure 1). Then, it follows
that

O±n = S±nO
= S±nA+D

= S±n(
𝕀
−F
)P+D

= ±n̂ f±nP+D,

(11)

where n ∈ {i, j,k}, n̂ is the corresponding canonical unit vector in
ℝ3, and f±n are all equal to 1, except for f−k = f. The centroid of an
octahedron is then given by

C = 1
6
∑
n
On +O−n =

k̂ (1− f)P
6
+D. (12)

1.3 Extracting parameters from a single
octahedron

To benefit from the parametrization given above in studying a
particular system, we must first extract the octahedral information
from its crystal structure. In other words, we want to build a set of
relations that take the corners of an octahedron (O-matrix) as input
and determine its F-, L-, G-, and R-matrices. From Equation 1, we
begin by splitting the knownO-matrix:

O+ = P+ 13D,

O− = −FP+ 13D,

where 13 = (1 1 1)T. Then, we defineOg andWg such that

Og =
O+ −O−

2
=(

1 0 0
0 1 0
0 0 g

)LGR =WgR, (13)

where g = f+1
2
. However, Og is simply the product of the lower

triangular matrixWg (see Equations 4, 5) and R ∈ SO(3). Therefore,
we can apply the so-called QR decomposition method on OT

g
(Gander, 1980) such that1

OT
g = RTWT

g ⇒
Og =WgR,

which is consistent with Equation 13. Thus, Wg and R are
known, and we can directly extract the rotation angles from R using
Equations 6–8. Moreover,Wg can be written as

Wg =(
W1

W2

gW3,
),

where each row is an octahedron arm vector, with the last
one multiplied by the unknown factor g. From Equation 5, we can
already extract the angles {α′,β′,γ′} between the arm vectors using
their dot products. Moreover, the arm lengths satisfy a′ = |W1|, b′ =
|W2|, and c′ g = |gW3|, and thus, the only missing parameter is f to
determine g and c′. However, using Equation 12, we can show that

O− − 13C =(
−1 0 ( f − 1)/6
0 −1 ( f − 1)/6
0 0 −(5 f + 1)/6

)P,

O+ − 13C =(
1 0 ( f − 1)/6
0 1 ( f − 1)/6
0 0 ( f + 5)/6

)P,

and define

Oc = (O− − 13C)(O+ − 13C)
−1 =(
−1 0 2 ( f − 1)/ ( f + 5)
0 −1 2 ( f − 1)/ ( f + 5)
0 0 −(5 f + 1)/ ( f + 5)

).

Thus,

f = −
5O13

c + 2
O13

c − 2
= −

5O23
c + 2

O23
c − 2
= −

5O33
c + 1

O33
c + 5
. (14)

Therefore, because the centroidC can be directly calculated from
the O-matrix, we have determined all the octahedron parameters.
The definition of f is over-determined in Equation 14. Thus, if
the three different ways of calculating f are not all consistent,
the O-matrix under consideration is beyond the description
provided by the model in Equation 1. Finally, we define the off-
centering vector as the difference between the position Q of

1 The method decomposes a square matrix into a product of an element of

SO(3) and an upper triangular matrix.
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FIGURE 2
Parametrization of a single octahedron. (A) Regular, orthogonal octahedron of unitary arm length. (B) Non-regular, orthogonal octahedron with arm
lengths a′ = 0.8, b′ = 1.2, and c′ = 1.4. (C) Non-orthogonal octahedron with angles α′ = 101°, β′ = 88°, and γ′ = 76°. (D) Rotated, regular, orthogonal
octahedron with rotation angles θ = 16.7°, ϕx = 13.4°, and ϕy = −11.3°. The order of the rotations is specified. (E) Orthogonal octahedron with an apical
distortion of f = 1.5. The arrow indicates the displacement of the apical position.

the caged atom in the crystal structure and the centroid of the
octahedron given by Equation 12:

d =Q−C,

which is non-zero in ferroelectric materials, even for
centrosymmetric octahedra, for example.

1.4 The 4-octahedra general case

We now create a system of four octahedra connected through
their corners, as shown in Figure 3, such that the individual
octahedra are free to rotate or distort but remain linked at all
times. We call this system 4-octahedra, which we then use as a
building block to form a lattice. In doing so, we determine all
possible bond lengths, bond angles, and octahedral rotations within
the 4-octahedra that are compatible with up to four inequivalent
sites. According to Equation 10, we can express an individual
octahedron as follows:

Os = (A′s + 16D′s)R f = As + 16Ds,

where s ∈ {1,2,3,4}, and we have introduced the rotational
freedom matrix R f ∈ SO(3), a rigid rotation common to the four

octahedra that we can fix later without loss of generality. The
primed notation in the first identity refers to the single octahedron
parameters before addressing the system’s rotational freedom.
That is, As = A′sR f and Ds =D′sR f , which show that the system
rotation affects the nucleus A′s of the individual octahedra and
their displacements D′s . Nevertheless, from Equations 3, 9 and the
properties of SO(3), we see that R f is absorbed by the particular
single octahedron R-matrix such that Ls = L′s , Gs = G′s , and Rs =
R′sR f . Thus, the rigid rotation does not affect the internal structure
of the octahedra encoded in the L- andG-matrices, andwe canwrite

Ps = P′sR f = LsGsR′sR f . (15)

Now, the conditions for having the four octahedra connected
through their corners, as shown in Figure 3, are as follows:

O−i1 =O
+i
2 , (16)

O+j1 =O
−j
3 , (17)

O+j2 =O
−j
4 , (18)

O−i3 =O
+i
4 . (19)
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FIGURE 3
Basic 4-octahedral configuration. The octahedral numbering
convention is indicated.

