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Cement-stabilized macadam is widely used in railway subgrade in cold regions.
However, various diseases have occurred. In order to study the microscopic
damage of cement-stabilized macadam after multiple cycles of freeze-thaw,
the stress-strain curves were calculated by freeze-thaw tests in this paper. The
discrete element model of cement-stabilized macadam constructed on the
basis of discrete element theory was verified to be reasonable. After solving
the linear/non-linear process of damage of cement-stabilized macadam, the
relationship between the total damage variable and strain was obtained. The
results show that as the number of freeze-thaw cycles increases, the initial
damage variable increases. The results show that the more freeze-thaw cycles,
the greater the initial damage variable. The damage variable formed after 20
freeze-thaw cycles is similar to that formed after 30 cycles. As the number of
freeze-thaw cycles increases, the peak stress and particle contact area also
decrease. The force chains are most numerous at the 215° position, and the
number of force chains during the early stages of particle loading exceeds that
in the later stages. The distribution of tangential and normal contact forces
is symmetrical, with tangential stress distributed in an “∞” shape and normal
contact force distributed in an “8” shape.
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1 Introduction

In traditional research on cement-stabilized macadam, it is typically considered a
homogeneous/continuous elastic body. Cement-stabilized macadam is a quintessential
quasi-brittle material, composed internally of various aggregates, cement, and stone
dust, thereby constituting a heterogeneous/discontinuous structure. The internal complex
structure of cement-stabilized macadam significantly differs from its macroscopic
properties (Fursa et al., 2016; Wang and Cui, 2018a). To enhance the performance
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FIGURE 1
Cement-stabilized macadam specimen.

of cement-stabilized macadam, many experts have conducted
research on the damage of cement-stabilized macadam under
freeze-thaw cycles based on discrete element theory. This
research not only aims to improve the performance of
cement-stabilized macadam but also to reveal the internal
damage mechanisms, which is highly significant for the
construction and design of railway subgrades (Yarbasi et al., 2007;
Zhang et al., 2016).

Numerous experts have made significant contributions to the
field. Xiao et al. (2024) investigated the freeze-thaw damage
characteristics of cement-stabilized macadam. The strength of
cement-stabilized macadam specimens decreases in a parabolic
shape after cyclic freeze-thaw. As the freeze-thaw period increases,
the rate of substrate quality loss increases and the ultrasonic
wave transmission speed decreases. Lu et al. (2023) studied the
mechanical properties and microscopic changes of soil-rock mixed
fill materials at different freezing temperatures and cycles by using
indoor testing methods. The results show that the strength of
the specimens decreased linearly as the number of freeze-thaw
cycles increased. The inside of the specimen gradually changed
from dense to loose and the fracture mode changed from ductile
to brittle fracture. In order to improve the frost resistance of
subgrade soil, Zhao et al. (2023) studied the influence of freeze-
thaw cycle on subgrade soil by adding calcium carbide slag and
coal gangue to subgrade soil. The results show that calcium carbide
slag and coal gangue stabilized soil has good freeze resistance,
dry shrinkage slightly better than lime stabilized soil and excellent
temperature shrinkage. Du et al. (2019) researched the feasibility
of using sandstone as an aggregate for cement-stabilized macadam
through unconfined compressive strength tests, split tests, and
freeze-thaw cycle tests. The results showed that as temperature
increased, the indirect tensile strength and frost resistance of the
specimens also improved, with cement content, aggregate type, and
curing time being critical factors in the experiments. Xu et al.

