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To investigate the surface integrity of 17-7PH stainless steel welded structural
components used in aviation, laser shock peening (LSP) with different power
densities was applied to stainless steel welded joints. The microstructural
morphology, structural features, full-width at half-maximum, microhardness,
and surface roughness of the stainless steel welded joint specimens before
and after LSP were characterized and measured using SEM, TEM, XRD, a
microhardness tester, and a high-resolution confocal microscope. The effects
of different laser power densities on the microstructure and properties of the
stainless steel welded joints were explored. Results indicate that the stainless
steel welded joints exhibit a typical BCC phase. Laser shock peening promotes
grain refinement in the welded joints, leading to the phase transformation
of residual austenite into martensite. The surface roughness of the specimen
is positively correlated with laser power density. At a power density of
5.17 GW/cm2, the surface roughness increased to 1.919 μm, which is 117.08%
higher than that of the non-peened specimen. The microhardness of the
specimens shows a decreasing trend with increasing power density. When the
power density is 2.79 GW/cm2, the microhardness of the specimen significantly
increases to 462.94 HV0.5, which is 22.26% higher than that of the non-
peened specimen.

KEYWORDS

laser shock peening, welded joints, surface integrity, microstructure, stainless steel

1 Introduction

Precipitation-hardened (PH) stainless steels are widely used in the aerospace
field due to their high strength, hardness, and corrosion resistance. They are
commonly employed in welding applications for critical structural components
such as engine casings and landing gear (Xu and Yu, 2008; Daymond et al., 2016;
Liu et al., 2016; Ziewiec et al., 2016; Cui et al., 2022; Kugelmeier et al., 2024). In
complex environments characterized by high temperatures and humidity, welded
joints of structural components usually experience both high static and dynamic
stresses (Li et al., 2021; Liu et al., 2023; Xiong et al., 2024). Stress corrosion cracking,
fatigue vibration, and overload are major causes of structural failure (Li et al., 2014;
Xiao et al., 2019; Chen et al., 2023; Jiang and Yang, 2024). To ensure the safety
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of aircraft operations, it is crucial to improve the surface
quality of stainless steel welded joints and enhance their surface
properties.

Laser shock peening (LSP) is an effective approach to improve
fatigue resistance, wear resistance, and stress corrosion resistance
of metallic materials (Tsuyama, 2016; Dai et al., 2018; Sanchez et al.,
2021; Shu et al., 2022; Yoo et al., 2023). Currently, researches on LSP
at home and abroad mainly focus on the surface modification of
materials. Zhang et al. (2020) andZhu et al. (2020) have significantly
improved the fatigue properties and surface microhardness of
materials through LSP technology. Song et al. (2024) used LSP
technology to increase the microhardness of the material while
reducing the amount of titanium wear by more than 30%.
Sundar et al. (2016) and Luet al. (2023) have demonstrated that LSP
can reduce the stress corrosion cracking sensitivity of 304 stainless
steel. Li et al. (2022) concluded that LSP can significantly improves
the electrochemical corrosion performance of stainless steel, with
the best results achieved after two impacts. However, in the field
of aviation, research on the impacts of LSP on the performance of
welded joints is still relatively scarce. Dhakal, Binod et al. (Dhakal
and Swaroop, 2018) have discussed the significant effects of LSP on
the mechanical properties and microstructure of different welded
joints, concluding that LSP can be effectively used for post-weld
treatment in industrial manufacturing. Rubio-Gonzalez et al. (2020)
used LSP to reduce the fatigue crack propagation rate in stainless
steel and improve the fracture toughness of DSS aged samples,
significantly mitigating the effects of thermal aging. Zhou et al.
(2022) showed that the fatigue limit of the material increased
significantly from 289 MPa to 478 MPa. At the same time, LSP
promoted the conversion of residual stresses in welds and heat-
affected zones into residual compressive stresses of high amplitude.
These studies suggest that it is technically feasible to improve
the stress corrosion resistance of stainless steel welded joints by
LSP. And this technology has provided a new approach for stress
corrosion protection in 17-7PH stainless steel welded joints in the
field of aviation.