From these and Equation 11, we obtain the following set
of equations:

− ̂iP1 +D1 = ̂iP2 +D2, (20)

̂jP1 +D1 = − ̂jP3 +D3, (21)

̂jP2 +D2 = − ̂jP4 +D4, (22)

− ̂iP3 +D3 = ̂iP4 +D4, (23)

which we rearrange to get the following relationships between
the octahedral displacements:

( ̂i− ̂j)(P1 +P2 +P3 +P4) + 2 (D4 −D1) = 0, (24)

( ̂i+ ̂j)(P1 +P2 +P3 +P4) + 2(D2 −D3) = 0, (25)

and a displacement-independent structural equation, which
provides a necessary and sufficient condition for the octahedra to
be linkable (see Figures 4A, B):

( ̂i+ ̂j) (P1 −P4) + ( ̂i− ̂j)(P2 −P3) = 0. (26)

Furthermore, without loss of generality, we fix the translational
freedom of the 4-octahedra such that

D1 +D2 +D3 +D4 = 0, (27)

and we define a site-equivalency operator between two
octahedra as follows:

E (Oi,Oj) = (Oi − 16Di) − (Oj − 16Dj) = Ai −Aj.

Therefore, two sites are equivalent if E(Oi,Oj) = 0, that is,
if Ai = Aj. We see that our general model mentioned above

supports up to four inequivalent sites. The previous equations
are quite general and guarantee that the 4-octahedra will
remain connected through their corners; however, they do not
imply that the 4-octahedra is compatible with forming a lattice
(see Figure 4B).

1.5 The 4-Octahedra lattice

In order for the 4-octahedra to form a two-dimensional lattice,
wemust impose periodic boundary conditions such that the bottom
(left) corners in Figure 3 connect with the top (right) corners
modulo two linearly independent vectors {u1,u2}; that is, we want
to map any point of the 4-octahedra to the same point in another
unit cell. This implies that

̂iP1 +D1 = − ̂iP2 +D2 + u1, (28)

̂iP3 +D3 = − ̂iP4 +D4 + u1, (29)

̂jP3 +D3 = − ̂jP1 +D1 + u2, (30)

̂jP4 +D4 = − ̂jP2 +D2 + u2, (31)

which are clearly not satisfied in Figure 4B, where there
is no unique {u1,u2} that connects the corners. If we
now define

V =D1 −D2 −D3 +D4 (32)

and eliminate u1 and u2 in the equations above, we obtain

̂i(P1 +P2 −P3 −P4) = −V, (33)

̂j(P1 −P2 +P3 −P4) = V. (34)

Moreover, combining Equations 20, 23 and Equations 21, 22
yields

̂i(P1 +P2 −P3 −P4) = V, (35)

̂j(P1 −P2 +P3 −P4) = −V. (36)

Equations 33–36 imply that V = 0 and

̂i(P1 +P2 −P3 −P4) = 0, (37)

̂j(P1 −P2 +P3 −P4) = 0, (38)

which are displacement-independent structural conditions
for the 4-octahedra to form a lattice. Moreover, the sum of
the last two identities yields Equation 26. Thus, if satisfied,
the lattice equations automatically imply octahedral linking.
Furthermore, from Equation 32,

D1 +D4 =D2 +D3.

Therefore, using the condition in Equation 27, we obtain

D1 = −D4, (39)
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FIGURE 4
Formation of the 4-octahedral lattice. (A) 4-Octahedral model that does not satisfy Equation 26, showing a broken link and the impossibility to form a
lattice. (B) 4-Octahedral model that does satisfy Equation 26, but not Equations 37, 38, showing octahedral linking incompatible with lattice formation.
(C) 4-Octahedra satisfying Equations 37, 38 and exhibiting octahedral linking compatible with lattice formation. (D) The primitive and conventional
lattice vectors of the 4-octahedral lattice formed by the 4-octahedra in (C), where each point represents a 4-octahedral unit. The lattice is monoclinic
with C1 ≠ 0 and C2 ≠ 0.

D2 = −D3. (40)

Thus, we see that the octahedral displacements lie in the
same plane. Equations 37, 38 hold immediately in monopartite
(P1 = P2 = P3 = P4) and bipartite (P1 = P4 and P2 = P3) lattices,
which means that we can always take one or two random
octahedra (regardless of their form or orientation) and connect
their corners to form a lattice. However, if we take four random
octahedra and link the second to the first, the third to the
second, and the fourth to the third, it might well be that
the fourth octahedron will not be connected to the first (see
Figure 4A) or that the octahedra get all connected but cannot
form a lattice (see Figure 4B). Thus, with four inequivalent sites,
Equations 37, 38 dictate how to select the octahedra so that they
are guaranteed to connect and form a lattice. An example of this is

illustrated in Figure 4C, showing the uniqueness of the lattice vectors
and the octahedral linking.

Substituting Equations 39, 40 into Equations 24, 25 yields

D1 =
( ̂i− ̂j)
4

P̄, (41)

D3 =
( ̂i+ ̂j)
4

P̄, (42)

where we have defined the P̄-matrix of the system2:

P̄ = P1 +P2 +P3 +P4. (43)

2 Note that P describes a single octahedron, while P̄ refers to the 4-

octahedra.
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Moreover, adding Equations 28, 29 and Equations 30, 31 and
then using Equations 39, 40 and Equations 41, 42 yield

u1 = 2(D1 +D3) = ̂iP̄, (44)

u2 = 2(D3 −D1) = ̂jP̄, (45)

which define the primitive lattice vectors of the system as a
function of the octahedral displacements or the P̄-matrix alone.
Finally, we define the conventional lattice vectors

v1 = u1 + u2 = ( ̂i+ ̂j) P̄, (46)

v2 = u1 − u2 = ( ̂i− ̂j) P̄, (47)

which run diagonally across the 4-octahedra lattice (see
Figure 4D).