(2021) studied the impact of curing temperature on the strength
and moisture content of cement-stabilized macadam, evaluating
its mechanical and pavement performance through tests. The
results indicated that unconfined compressive strength, split tensile
strength, and resilient modulus increased with the cement content,
and the thermal shrinkage coefficient was approximately 15% of
that of cement concrete. Sagidullina et al. (2022a) examined the
mechanical properties of ordinary Portland cement-stabilized soil,
conducting freeze-thaw cycles, unconfined compressive strength
tests, and ultrasonic pulse velocity tests after curing the soil
samples for 3, 7, and 14 days. The findings showed a declining
trend in strength and pulse velocity values with an increase in
freeze-thaw cycles, noting that the cement content could improve
soil properties. Li et al. (2023) investigated the damage to rocks
under freeze-thaw cycles by analyzing P-wave velocity, freeze-
thaw cycle tests, and uniaxial compression tests to understand the
mechanical properties and microstructural evolution of rocks. The
research indicated that under freeze-thaw conditions, fine pores
and cracks progressively developed, expanded, and permeated,
reducing the interparticle bonding force, with the Box-counting
method used to quantitatively describe the degradation of rock’s
fine structure. Under the combined effect of freeze-thaw cycles
and impact loads, Li et al. (2019) studied the fractal characteristics
and energy dissipation of cement concrete by conducting freeze-
thaw cycle tests at −20°C/20°C, establishing a relationship between
energy consumption density and fractal dimension, revealing the
coupling mechanism of freeze-thaw action and strain rate on fractal
features and energy consumption. Huang et al. (2023) researched
the energy dissipation and strength characteristics of cement soil
under different freeze-thaw cycles through impact compression
tests.The results showed that both the number of freeze-thaw cycles
and impact pressure significantly affected the fractal dimension,
strength, and absorbed energy of the cement soil. With increasing
freeze-thaw cycles, the strength and energy absorption gradually
decreased, with the effects diminishing when the number of
cycles exceeded six. Lei et al. (2023) explored the mechanical
properties of recycled coarse aggregates using freeze-thaw cycles and
repeated loads to simulate damage during the breaking process. The
results indicated that as the number of freeze-thaw cycles/repeated
loads increased, both the compressive and tensile strengths of
the recycled coarse aggregates declined, with internal damage
primarily occurring as spalling and external damage manifesting as
macroscopic cracks, while the tensile strength and elastic modulus
linearly decreased with the number of freeze-thaw cycles.

In conclusion, most experts study the mechanical properties of
cement-stabilized macadam from amacro perspective, with a single
angle of research and a lack of mechanistic analysis, while research
on internal particle damage is minimal. Since cement-stabilized
macadam is a heterogeneous/discontinuous material, this paper
builds a discrete element model of cement-stabilized macadam
based on the theory of discrete elements. Through freeze-thaw
tests (stress-strain curves), the micromechanical parameters of the
cement-stabilized macadam discrete element model are obtained.
The paper analyzes the micromechanical damage mechanisms of
cement-stabilized macadam and studies the mechanical behavior
between particles. Therefore, this paper has significant research and
practical value.
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TABLE 1 Gradation of cement-stabilized macadammaterial.

Sieve aperture diameter/mm 0.1 0.5 0.7 7.1 22.4 31.5 45

Percentage passage/% 0 0∼12 10∼23 25∼42 45∼68 67∼100 100

FIGURE 2
High and low temperature alternating test chamber.

FIGURE 3
Uniaxial compression test.

FIGURE 4
Cement-stabilized macadam discrete element model.

FIGURE 5
Typical stress-strain curve for uniaxial compression.
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TABLE 2 Experimental data and theoretical analysis parameters.

Number of freeze-thaw cycles Experimental data Theoretical parameter
calculation

εa σa εc σc Et β1,t η1,t β2,t η2,t

0 0.0025 0.95 0.0163 15.2 0.933 1.076 0.00267 3.412 0.00134

10 0.0031 1.03 0.0171 13.2 0.767 1.126 0.00154 2.532 0.00167

20 0.0036 1.75 0.0188 12.6 0.676 1.156 0.00361 5.316 0.00164

30 0.0044 1.87 0.0191 12.2 0.646 1.245 0.00312 4.251 0.00141

TABLE 3 Calibration values of mesoscopic parameters.