This study investigates the impacts of LSP with optimized
laser shock processing parameters on the 17-7PH stainless steel
welded joints. XRD, SEM, and TEM were used to characterize
and test the diffraction peaks, microstructural morphology, and
structural features of the stainless steel welded joints before
and after LSP. Digital microhardness tester and high-resolution
confocal microscope were employed to measure the microhardness
and surface roughness of the stainless steel welded joints. This
research aims to study typical microstructural defects, characteristic
microstructures, and microstructural evolution, and reveal the
mechanisms of performance evolution in stainless steel welded
joints. Compared to existing studies, the microhardness of
specimens increase significantly and the grain refinement effect
is better. Meanwhile, appropriate surface roughness ensures
better coating application, thereby enhancing the material’s
corrosion resistance. The results provide new solutions for
stress corrosion protection treatment in 17-7PH stainless steel
welded joints for aerospace applications, offering significant
scientific and theoretical value.

2 Experimental materials and methods

2.1 Experimental and sample preparation

The material used in the experiments was 17-7PH stainless
steel, known for its good corrosion resistance and ductility. Its
chemical composition and some mechanical properties are shown
in Table 1. The 17-7PH stainless steel plates were first pickled and
polished to remove the surface oxide layer. The stainless steel plates
were then welded by double-sided argon arc welding, and inert
gas was used to prevent oxidation of the welds. According to the
welding requirements of the specimens, the welding parameters are
determined by the material and dimensions of the specimens. The
specific welding parameters are shown in Table 2. After welding,
the front and back surfaces of the stainless steel welded joints were
milled, followed by progressive polishing with 240#, 400#, 800#,
and 1,200# sandpapers. Subsequently, The stainless steel welded
joints were cleaned with anhydrous ethanol and dried. Finally, the
dimensions of 17-7PH stainless steel welded joints shown in Figure 1
are 93 mm × 20 mm × 3 mm.

2.2 LSP process

The solid-state laser (YS1505-R200A, Xi’an Tianruida
Optoelectronic Technology Co., Ltd., China) was used for the LSP,
as shown in Figure 2. The laser has a pulse duration of 20 ns, a
wavelength of 1,064 nm, and a spot diameter of 4 mm. The model
of laser shock peening 17-7PH Stainless Steel is shown in Figure 3.
Based on the extensive research conducted by the research group,
optimized laser shock processing parameters were employed to
strengthen the 17-7PH stainless steel welded joints. This approach
aims to achieve better grain refinement effects, remove residual
stresses from the material’s surface, and extend the service life of the
material. The optimized laser shock processing parameters are as
follows: overlapping rate of 70%, pulse energies of 7 J, 10 J, and 13 J,
power densities of 2.79 GW/cm2, 3.98 GW/cm2, and 5.17 GW/cm2,
and laser shock peening numbers of 3. In order to completely cover
the heat-affected zone of stainless steel welded joints, the area of
LSP was set to 14 mm × 14 mm. To prevent laser ablation, the
transparent flowing water layer with a 2 mm thickness was used
as the confinement layer and the aluminum foil with a 0.1 mm
thickness was used as the laser energy absorbing layer.

2.3 Characterization and measurement
methods

X-ray diffractometer (Ultima IV, Rigaku, Japan) was used
to obtain diffraction patterns of the LSP areas. The scanning
angle ranged from 5° to 120°, the step size was 6°/min. A
field emission scanning electron microscope (FE-SEM, SU8020,
HITACHI, Japan) was used to observe the microstructure of the
cross-sections of the stainless steel welded joints after LSP. We
employed a field emission high-resolution transmission electron
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TABLE 1 Chemical composition and mechanical properties of 17-7PH stainless steel (% Mass Fraction).

C Mn P S Cr Al Ni Si HB σb
/MPa

σs
/MPa

δ/%

0.09 1.0 0.035 0.03 16.0–18.0 0.75–1.5 6.5–7.75 1.0 229 1,030 380 20

TABLE 2 TIG welding parameters.

Filler
material

Joint type Nominal
thickness

/mm

Diameter
/mm

Voltage
/V

Current
/A

Shield
specifications

(inner
diameter)

/mm

Argon gas
flow rate
/L min-1

17-7PH Stainless
Steel

Butt Joint 3.2 2.4 13 140 8 6

FIGURE 1
17-7PH stainless steel welded joint specimens.