1.6 Relationship between the lattice and
the 4-octahedra configuration

In this section, we establish a set of geometric relations that link
the global properties of the lattice, such as the vector length and the
projections between them, to the specific octahedral geometry and
rotation angles encoded in the P̄-matrix. We start by evaluating the
projection between the conventional vectors:

v1 ⋅ v2 = ( ̂i+ ̂j) P̄ ⋅ ( ̂i− ̂j) P̄ = ( ̂i+ ̂j) P̄P̄
T( ̂i− ̂j)T, (48)

and the projection between the primitive vectors:

u1 ⋅ u2 = ̂iP̄ ⋅ ̂jP̄ = ̂iP̄P̄
T ̂jT. (49)

Now, we evaluate the length difference between the
conventional vectors:

v1 ⋅ v1 − v2 ⋅ v2 = ( ̂i+ ̂j) P̄P̄
T( ̂i+ ̂j)T − ( ̂i− ̂j) P̄P̄T( ̂i− ̂j)T

= 2 ̂jP̄P̄T ̂iT + 2 ̂iP̄P̄T ̂jT = 4 ̂iP̄P̄T ̂jT,
(50)

and the length difference between the primitive vectors:

u1 ⋅ u1 − u2 ⋅ u2 = ̂iP̄P̄
T ̂iT − ̂jP̄P̄T ̂jT

= ̂iP̄P̄T ̂iT − ̂iP̄P̄T ̂jT − ̂jP̄P̄T ̂jT + ̂jP̄P̄T ̂iT = ( ̂i+ ̂j) P̄P̄T( ̂i− ̂j)T.
(51)

1.7 Main theorem of the 4-octahedra
lattice

From Equations 48–51, we have shown that

|u1|2 − |u2|2 = v1 ⋅ v2 = C1,

|v1|2 − |v2|2

4
= u1 ⋅ u2 = C2,

where we define the geometric scalar fields:

C1 = ( ̂i+ ̂j) P̄P̄
T( ̂i− ̂j)T, (52)

C2 = ̂iP̄P̄
T ̂jT. (53)

Thus, we see that

|u1| = |u2| ⟺ v1 ⋅ v2 = 0 ⟺ C1 = 0,

|v1| = |v2| ⟺ u1 ⋅ u2 = 0 ⟺ C2 = 0,

which we refer to as conditions (1) and (2), respectively. It
follows that

• If conditions (1) and (2) are satisfied, the system is
tetragonal (T).
• If only condition (1) holds, the system is rectangular
orthorhombic (R. O.).
• If only condition (2) holds, the system is centered
orthorhombic (C. O.).
• If none of the conditions are satisfied, the system is
monoclinic (M).

Therefore, we can map the octahedral configuration to
the lattice geometry using only two parameters C1 and C2.
The example in Figure 4D shows the most general case of a
monoclinic lattice.

1.8 Addressing the system rotational
freedom

Just as we fixed the translational freedom of the 4-octahedra,
we can (without loss of generality) choose the displacements of the
octahedra to lie entirely within the xy-plane:

D1k̂
T =D4k̂

T⇒

D1k̂
T = 0⇒

( ̂i− ̂j) P̄k̂T = 0,

(54)

D2k̂
T =D3k̂

T⇒

D3k̂
T = 0⇒

( ̂i+ ̂j) P̄k̂T = 0.

(55)

Furthermore, to fix the in-plane rotational freedom, we can set
the displacements 1 and 2 to lie along the x-axis:

D1 ̂j
T =D2 ̂j

T⇒
( ̂i− ̂j) P̄ ̂jT = −( ̂i+ ̂j) P̄ ̂jT⇒
̂iP̄ ̂jT = 0.

(56)

Thus, rearranging Equations 54–56, we obtain

̂iP̄ ̂jT = P̄12 = 0, (57)

̂iP̄k̂T = P̄13 = 0, (58)

̂jP̄k̂T = P̄23 = 0, (59)

which means that we must choose P̄ to be lower-triangular.
If our initial P̄′ matrix in Equation 43 is not lower-triangular, we
can triangularize it by applying the QR decomposition method on
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P̄′T such that

P̄′T = R f P̄
′
ut⇒

P̄′ = P̄′ltR
T
f ⇒

P̄′lt = P̄
′R f = P̄,

(60)

where R f is the rotational freedom matrix (the rotation matrix
that aligns the 4-octahedra with the global rotational configuration
chosen in Equations 57–59) and P̄′ut is the upper-triangularization
of P̄′T. Both R f and P̄′ut are obtained using the QR decomposition
method. Once these are known, from Equation 60, we directly
obtain the lower triangular P̄-matrix as P̄′lt, which is the lower-
triangularization of P̄′. Note that once P̄′ is lower triangular (i.e.,
P̄′ = P̄′lt), it follows that R f = 𝕀, and the system no longer has
rotational freedom.

1.9 Toward three-dimensions and N > 4
sites

A generalization that would allow the description of many
more octahedral configurations implies extending the model to
three dimensions and scaling it to support N > 4 inequivalent sites,
especially relevant for systems with large unit cells and displaying
complex octahedral arrangements beyond Glazer notation (Glazer,
1972; Grosso and Spaldin, 2021). In short, defining a three-
dimensional N-octahedral model is possible. By analogy with
the derivation of the 4-octahedra model in Sections 1.4–1.8, the
procedure is as follows:

• Define linking equations between N octahedra to form a N-
octahedra unit (see Equations 16–19). In three dimensions,
linking conditions must also exist between k-corners.
• Find displacement-independent structural equations for the
octahedra to be linkable (see Equation 26).
• Fix the translational freedom of the N-octahedra unit (see
Equation 27).
• Define periodic boundary conditions on the N-octahedra
unit (see Equations 28–31). In three dimensions, periodic
boundary conditions also exist between k-corners, and three
primitive lattice vectors must be found.
• Find displacement-independent structural conditions for the
N-octahedra to form a lattice (see Equations 37, 38).
• Solve the octahedral displacements (see Equations 39–42) and
the lattice vectors (see Equations 44–47) in terms of the P̄-
matrix of the system (see Equation 43):

P̄ =
N

∑
i=1

Pi.

• In three dimensions, follow Sections 1.6, 1.7 to generalize
the main theorem of the 4-octahedra using the relationships
between the three lattice vectors and the P̄-matrix.
• Following Section 1.8, address the global rotational freedom of
the N-octahedra lattice.

The biggest drawback of this process is manipulating a large
number of equations; however, the high level of symmetry displayed

by the relationships suggests that there may be ways to automatize
the algorithm, possibly using system matrices and other elements
from linear algebra.

1.10 4-Octahedra two-site bipartite model

The model is chosen as a compromise between the generality
afforded by multiple inequivalent sites while balancing the
computational efficiency and analytical tractability; therefore, we
now focus on the case where there are two inequivalent sites forming
a bipartite lattice (checkerboard pattern), similar to the surface
layer of Sr2RuO4 (Morales et al., 2023) and also relevant for real
distortions in many other systems. Thus, we impose the following
symmetries to the 4-octahedra:

A1 = A4 = AA,

A2 = A3 = AB.