Microscopic parameters 0 times 10 times 20 times 30 times 40 times Unit

Parallel bond modulus 6e7 5e7 3.8e7 3.55e7 2.3e7 【Pa】

Parallel bond stiffness ratio 3 3 3 3 3 【—】

Friction coefficient 0.48 0.48 0.48 0.48 0.48 【—】

Tensile strength 2.25e7 1.5e7 1.3e7 1.3e7 0.95e7 【Pa】

Cohesion strength 1e7 0.85e7 0.85e7 0.85e7 0.75e7 【Pa】

Normal critical damping 0.5 0.5 0.5 0.5 0.5 【—】

Structural clearance 0.5e-4 0.5e-4 0.5e-4 0.5e-4 0.5e-4 【m】

FIGURE 6
Comparison of stress-strain curves between simulation data and
experimental data.

2 Cement-stabilized macadam test

According to the “QCR9602-2015 Technical Specification
for Construction of High-Speed Railway Subgrade Engineering,”

FIGURE 7
Relationship between total damage variable and strain.

specimens are prepared as shown in Figure 1. The specimens
are 150 mm in diameter and 150 mm in height. The gradation
of the cement-stabilized macadam material is shown in Table 1.
The specimens are standardly cured for 28 days. Multiple freeze-
thaw cycle tests are conducted on the cement-stabilized macadam
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FIGURE 8
Relationship between detailed damage variables and number of cycles.

FIGURE 9
Relationship between peak stress and number of freeze-thaw cycles.

specimens as depicted in Figure 2. Ultimately, the cement-stabilized
macadam specimens undergo a uniaxial compression test as
illustrated in Figure 3, with strain gauges attached to the surface of
the specimens.

The detailed procedure of the test is as follows: The cement-
stabilized macadam specimen is placed in a high and low
temperature test chamber with a temperature range of −20°C–20°C.
24 h is a complete freeze-thaw cycle, 12 h freezing at −20°C, 12 h
thawing at 20°C.Thenumber of freeze-thaw cycles is 0, 10, 20, 30 and
40 times respectively. To ensure close contact between the loading
plate and the specimen surface, the specimen is pre-pressed twice.
Finally, the press continuously and uniformly applies a load at a rate
of 1 mm/min until the specimen is destroyed.

FIGURE 10
Relationship between contact area and number of freeze-thaw cycles.

3 Construction of discrete element
model for cement-stabilized
macadam

3.1 Model construction

Based on the discrete element theory, a cement-stabilized
macadam model is constructed (Figure 4). When constructing a
discrete element model for cement-stabilized macadam typical
irregular particles are first selected to form an aggregate reservoir.
For ease of calculation, particles greater than or equal to 4.75 mm
are used as irregular aggregates (coarse aggregates) and particles less
than 4.75 mm are used as round aggregates. The contact between
particles is set as parallel bonded contact, and the upper/lower
ends are set as loading plates. The interaction between the loading
plates and the particles is modeled with a linear contact model.
The gradation of the cement-stabilized macadam discrete element
model is the same as the experiment. The upper and lower walls are
subjected to a certain speed to simulate the uniaxial compression test
(Yang et al., 2021; Yang et al., 2020; Wang and Cui, 2018b).

3.2 Evolution of damage in
cement-stabilized macadam

Under the effect of cyclic freeze-thaw, a large number of
mesoscopic cracks are generated inside the cement-stabilized
macadam. The quantity of these cracks is closely related to
the damage of the cement-stabilized macadam. These cracks are
distributed randomly. It is assumed that the damage to the cement-
stabilized macadam follows a Weibull probability distribution
function (Chen et al., 2022; Nguyen et al., 2019; Jumassultan et al.,
2021).

p(ε) =
β
η
( ε
η
)
β−1

exp[−( ε
η
)
β
] (1)
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FIGURE 11
(Continued).

where, β is the shape parameter, η is the scale parameter, and ε is
the strain.

The variable for damage is:

D = n
N
=
∫
ε

0
p(x)Ndx

N
= 1− exp[−( ε

η
)
β
] (2)

where, N refers to the total number of microelements in
the specimen; n is the number of microelements that have
been damaged.