FIGURE 2
The LSP Experimental Setup.

FIGURE 3
The model of laser shock peening 17-7PH stainless steel.

microscope (HRTEM, Tecnai G2 F20, FEI, United States) to analyze
the internal structural morphology of the welded joints. Surface
topography and roughness of the stainless steel welded joints
were measured using a high-resolution confocal microscope (usurf
mobile, NanoFocus, Germany).

Microhardness of the surface and cross-sections of the stainless
steel welded joints was measured through a digital Vickers
microhardness tester (TMVS-1, Beijing Times Technology Co., Ltd.,
China). The loading time was 15 s with a test force of 0.5 kg. Five
points were measured at depths of 100 μm at intervals in the cross-
sectional depth direction and their average values were taken as the
results of the microhardness measurement.

3 Results and analysis

3.1 Microstructure

The microstructural morphology of the cross-sections of 17-
7PH stainless steel welded joints before and after LSP is shown in
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FIGURE 4
Sem Images of the welded joints before and after LSP (A) No LSP; (B) 2.79 GW/cm2; (C) 3.98 GW/cm2; (D) 5.17 GW/cm2.

FIGURE 5
TEM Images of the welded joints before and after LSP (A) No LSP; (B) 3.98 GW/cm2; (C) 5.17 GW/cm2.

Figure 4. From Figure 4A, it can be observed that the grain size
at the welded joints of the stainless steel is approximately 18 μm.
During the process of welding, due to uneven heat conduction
and cooling rates, there are some fine weld seams present in the
microstructure. The pulsed laser broke down the threshold of the
material, generating a plasma and forming a burst wave. According
to the Fabbro’s model (Fabbro et al., 1990; Peyre et al., 1996), the
peak pressure of the shock wave can be calculated through the
following Equation 1.

P = 0.01√ α
α + 3
√Z√I0 (1)

where α is the energy ratio for the gas ionization, Z is the sound
impedance of 17-7PH stainless steel and confinement layer, I0 is
laser power densities, P represents the peak pressure of the shock
wave (Li et al., 2024). We came to the conclusion that the peak
pressure of the shock wave far exceeds the elastic yield limit of the
material by calculating. Under the peening of the shock wave, slips
occurred within the grains at the surface layer of the specimen,
forming dislocation lines. As plastic deformation intensifies, the
dislocations further evolve into subgrain boundaries. At this
stage, subgrains undergo dynamic recrystallization, leading to the
formation of smaller grains to achieve grain refinement. Figure 4B
shows that after LSP with a laser power density of 2.79 GW/cm2, the
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FIGURE 6
XRD diffraction pattern of welded joints before and after LSP.

surface grains of the stainless steel welded joints become refined,
reducing the grain size to 8 μm. Figures 4C, D illustrate that as the
laser power density increases, the surface grains become elongated,
and grain refinement becomesmore pronounced. At a power density
of 5.17 GW/cm2, the grain size reduces to 3 μm.

Due to the minimal grain refinement observed at lower
power densities, only the samples subjected to higher laser power
densities were analyzed through TEM. The TEM morphology of
the 17-7PH stainless steel welded joints before and after LSP
is shown in Figure 5. Figure 5A reveals that the microstructure
of the stainless steel welded joint consists of martensitic phases
formed by elongated cementite and lamellar ferrite. Given the low
carbon content in the stainless steel, the thickness of the cementite
layers are approximately 150–350 nm, with some blocky cementite
particles precipitating on the ferrite. Combining with the SEM
morphology in Figures 4, 5B show that after laser shock peening,
the cementite did not completely integrate into the austenite.
Instead, the structure remains a heterogeneous mixture of ferrite
and cementite. Under the influence of the LSP, an environment
with high-temperature, high-pressure, and high-stress is created
on the surface of the specimen. This phenomenon results in the
generation of numerous dislocations and defects. During rapid
cooling, the increased temperature gradient within the material
creates a complex stress state, affecting the atomic arrangement
of the lattice and significantly lowering the critical temperature
and stability of austenite phase transformation. Concurrently,
the abundance of dislocations and defects reduces the overall
energy of the austenite lattice, facilitating atomic rearrangement
and serving as nucleation sites for the new phase. This process
promotes the transformation of residual austenite into fine-
grained martensitic structure, thereby enhancing the strength
and toughness of the material (Ye et al., 2012). Additionally, the
high dislocation density in the stainless steel material inhibits
dislocation development, and the multiple slip systems of the
BCC phase lead to dislocations appearing in a cellular and
tangled form (Miura et al., 2009).