That is, sites 1 and 4 and sites 2 and 3 are equivalent,
respectively, such that P1 = P4 = PA and P2 = P3 = PB.

3 Under these
considerations, P̄ = 2(P̄A + P̄B), but we can define P̄→ 2P̄ for
simplicity such that

P̄ = PA +PB, (61)

D1 =
( ̂i− ̂j)
2

P̄,

D3 =
( ̂i+ ̂j)
2

P̄,

u1 =D1 +D3 = ̂iP̄, (62)

u2 =D3 −D1 = ̂jP̄, (63)

v1 = ( ̂i+ ̂j) P̄,

v2 = ( ̂i− ̂j) P̄,

where we used the relevant equations from Section 1.5 and
considered u1→ 2u1, u2→ 2u2, v1→ 2v1, and v2→ 2v2 to account
for the reduction in the primitive unit cell. The vectors {v1,v2}
are now primitive lattice vectors, while {u1,u2} are the so-called
tetragonal vectors4. However, the main theorem of the 4-octahedra
lattice still holds because these vectors exhibit the same dependence
on the P̄-matrix as in the four-site general case. An example of
a general bipartite model generated using the relationships above
is shown in Figure 5, where the new vectors are indicated.

3 Naturally, F1 = F4 = FA and F2 = F3 = FB, but the apical distortions do not

play a role in two-dimensional octahedral linking or lattice formation.

4 These are lattice vectors only if sites A and B are equivalent (see Figure 5).
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FIGURE 5
Bipartite model in a monoclinic configuration observed from different projections, where the 4-octahedra is enclosed by the dashed box. The arm
lengths are (a′A = 0.8,b

′
A = 1.4,c

′
A = 1.9) and (a

′
B = 1.2,b

′
B = 1.7,c

′
B = 2), the angles between the arms are (α′A = 89°,β

′
A = 101°,γ

′
A = 76°) and

(α′B = 78°,β
′
B = 94°,γ

′
B = 105°), the rotation angles are (θA = −6.6°,ϕ

x
A = −24.4°,ϕ

y
A = 4.2°) and (θB = 4.3°,ϕ

x
B = 20.9°,ϕ

y
B = 0.5°), and the apical distortions are

set to fA = 1.6 and fB = 1. The top (bottom) apical corners are shown with green-filled (empty) open circles.

1.11 The 4-Octahedra model made
accessible

The bipartite 4-octahedra model has been coded into MATLAB
functions that facilitate its use and visualization (T. M. Inc, 2022). In
this section, we review some examples that test the main function
called Octahedron_algorithm.m, which is well commented
and serves as a tutorial in combination with this text. The function
takes as input the octahedral parameters at sites A and B and
outputs the relevant system matrices and a three-dimensional
visualization of the octahedral configuration. The simplest possible
case is running the command:

Octahedron_algorithm([1 1 1 90 90 90 0 0 0

1],[1 1 1 90 90 90 0 0 0 1]);

in the MATLAB command window, which constructs a system
of equivalent, undistorted, unrotated octahedra with arm lengths
equal to unity. The first (second) array of numbers contains the
octahedral parameters at site A (site B), with the following ordering:

[a’ b’ c’ alpha’ beta’ gamma’ theta phi_

x phi_y f].

The function also accepts several optional arguments
(documented in the code) that allow the manipulation of different
visual elements of the system, such as colors, unit-cell drawings,
and lattice extent. The basic example above is illustrated in

Figure 6A, along with other octahedral configurations that the
reader is encouraged to test. Figure 6B shows the formation of the
stereotypical breathing mode by alternating the octahedral arm
lengths between the sites. Figure 6C shows an example of in-plane
bipartite rotation, encountered in the surface layer of Sr2RuO4 and
the bulk of Sr3Ru2O7 (Morales et al., 2023). Figures 6D, E illustrate
how octahedral non-orthogonality alone may lead to different types
of lattices. Finally, Figure 6F shows combined octahedral distortions
and rotations that lead to an intricate configuration.

1.12 A real example

The parametrization developed so far is quite general and can
be employed to describe much more complicated geometries than
the examples provided above (see Figure 5). More intuitively, we can
test it on systems with a highly symmetric octahedral configuration,
such as perovskites. Figure 7 shows contiguous planes of corner-
sharing RuO6 octahedra extracted from SrRuO3. The planes are
perpendicular to the c-axis, and the whole crystal in Figure 7A
is recovered by alternating distinct A and B planes along the z-
direction. If we apply the procedure described in Section 1.3 to
the octahedra in each plane, we find that SrRuO3 is compatible
with the 4-octahedra parametrization such that each plane forms
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FIGURE 6
Examples of octahedral configurations built using the 4-octahedral parametrization. In each case, the arrays A and B are the input parameters of the
Octahedron_algorithm.m function. The type of lattice is indicated, where the tetragonal cell is drawn using a black line and the primitive unit cell is
shown with a dashed line. The top (bottom) apical corners are shown with white-filled (empty) open circles. (A) Basic 4-Octahedra configuration. (B) A
simple octahedral breathing mode. (C) An example of in-plane bipartite rotation. (D,E) Octahedral non-orthogonality leading the formation of centered
orthorhombic and rectangular orthorhombic lattices, respectively. (F) Complex octahedral configuration from combined in-plane rotation and
non-orthogonal distortions.
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FIGURE 7
Parametrization of the octahedra in SrRuO3 using the 4-octahedral model. (A) Visualization of the crystal lattice, where two distinct planes of
corner-sharing octahedra have been identified. (B) Different projections of the octahedra in (A), evidencing the symmetry of the octahedral
configuration.

a bipartite lattice, indicating that the crystal is made up of four
inequivalent sites. Naturally, the obtained octahedral parameters
carry the particular symmetries of the system. For example, the arm
lengths in each plane satisfy (a′A = b

′
B,b
′
A = a
′
B, and c

′
A = c
′
B) and the

angles between the arms follow (α′A = β
′
B,β
′
A = α
′
A, and γ

′
A = γ
′
B).