FIGURE 11
(Continued). Changes in the number of force chains under different
numbers of freeze-thaw cycles. (A) Freeze-thaw cycle 0 times. (B)
Freeze-thaw cycle 10 times. (C) Freeze-thaw cycle 20 times. (D)
Freeze-thaw cycle 30 times. (E) Freeze-thaw cycle 40 times.

Considering that the cement-stabilized macadam undergoes
freeze-thaw cycles and uniaxial compression together, the
relationship between the total damage variable and the constitutive
is as follows.

Dtotal = 1−
Et
E0

exp[−( ε
ηt
)
βt
] (3)

σ = Etε exp[−(
ε
ηt
)
βt
] (4)

where, Et is the modulus of elasticity measured in the test after t
cycles of freezing-thawing.

The typical stress-strain curve of cement-stabilized macadam
under freeze-thaw cycles and uniaxial compression is shown
in Figure 5. Where the 0a segment represents the pore
compression phase, a-b is the elastic deformation phase, and
b-c is the nonlinear compression phase (Xia et al., 2023;
Kong et al., 2024; Sagidullina et al., 2022b).
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FIGURE 12
Difference in the number of force chains before and after loading.

Therefore, the total damage is obtained as Equation 5:

σ =

{{{{{
{{{{{
{

Etε{1− exp[−(
ε
η1,t
)
β1,t
]} (ε ≤ εa,t)

Et(ε− εa,t)exp[−(
ε− εa,t
η2,t
)
β2,t
]+ σa,t (ε > εa,t)

(5)

where, σa,t and εa,t are the stress and strain at point a after t freeze-
thaw cycles. ηt and βt are the scale and shape parameters after t
freeze-thaw cycles, respectively.

Then the total damage can be divided into two states.

Dtotal =
{{{{
{{{{
{

1−
Et
E0
 (ε ≤ εa,t)

1−
Et
E0

exp[−(
ε− εa,t
η2,t
)
β2,t
](ε > εa,t)

(6)

When the specimen is loaded to point C,

σc,t = σ|ε=εc,t (7)

Differentiating,

dσ
dε
|  ε=εc,t = 0 (8)

When ε > εa,t

β2,t =
1

ln[ Et(εc,t−εa,t)
σc,t−σa,t
]

(9)

η2,t = (εc,t − εa,t)β2,t
1

β2,t (10)

Similarly, when ε ≤ εa,t

β1,t =
(1− 1

1− σa,t
εa,tEt

)

ln(1− σa,t
εa,tEt
)
=

σa,t
σa,t−εa,tEt

ln(1− σa,t
εa,tEt
)

(11)

η1,t = εa,t[− ln(
σa,t

σa,t − εa,tEt
)]
− 1

β1,t (12)

The experimental and theoretical analysis data for cement-
stabilized macadam can be found in Table 2.

4 Model verification

In order to verify the rationality of the discrete element model of
cement-stabilized macadam, the mesoscopic parameters of cement-
stabilized macadam were obtained using the “trial and error
method”. After multiple calculations, the mesoscopic parameters
of cement-stabilized macadam are shown in Table 3. The stress-
strain curve of the cement-stabilized macadam discrete element
model/experiment is shown in Figure 6.

When comparing the stress-strain curves (experimental/
simulation data), the maximum error in stress/strain is
less than 10% (Figure 6), which indicates that the cement-stabilized
macadam discrete element model is reasonably accurate.

5 Calculation results and analysis

5.1 Total damage variable and strain
relationship

The total damage variable of cement-stabilized macadam in
relation to strain is shown in Figure 7.

The initial damage variables for 0, 10, 20, 30, and 40
freeze-thaw cycles are 0, 0.1449, 0.1908, 0.2091, and 0.2262
respectively (Figure 7). The initial damage variable increases with
the number of freeze-thaw cycles.The damage formed after 20 cycles
is close to that after 30 cycles.