3.2 Diffraction pattern analysis

The X-ray diffraction (XRD) pattern of the 17-7PH stainless
steel welded joints before and after LSP is shown in Figure 6.
Phase analysis reveals that the stainless steel welded joints exhibit
a typical body-centered cubic (BCC) structure, specifically the
α-Fe phase, with prominent peaks corresponding to the (110),
(200), and (211) planes. As the laser power density increases,
the intensity of the diffraction peak for the (110) plane gradually
increases.This is attributed to the laser shock peening process which
promotes grain refinement in the surface layer of the welded joints.
Additionally, the formation of precipitated phases during the LSP
process may lead to an increase in the diffraction peak intensity for
the (211) plane. Compared to the non-peened samples, the laser
shock peening results in significant grain refinement and lattice
distortion on the material surface. The diffraction peaks tend to
show increased intensity and narrowing. After high-power density
laser shock peening, deformation textures appear on the surface of
the stainless steel welded joints, leading to a preferred orientation of
the (110) plane and an increased intensity of the diffraction peaks
for this plane.

3.3 Surface integrity analysis

The three-dimensional surface morphology of the 17-7PH
stainless steel welded joints before and after LSP is shown in Figure 7.
From Figure 7A, it can be seen that the surface of the stainless steel
welded joint, which was not subjected to laser shock peening, is
relatively smooth with parallel grooves and discrete micro-peaks.
These features are likely due to the micro-ploughing of the SiC
particles from the sandpaper used during polishing (Duan et al.,
2018). Figures 7B, C show that after LSP with lower power densities,
the micro-peaks on the surface of the stainless steel welded joints
gradually disappear. This is because the laser energy follows a
Gaussian distribution, with the energy at the center of the spot
being higher than at the edges (Li et al., 2019). This results in
slight plastic deformation of the surface. Figure 7D reveals that
when the laser power density increases to 5.17 GW/cm2, the micro-
grooves on the surface of the stainless steel welded joint almost
completely disappear. The relatively high laser power density leads
to more pronounced plastic deformation on the surface of the
welded joints.

To further characterize the impacts of Laser Shock Peening
(LSP) on the surface morphology of 17-7PH stainless steel welded
joints, roughness measurements were taken for the areas observed
in Figure 7. The roughness was evaluated based on the arithmetic
average roughness (Ra) of the profiles. The surface roughness
measurement results of the stainless steel specimens are shown
in Figure 8. Based on the three-dimensional surface morphology
of the specimens in Figures 6, 8A indicates that the surface
roughness of the 17-7PH stainless steel welded joint specimen,
which were not subjected to laser shock peening, is 0.884 μm.
After LSP with a power density of 2.79 GW/cm2, the surface
roughness of the specimen increases to 1.093 μm, which is a 23.64%
increase compared to the non-peened specimen.With a laser power
density of 3.98 GW/cm2, the surface roughness reaches 1.207 μm,
showing a 36.54% increase compared to the non-peened specimen.
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FIGURE 7
Surface 3D topography of welded joints before and after LSP (A) No LSP; (B) 2.79 GW/cm2; (C) 3.98 GW/cm2; (D) 5.17 GW/cm2.

FIGURE 8
Surface roughness of welded joints before and after LSP (A) No LSP; (B) 2.79 GW/cm2; (C) 3.98 GW/cm2; (D) 5.17 GW/cm2.
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FIGURE 9
Microhardness of Welded Joints before and after LSP (A) surface microhardness; (B) cross-section microhardness.