The reader is encouraged to test this by running SrRuO3_
lattice.m in the MATLAB command window. The first
part of the routine builds the SrRuO3 crystal structure from
the available crystallographic information (Gardner et al., 1995),
while the second part searches for the octahedral coordinates
around the Ru atoms in the selected plane, analyzes them
according to the procedure described in Section 1.3, and retrieves
the octahedral parameters. A similar example is available for
NdGaO3 (Angel et al., 2007).

2 The 4-Octahedra model under strain

2.1 Constitutive equations

The connection we have established between the global
properties of the lattice and the local octahedral configuration allows
us to tune the former to derive the possible outcomes of the latter.

In experiments involving the epitaxial strain, for example, where an
adequate substrate is chosen to vary the in-plane lattice parameters
of a specimen layer or heterostructure (Paris et al., 2020), the control
is always on the global properties of the lattice, more specifically the
lattice vectors. There is no such method (yet) as to manipulate
a single octahedron and study its effect on its surroundings.
Instead, we tune octahedra indirectly by changing macroscopic
parameters. In this context, we can apply the laws of continuum
mechanics to the lattice and use the 4-octahedra parametrization
to see how these adjustments affect the local octahedral
configuration.

Away from strain gradients, such as in the central region of
a crystal being compressed by a vice, the strain configuration
of a system is characterized by a constant strain tensor. In
two dimensions, this corresponds to the knowledge of three
quantities {εxx,εyy,γxy}, which are the longitudinal and shear strains,
respectively. To calculate these, it suffices to address the strain
configuration of a single 4-octahedron, which repeats itself along
the homogeneous region with the same strain values. Therefore, we
can build the two-dimensional strain tensor for the parallelogram
with corners {0,u1,u2,u1 + u2} (see Figure 5). Moreover, while the
4-octahedra is used to generate a two-dimensional lattice, it clearly
consists of a three-dimensional object. Motivated by the definition
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of the tetragonal vectors in Equations 62, 63, we define the vector

z = k̂P̄, (64)

which represents the extent of the 4-octahedra along the out-
of-plane direction, that is, we can think of the vectors {u1,u2,z} as
the edges of a box delimiting the 4-octahedra. Thus, we build the
three-dimensional strain tensor for the parallelepiped formed by
the corners of the parallelogram mentioned above and the points
{z,u1 + z,u2 + z,u1 + u2 + z}. From the finite elementmethod theory,
we can write the displacement field u = x−X of a parallelepiped as

u = (c01 c02 c03) +X(
c11 c12 c13
c21 c22 c23
c31 c32 c33

), (65)

where (X,Y,Z) and (x,y,z) are points of the parallelepiped before
and after deformation, respectively, (u,v,w) are the components of
u, and the strain fields are given by:

εxx =
∂u
∂X
= c11, (66)

εyy =
∂v
∂Y
= c22, (67)

γxy =
1
2
( ∂u
∂Y
+ ∂v
∂X
) =

c21 + c12
2
, (68)

εzz =
∂w
∂Z
= c33, (69)

γxz =
1
2
( ∂u
∂Z
+ ∂w
∂X
) =

c31 + c13
2
, (70)

γyz =
1
2
( ∂v
∂Z
+ ∂w
∂Y
) =

c32 + c23
2
. (71)

Evaluating Equation 65 at X = 0 assuming that u(0) = 0 yields
c01 = 0, c02 = 0, and c03 = 0.5 Using this and Equations 62–64, the
equations at the corners {u1,u2,z} become, respectively,

̂i(P̄− P̄0) = ̂iP̄0(
c11 c12 c13
c21 c22 c23
c31 c32 c33

),

̂j(P̄− P̄0) = ̂jP̄0(
c11 c12 c13
c21 c22 c23
c31 c32 c33

),

k̂(P̄− P̄0) = k̂P̄0(
c11 c12 c13
c21 c22 c23
c31 c32 c33

),

where P̄ and P̄0 are the P̄-matrices after and before deformation,
respectively6. At the remaining corners of the parallelepiped,
we obtain equations which are sums of the last identities, and
therefore, those are linearly-dependent. Thus, imposing P̄ to be

5 Without loss of generality, this defines a fixed body point for the

displacement field.

6 In this section, the use of a zero index refers to the original configuration,

and its absence refers to the strained system.

lower triangular7 and substituting Equations 66–71 into the last
expressions yield

ε = P̄−10 P̄− 𝕀 =(

εxx 0 0
2γxy εyy 0

2γxz 2γyz εzz

), (72)

which shows an elegant relationship between the global strain ε
and the local octahedral configuration encoded in the P̄-matrices8.
Moreover, motivated by this result, we define the following
matrices:

εl = L−10 L− 𝕀, (73)

εg = G−10 G− 𝕀, (74)

εr = R−10 R− 𝕀. (75)

Thus, expanding P̄ in Equation 61 in terms of the expressions
above, we obtain

P̄ = ∑
A,B

LiGiRi = ∑
A,B
(L0iG

0
iR

0
i + L

0
i ε

l
iG

0
iR

0
i + L

0
iG

0
i ε

g
iR

0
i + L

0
iG

0
iR

0
i ε

r
i

+ L0i ε
l
iG

0
i ε

g
iR

0
i + L

0
i ε

l
iG

0
iR

0
i ε

r
i + L

0
iG

0
i ε

g
iR

0
i ε

r
i + L

0
i ε

l
iG

0
i ε

g
iR

0
i ε

r
i) ,
(76)

and substituting into Equation 72 yields

ε = εL + εG + εR + εLG + εLR + εGR + εLGR, (77)

where

εL = P̄−10 ∑
A,B

L0i ε
l
iG

0
iR

0
i , (78)

εG = P̄−10 ∑
A,B

L0iG
0
i ε

g
iR

0
i , (79)

εR = P̄−10 ∑
A,B

L0iG
0
iR

0
i ε

r
i , (80)

εLG = P̄−10 ∑
A,B

L0i ε
l
iG

0
i ε

g
iR

0
i , (81)

εLR = P̄−10 ∑
A,B

L0i ε
l
iG

0
iR

0
i ε

r
i , (82)

εGR = P̄−10 ∑
A,B

L0iG
0
i ε

g
iR

0
i ε

r
i , (83)

εLGR = P̄−10 ∑
A,B

L0i ε
l
iG

0
i ε

g
iR

0
i ε

r
i . (84)

The decomposition in Equation 77 states that the global strain
configuration of the lattice ε can be subdivided into local strains
generated from octahedral bond-length changes (εL), octahedral
angular distortions (εG), octahedral rigid rotations (εR), and their

7 That is, we address the global rotational freedom of the strained

configuration to match the one of the unstrained system.