Assuming that the freeze-thaw cycle damage factor Dt and
the number of freeze-thaw cycles satisfy the relationship Dt =
ae (-t/b)+c, the microscopic damage variable and the number of
cycles are shown in Figure 8, fromwhich the functional relationship
is obtained.

y = 0.225− 0.224e−0.0987x (13)

When the coefficient of determination is R2 = 0.997, the fitting
effect is good.

5.2 Relationship between peak strain and
freeze-thaw cycle times

As the number of freeze-thaw cycles increases, the peak stress
shows an overall decreasing trend (Figure 9). The fitted curve is
calculated using formula 14.

y = 9.469e
−x

69.954 + 5.499 (14)

After 10 cycles of freeze-thaw, the peak stress decreased
significantly (Figure 9). During 20–30 cycles of freeze-thaw, the
decrease in peak stress is relatively small. However, after 40 freeze-
thaw cycles, the peak stress decreased the most.
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FIGURE 13
(Continued).

5.3 Particle contact area versus number of
freeze-thaw cycles

As the number of freeze-thaw cycles increases, the contact area
between the particles shows a decreasing trend (Figure 10). The

FIGURE 13
(Continued). Distribution of tangential and normal contact forces
under different freeze-thaw cycles. (A) Freeze-thaw cycle 0 times. (B)
Freeze-thaw cycle 10 times. (C) Freeze-thaw cycle 20 times. (D)
Freeze-thaw cycle 30 times. (E) Freeze-thaw cycle 40 times.

formula used to fit the curve is Formula 15.

y = 2.0146e
−x

31.517 + 3.0413 (15)

After 10 freeze-thaw cycles, the contact area between particles
decreased significantly (Figure 10). During 20–30 freeze-thaw
cycles, the decrease in contact area between particles is relatively
small. However, 40 freeze-thaw cycles caused the greatest reduction
in inter-particle contact area.

5.4 Analysis of the number/orientation of
force chains between particles

The number of force chains varies with different freeze-
thaw cycles (Figure 11). The orange line represents the number
and angle of the force chains of cement-stabilized macadam before
loading, and the purple dash line represents the number and angle
of the force chains after loading.The highest number of force chains
occurs at 215°, and the lowest at 265°. There are also relatively more
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force chains at 50° and 85°. The number of force chains in the early
stages of particle loading is greater than in the later stages.

To analyze the force chains in cement-stabilized macadam
before and after loading, a differential map of the number of force
chains before and after loading is established (Figure 12). There
is significant fluctuation at 120° and 300°. With zero freeze-thaw
cycles, the specimen shows a difference of 62 chains at 125°. After 10
freeze-thaw cycles, the largest difference occurs at 180° with a value
of 46 chains. After 20 freeze-thaw cycles, the largest difference occurs
at 100° with a value of 54 chains. And after 30 freeze-thaw cycles, the
largest difference occurs at 345° with a value of 48 chains.

5.5 Distribution patterns of tangential and
normal contact forces

There is a certain pattern in the distribution of tangential and
normal contact forces over different freeze-thaw cycles (Figure 13).
It is evident that both tangential and normal contact force
distributions exhibit symmetry. The tangential stresses are greater
around 30°, 150°, 210°, and 330° (±15°), forming an “infinity” (∞)
shape distribution; the normal contact forces are greater around 90°
and 270° (±15°), forming a figure-eight (“8″) shape distribution.

6 Conclusion

Themore the number of freeze-thaw cycles, the larger the initial
damage variable, with the damage formed after 20 cycles being close
to that after 30 cycles.

As the number of freeze-thaw cycles increases, the peak
stress becomes lower, and the contact area between particles also
decreases.

The highest number of force chains occurs at 215°, while the
lowest occurs at 265°; the number of force chains in the early stages
of particle loading is greater than in the later stages.

The distribution of tangential and normal contact forces shows
symmetry; the overall distribution of tangential stress forms an “∞”
shape, and the overall distribution of normal contact forces forms an
“8” shape.
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