When the laser power density increases to 5.17 GW/cm2, the
surface roughness rises to 1.919 μm, reflecting a 117.08% increase
compared to the non-peened specimen. Due to the Gaussian
distribution of laser energy, as the laser power density increases,
the surface of plastic deformation of the stainless steel welded joints
become more severe, resulting in a significant increase in surface
roughness.

Usually, an increase in the surface roughness of the specimen
indicates the presence of more micro-grooves and cracks, which can
trapmoisture and other corrosive agents, creating localized galvanic
environments. This can damage the oxide film on the specimen’s
surface, thereby reducing its corrosion resistance (Durst et al., 2008).
Existing coating technologies can effectively enhance the corrosion
resistance of the specimen, and an appropriate level of roughness can
improve the adhesion and mechanical interlocking of the coating,
providing better protection for the substrate.

3.4 Microhardness

The changes in surface and cross-sectional microhardness of
the 17-7PH stainless steel welded joints before and after LSP are
shown in Figure 9. Based on the microstructural morphology of the
specimens in Figures 4, 9A shows that the surface microhardness
of the 17-7PH stainless steel is 241.8 HV0.5. After welding, the
surface microhardness increases to 378.64 HV0.5. According to the
Hall–Petch Equation 2 (Luong and Hill, 2008):

Hv =Hv0 +KHv
d−1/2 (2)

where Hv represents the microhardness of the material after LSP,
Hv0 is the microhardness of the base material before LSP, KHv

is a
constant, and d is the size of the grain at the surface of the material
(Lu et al., 2010). Dislocations are the primary defects responsible
for plastic deformation in metallic materials, an increase in grain
boundaries following grain refinement enhances the interactions
between dislocations (Ma et al., 2020). The presence of more grain
boundaries obstructs dislocation movement, thus strengthening

the material’s ability to withstand external forces. Combined with
the Hall–Petch equation, grain refinement leads to an increase
in material microhardness. With increasing laser power density,
the surface grains of the stainless steel welded joints become
progressively finer, resulting in an increase in surfacemicrohardness.
When the laser power density reaches 5.17 GW/cm2, the surface
microhardness of the stainless steel welded joint increases to
462.94 HV0.5, which is a 22.26% improvement compared to the
microhardness of the welded joint before LSP. FromFigure 9B, it can
be seen that the depth of the grain refinement layer caused by laser
shock is only a few tens ofmicrometers.The hardness of the stainless
steel welded joint cross-section gradually decreases to the hardness
level of the untreated state as the depth increases.

Additionally, we observed the martensite-ferrite phase in
Figure 5. Combined with the research of P. V. Yasnii et al. (2010),
we concluded that the surface of the stainless steel specimen
exhibits refined lamellar martensite after LSP, with an increased
length of subgrain boundaries. This results in enhanced fracture
energy strength and significantly improves the impact toughness of
the specimen.

4 Conclusion

1) After laser shock peening, the surface grains of the 17-
7PH stainless steel welded joints become refined, with grain
size decreasing as the laser power density increases. At
a power density of 5.17 GW/cm2, the grain size reduces
to 2–5 μm, and the depth of the laser shock peening-
affected layer is approximately 50 μm. The residual austenite
inside the weld joint undergoes phase transformation to
martensite, and cellular and tangled dislocations form between
the grains.

2) Due to the Gaussian distribution of laser energy, as the laser
power density increases, the plastic deformation on the surface
of the stainless steel welded joints intensifies, leading to an
increase in surface roughness. At a laser power density of
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5.17 GW/cm2, the surface roughness of the stainless steel
welded joint rises to 1.919 μm, which is a 117.08% increase
compared to the non-peened specimen.

3) The surface microhardness of the 17-7PH stainless steel
welded joints is 378.64 HV0.5, significantly higher than
the base material microhardness of 241.8 HV0.5. The
surface microhardness increases positively with laser power
density. At a power density of 5.17 GW/cm2, the surface
microhardness of the stainless steel welded joint reaches
462.94 HV0.5, which is a 22.26% increase compared to the
non-peened specimen.

4) Laser shock peening significantly improves the performance
of critical components such as aircraft landing gear, reducing
maintenance costs while enhancing overall aircraft safety.
However, current laser shock peening has stringent geometric
requirements for the parts, which can lead to uneven
strengthening effects.
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