8 Here, ε is not a matrix representation of the strain tensor as it would need

to be symmetric, but rather a matrix containing the same information as

the strain tensor.

Frontiers in Materials 12 frontiersin.org

https://doi.org/10.3389/fmats.2024.1461579
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Morales 10.3389/fmats.2024.1461579

couplings into mixed strains (εLG,εLR,εGR,εLGR). Equations 78–84
depend only on the original octahedral configuration (which is
usually known) and on the local changes made to the octahedra,
encoded in the L, G, and R matrices in Equations 73–75.
Therefore, we have provided a framework to track the possible
local outcomes of a global strain configuration; that is, one can
distribute the applied strain into different microscopic mechanisms
to see how these affect geometry-dependent quantities such as the
electronic structure.

2.2 Final 4-octahedral configuration: limit
cases

The ultimate goal of this work is to determine the
final configuration of the 4-octahedra for a given applied
strain. In principle, this is quite straightforward because we
can calculate the P̄-matrix of the deformed system using
Equation 72:

P̄ = P̄0 (𝕀 + ε) , (85)

assuming that we know the original geometry of the system
(P̄0) and the configuration of the applied strain (ε), as it is usually
the case in experiments involving strain cells or epitaxial strain.
Moreover, because the main theorem of the 4-octahedra stated in
Section 1.7 requires calculating the geometric scalar fields C1 and
C2, which depend exclusively on the P̄-matrix (see Equations 52,
53), Equation 85 automatically reveals the type of lattice developed
by the deformed system.

Nevertheless, the P̄-matrix defined in Equation 61 is not an
injective map, in the sense that different {L,G,R} matrices can lead
to the same P̄-matrix. To see this more clearly, in the example
of the surface of Sr2RuO4, the same strain configuration can be
accommodated through bond-length changes alone, octahedral
rotations alone, or a mix of both (Morales et al., 2023). Thus,
from here, we proceed in two ways: (1) we perform elastic
energy minimization of the possible configurations yielding the
same P̄-matrix to determine their likelihood of formation. (2) We
define limiting cases of Equation 77, leveraging the fact that the
strain can be separated into different microscopic components.
The spirit of the first approach has been addressed in the
work by Qian et al. (2020). However, this requires assumptions
about the strength of the different microscopic mechanisms
absorbing the strain, including the knowledge of the elastic
potential energy required to distort an oxygen junction. Here,
we opt for the second method, where rather than estimating
the exact relaxed geometry, we compare the cases where all the
strain is absorbed by a particular microscopic channel. Thus,
we define the longitudinal limit when {εl ≠ 0,εg = 0,εr = 0}, the
distortional limit when {εl = 0,εg ≠ 0,εr = 0}, and the rotational limit
when {εl = 0,εg = 0,εr ≠ 0}. From Equation 77 and Equations 78–84,
this implies that ε = εL, ε = εG, and ε = εR, respectively. The
longitudinal limit addresses the case where all the strain is
accommodated by octahedral arm length changes, the distortional
limit when it is absorbed solely by octahedral angular distortions,
and the rotational limit when it only induces rigid octahedral
rotations.

2.3 Final 4-octahedra configuration:
longitudinal limit

If {εl ≠ 0,εg = 0,εr = 0}, from Equations 73–75, G = G0 and R =
R0. Therefore, from Equation 76, we have

P̄ = LAG
0
AR

0
A + LBG

0
BR

0
B. (86)

In order to solve for {LA,LB}, we must state the symmetry
relationship between the arm lengths at sites A and B. We do this
by introducing the diagonal matrix SL, with the property LB = LASL:

LA = P̄(G
0
AR

0
A + S

LG0
BR

0
B)
−1.

Because the P̄-matrix is a function of the global applied strain
(see Equation 85), the solution to the equation abovemight not exist;
that is, the applied strain might not be compatible with introducing
only bond length changes in the octahedra. For example, if we
consider an initial system of equivalent, undistorted, unrotated
octahedra with arm lengths equal to unity (see Figure 6A), then P̄0 =
2𝕀 and G0

A = R
0
A = G

0
B = R

0
B = 𝕀. Therefore, from Equations 72, 86,

assuming that SL = 𝕀, we have

ε = (2𝕀)−1 (2LA) − 𝕀 = LA − 𝕀, (87)

whichmust be diagonal by definition of the L-matrices,meaning
that this solution is not compatible with any shear strain (the non-
diagonal terms in ε). To see if a solution exists, it is useful to
treat the elements of ε as scalar fields of the particular geometric
parameters being varied. For example, in the longitudinal limit,
ε = ε(LA) = ε(a

′
A,b
′
A,c
′
A). The experimental value of ε defines six

isosurfaces computed from Equation 72, and a solution exists
only if all these isosurfaces intersect, which can be verified
numerically. In the example above, the isosurfaces are given by the
components of Equation 87

(

εxx 0 0
2γxy εyy 0

2γxz 2γyz εzz

)=(
a′A − 1 0 0
0 b′A − 1 0
0 0 c′A − 1

), (88)

and represented visually in Figure 8. In general, the
scalar fields in the longitudinal limit are obtained from
Equations 72 and 86 as follows:

ε = P̄−10 LA (G
0
AR

0
A + SLG

0
BR

0
B) − 𝕀.

The MATLAB function called Octahedron_strain.m is
designed to reproduce this (see Example 1 in the function header)
and the following examples in an attempt to provide solutions for the
octahedral configuration within the strain limits being discussed.

2.4 Final 4-octahedra configuration:
distortional limit

If {εl = 0,εg ≠ 0,εr = 0}, then L = L0 and R = R0, and the P̄-
matrix is given by

P̄ = L0AGAR
0
A + L

0
BGBR

0
B,
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FIGURE 8
Example solution in the longitudinal limit for a system of equivalent, undistorted, unrotated octahedra with arm lengths equal to unity, subjected to the
strain configuration given by {εxx = −0.9%,εyy = 0.3%,εzz = − 1.2%} with no shear. (A) The isosurfaces of the longitudinal strain fields are planes in the
space of arm lengths of the A-site. (B) The intersection of the planes yields a unique solution for the arm lengths of the octahedra after deformation.
Explicitly, {a′ = 0.991,b′ = 1.003,c′ = 0.988}, in agreement with Equation 88.

which we want to solve for {GA,GB}. Thus, introducing the
lower-triangular matrix SG, with the propertyGB = GASG, the scalar
fields are given by

ε = P̄−10 (L
0
AGAR

0
A + L

0
BGASGR

0
B) − 𝕀,

such that ε = ε(GA) = ε(α
′
A,β
′
A,γ
′
A). It can be shown that in

the distortional limit, P0,11 = P11, and because both P̄0 and P̄ are
lower triangular, this implies that εxx = 0. That is, distortional strain
alone cannot induce changes in the x-direction, independent of
the original configuration of the system. This is a consequence of
the particular choice made when fixing the rotational freedom.
In general, the P̄-matrix encoding the final configuration does
not need to be lower triangular, but it makes sense that at least
Equations 58, 59 hold, to guarantee that the applied strain keeps the
4-octahedra within the xy-plane.

An example of the distortional limit is given in Figure 9. The
starting configuration is the one in Figure 6C, with an in-plane
bipartite rotation of 15°. We are interested in a solution with εyy =
− 14%, εzz = − 7%, and no shear strain (see Example 2 in the header
of Octahedron_strain.m. Moreover, we impose a symmetry
between the A and B sites such thatGA andGB are related via Δα

′
A =

−Δα′B, Δβ′A = −Δβ
′
B, and Δγ′A = −Δγ

′
B, which are the angular

deviations from 90° in the respective G-matrices (see Figure 6F
for an example of this particular symmetry). In Figures 9A, B, the
longitudinal and shear fields have been shown, respectively. Both
εxx and γxy are not visible: the former is 0 everywhere (as explained
before), while the latter vanishes given the symmetry conditions.
In Figure 9C, we plot the fields all together, showing that it is
impossible to find a solution with both γxz = 0 and γyz = 0. However,
we can still find an intersection where the target longitudinal strain
values are achieved and only one component of shear strain is non-
zero. We choose the solution with γyz = 0, where approximately
Δα′A = − 20°, Δβ

′
A = 0°, and Δγ′A = 19° and plot it in Figure 9D. The

reader can verify that the solution has the required strain, except

for γxz of approximately 9%, clearly visible in the output three-
dimensional representation of Example 2. In order to incorporate
non-zero εxx strain, one must include either octahedral arm length
changes or rotations, exhibiting the limited applicability of the
distortional limit.

2.5 Final 4-octahedra configuration:
rotational limit

Finally, if {εl = 0,εg = 0,εr ≠ 0}, we have L = L0 and G = G0, and
the P̄-matrix is given by

P̄ = L0AG
0
ARA + L

0
BG

0
BRB.

Because P̄ is lower triangular, we do not need to address the
relationship between RA and RB. It will be given automatically
when addressing the rotational freedom. To observe this, from
Equations 15, 61, we write P̄ as

P̄ = (L0AG
0
AR
′
A + L

0
BG

0
BR
′
B)R f ,

where thematrix in parenthesis is simply P̄′, the P̄-matrix before
the triangularization (see Equation 15). Therefore, we can choose
R′B = 𝕀, which yields RB = R

′
BR f = R f and RA = R

′
AR f = R

′
ARB. That

is, varying the rotational configuration of one site and addressing
the rotational freedom of the system automatically fix the rotational
configuration of the other site. Then, in the rotational limit, ε =
ε(RA) = ε(θA,ϕ

x
A,ϕ

y
A) without any further assumptions, and the

scalar fields are given by

ε = P̄−10 (L
0
AG

0
ARA + L

0
BG

0
AR f) − 𝕀.

The rotational limit in the surface layer of Sr2RuO4 is explored
in Figure 10 with the objective of addressing an experimental
situation, originally published in Morales et al. (2023), with a focus
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FIGURE 9
Example solution in the distortional limit for the system of octahedra with in-plane bipartite rotation shown in Figure 6C. (A) Longitudinal strain field
isosurfaces for εyy = − 14% and εzz = − 7%. (B) Zero shear strain field isosurfaces. (C) All the strain fields combined, showing that only a partial solution
can be achieved and requiring at least one non-vanishing component of shear strain. (D) Real space configuration obtained from the intersection in
(C), displaying the symmetry imposed over the G-matrices.

on the geometrical details. The surface of Sr2RuO4 can be modeled
as a RuO2 layer that exhibits a reconstruction similar to that
shown in Figure 6C but with an in-plane rotation of approximately
7°(rather than 15°), octahedral arm lengths deduced from the
lattice parameters of the compound, and with Ru in the cages and
O at the corners. If we apply uniaxial compression along the x-
direction in Figure 6C, the strain response of the material is not
obvious, and one possibility is that the strain is accommodated by
octahedral rotations alone. We are interested in a solution with
εxx = − 0.9%, εyy = 0.3%, and no shear strain: The value of εxx
was applied experimentally, εyy is close to the expected Poisson
expansion in the perpendicular direction, and the absence of shear is
reasonable considering that no de-lamination or domain formation
was observed during the straining process.

Figures 10A, B show the longitudinal and shear strain field
isosurfaces, respectively. The longitudinal isosurfaces intersect in
four regions (see the color contours in Figure 10D). The value of εzz
is not known experimentally because the development of in-plane
rotations results in the shrinkage of the layer along the z-direction

(so-called auxetic behavior, see the bottom panel in Figure 10E),
instead of the typical Poisson expansion. A value of εzz = − 1.2%
was required to achieve the intersection of the three longitudinal
isosurfaces. Moreover, the shear isosurfaces all intersect only at
points away from the intersection of the longitudinal ones. Each
leaf in Figure 10B corresponds to the intersection of two shear
isosurfaces, yielding the glitch-like texture in the render. A careful
analysis of Example 3 in Octahedron_strain.m shows that the
leaf where both γxy and γxz vanish (markedwith a line in Figure 10B)
contains the intersection of the longitudinal isosurfaces, meaning
that a global solution exists as long as γyz ≠ 0. More precisely,
γyz = 1.4% in this example, which indicates that the rotational
limit cannot be reconciled with the absence of layer shearing. The
calculated band structure in this limit was shown to be inconsistent
with the measured spectroscopy in Morales et al. (2023), and the
inevitable development of shear strain might be the reason behind
it. Figure 10C shows the geometric field isosurfaces C1 = − 0.36 and
C2 = 0, calculated from the experimental strain configuration and
indicating a centered orthorhombic solution. The C1 isosurface is
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FIGURE 10
The surface layer of Sr2RuO4 under uniaxial compression in the rotational limit. (A) Longitudinal strain field isosurfaces for εxx = −0.9% and εyy = 0.3%
and calculated εzz = − 1.2%. (B) Zero shear strain field isosurfaces. (C) Geometric field isosurfaces for calculated C1 = −0.36Å2 and C2 = 0Å2, leading to a
centered orthorhombic configuration. (D) Global isosurface intersection, with γyz = 1.4%. (E) Calculated strained configuration and its projections along
different axes for the solution indicated in (D).

branched (disjoint), consistent with a non-vanishing value, while
C2 forms a joint set in the parameter space. Not surprisingly, their
intersection also crosses the global solution (see the black contour in
Figure 10D) as C1 and C2 are functions of the strain configuration.

Finally, the intersectionmarked in Figure 10C was used to construct
the final octahedral configuration Figure 10E. This shows that the
compression in the x-direction is alleviated by the introduction of
a scissor-like rotation along the y-axis, which in turn compresses
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the layer along the z-direction. The γyz shear strain in the right-
hand side projection is imperceptible in the figure but is clearly
present when studied quantitatively in the output visualizations
of Example 3. The function Octahedron_strain.m also
includes a simple additional Example 4, which deals with
the unfolding of in-plane rotation via epitaxial strain in the
rotational limit.

2.6 Final 4-octahedra configuration:
general case

If a particular system is studied away from the limits above
and the global strain is shared between the different microscopic
mechanisms described in Equation 77, the procedure to find the
solution space becomes quite elaborate. One must build the P̄-
matrix of the system and find the intersection of the strain field
isosurfaces in each of the three geometric spaces: arm lengths,
distortion angles, and rigid rotations, which makes the graphical
method quite inefficient. Assuming that the symmetries between
the A and B sites are known, up to nine parameters can be
varied to achieve a certain strain configuration (ε), and their
set of values compatible with ε defines the solution. The best
approach in this situation is to solve Equation 72 directly, which
is a system of six nonlinear equations of the parameters at
the A-site. This can be achieved by simplifying the equations
analytically and using one of the many numerical methods available
in the literature, mostly relying on generalized Newton–Raphson
approaches (Remani, 2013). The solution space may be further
classified by employing elements of group theory, in a fashion similar
to that of references (Howard and Stokes, 1998; Balachandran and
Rondinelli, 2013).

3 Discussion

The value of the 4-octahedral model developed in this study
can be regarded as technical, experimental, and theoretical. The
single octahedron parametrization defined in Sections 1.2 and
1.3 can be readily used to extract the octahedral parameters
from many crystal structures and could well be employed to
define a standard to measure arm-lengths, orthogonality deviations,
rigid rotations, and apical distortions. Furthermore, the general
4-octahedral model built in Sections 1.4–1.8 provides stringent
conditions for systems of up to four inequivalent sites to link
and form a two-dimensional lattice, while in Section 1.9, we
provided a procedure to find such conditions in systems with
three dimensions and N > 4 inequivalent sites. Moreover, a
classification of the possible lattice geometries compatible with a
particular local octahedral configuration was found in Section 1.7,
which can also be extended to three dimensions and N > 4
inequivalent sites.

The particular case of a bipartite lattice was thoroughly
studied and linked to real experimental situations, both for the
description of perovskites in Section 1.9 and for the analysis
of the surface electronic structure of Sr2RuO4 under uniaxial
compression, explained with great detail in Morales et al. (2023).
The latter involved subjecting the bipartite 4-octahedral lattice to

general strain, as described in Sections 2.1–2.6. Given the vast
extent of the parameter space, final configurations were obtained
using a limit approach; however, the general Equations 77, 85
are of significant theoretical value. The former states how lattice
strain is decomposed into strains coming from the variation
in groups of octahedral parameters in a system described by
a P̄-matrix, while the latter describes the evolution of the P̄-
matrix itself. That is, these equations hold for any N-octahedral
system described by a P̄-matrix compatible with the procedure in
Section 1.9.

Future work that would considerably enrich this work involves
the development of a mathematical framework to efficiently
carry out such procedures and methods to find, classify, and
study the structure of the large solution space described by
Equations 77, 85. On the experimental front, the community
already shows signs of interest toward the simulation of low-
energy electron diffraction (LEED) patterns, benefiting from the
rigorous and systematic control of the octahedral geometry provided
in this study.

4 Conclusion

The 4-octahedral model provides a rigorous and tunable
parametrization of systems of corner-sharing octahedra. The map
between the global properties of the lattice and the local octahedral
configuration allows for investigating the microscopic geometric
response to applied strain and further classifying it into different
mechanisms (see Equation 77). Although two-dimensional in
nature, the model can be readily generalized to three dimensions
by following a similar approach to the one presented in this study.
Furthermore, when used as the geometric input in different types
of calculations (ab initio tight binding models (Morales et al.,
2023), for example), it provides a powerful and inexpensive
benchmark to test the effects that octahedral distortions
and rotations have on the electronic structure of many
quantum materials.
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