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Zero-refractive index metamaterials have a wide range of applications in
directional transmission and wave-front shaping due to their unusual acoustic
properties. However, for most given acoustic topological metamaterials, the
operating frequency is relatively fixed and the effect of temperature on their
topological properties is rarely considered. Therefore, temperature-controlled
tunable topological zero-refraction acoustic metamaterials are proposed in this
paper. Firstly, a metamaterial with quadruple degenerate Dirac-like points at the
center of the Brillouin zone is constructed, and the influence of temperature
on the Dirac-like points is analyzed. The results show that the topological
bandgap frequency range is more sensitive to temperature. The existence
of pseudospin-polarized edge state is demonstrated by analysing the band
structure of supercells with different topological phase phonon crystal. The
topological zero-refraction property of the edge states outcoupled into free
space is numerically demonstrated, and the non-contact active control of their
operating frequencies can be realized by temperature. This study can provide
a corresponding reference for the intelligent control of near-zero refractive
index acoustic topological materials in elastic wave collimation and acoustic
communication.

KEYWORDS

acoustic topological metamaterials, temperature-controlled, topological
zerorefraction, pseudospin-polarized edge states, non-contact

1 Introduction

Topological phases and topological phase transitions of matter have been extensively
studied in condensed matter physics due to their fundamental property of being insensitive
to continuous perturbations of material parameters. At the same time, a class of
metamaterials with non-trivial topological properties, known as topological metamaterials
(Hasan and Kane, 2010; Qi and Zhang, 2011) has sparked significant scientific interest.
Materials having topological characteristics exhibit several innovative qualities (He et al.,
2019; Zhang et al., 2018a; Lin et al., 2023), such as backscattering suppression at boundaries
and lossless transport, which have great potential for applications in electronics, acoustics,
and mechanical systems.

In studying 2D phononic crystals, the initial method for determining their topological
properties was to introduce an external magnetic field to break the time-reversal symmetry,
resulting in the quantum Hall effect. Fleury et al. (2014) suggested putting a flow field into
an acoustic system composed of an annular resonant cavity to accomplish the nonreciprocal
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transmission of acoustic waves. The proposed method provides
a novel solution to solve the problem of breaking the time-
reversal symmetry of fluid acoustic systems. Yang et al. (Xue et al.,
2022) introduced a background flow velocity field to construct an
equivalent magnetic field in a two-dimensional air acoustic system,
successfully broking the time-reversal symmetry of the phononic
crystal system, realizing the analogy of quantum Hall effect in
acoustics for the first time, and theoretically investigating the
quantum Hall effect acoustic edge states and their properties such
as backscattering suppression, immunodeficiency, and disorder.
Although topological edge states for acoustic analogy can be
established by introducing background rotational flow velocity
fields, temporal and spatial modulations, their implementation still
faces some harsh operating conditions until He et al. proposed
a method to simulate the quantum spin Hall effect in acoustics,
which achieved acoustic pseudo spin topological edge states based
on acoustic quantum spin Hall effect analogy by modulating
the acoustic quadruple Dirac degenerate band inversion through
adjusting the filling material (He et al., 2016). Zhang et al. (2017)
constructed quadruple degeneracy points in honeycomb lattice
phononic crystal based on energy band folding. The topological
phase transition between pseudo spin dipole and quadrupole
modes was induced by breaking the spatial symmetry of the system,
achieving robust transmission characteristics of unidirectional and
path reconfigurable pseudo spin edge states. Then, Chen et al.
(2018) introduced the one-dimensional topological structures
into the field of elastic waves. They achieved band inversion
by adjusting the stiffness coefficients of springs in a one-
dimensional spring oscillator system based on the SSH model,
distinguished different topological phases by calculating thewinding
number, and constructed topologically protected interface states.
These topological edge protection properties are independent of
boundary defects and material impurities, which has attracted
high attention to the exploration of acoustic metamaterials in
precise control of elastic waves (Zhu et al., 2018), topological
valley transmission (Deng et al., 2024; Cai et al., 2023). Acoustic
delay lines (Wang J. Q. et al., 2022), elastic energy harvesters
(Tan et al., 2024; Yuan et al., 2024), etc.

In addition to topological transport, the non-reflective
topological refraction properties of phononic crystals
(Wang B. B. et al., 2022; Huang et al., 2021) have also attracted
widespread attention for their ability to effectively address
the terminal impedance mismatch problem between the
domain wall and external space. According to the momentum
conservation theory, acoustic topological refraction can be evaluated
quantitatively (Zhang et al., 2018b), and experiments show that
the refraction direction of the valley edge state is determined by
the projection of the valley K and K′(Lu et al., 2017a). Zhang
(Zhang et al., 2018b) investigated the topological directional
refraction of edge states with different valley polarizations. This
valley-polarized edge state ensures nonreflective external coupling
from the topological interface to free space, with near-perfect
efficiency and high stability. Li (Ye et al., 2017) proposed a valley-
Hall-like photonic insulator based on a C3v Kagome split ring
that explores the refraction of edge states from the interface to
the background space at the Zigzag termination. This provides
a new method for controlling terahertz wave propagation and
promotes potential applications in directional collimation, beam

FIGURE 1
(A) Schematic diagram of phononic crystal structure. (B) Band diagram
of phononic crystal at t = 0.18 mm, w = 3.98 mm.

splitting, and negative refraction imaging. Lu (Lu et al., 2018)
constructed pure S0-mode valley topological phononic crystal
plates and realized valley refraction with different directionality
by changing the material properties of the terminals. It provides a
way to study the symmetric modes of Lamb waves alone, which has
potential applications in fast and accurate ultrasonic nondestructive
testing. However, for elastic systems, the topological refraction
phenomenon is closely related to the existence of edge states in
a single bandgap and does not have the property of bandgap
adjustability after the structural design is completed, which cannot
satisfy the requirements of different operating environments,
limiting the range of applications.

Given the materials and structures utilized in practical
engineering, environmental temperature variations during
operation are unavoidable, and alterations in material properties
and structural rigidity significantly influence the structure’s dynamic
properties. Furthermore, current research indicates that the thermal
setting impacts the spread and topological characteristics of
acoustic waves. However, these studies primarily focus on how
the thermal environment alters the materials’ physical attributes,
with a lesser number examining how thermal stresses affect the
band properties of acoustic topological insulators. Consequently,
two-dimensional two-component honeycomb phononic crystals
constructed by tungsten-epoxy resin are studied in this paper,
analyzing numerically the progression of their band properties
under thermal stress. Pseudospin-polarized edge states are obtained
at the interface of two phononic crystals with different topological
phases, and the topological zero-refraction property of the edge
states outcoupled into free space is numerically demonstrated,
which proves that the topological zero-refraction is independent
of the angle and direction of incidence. The frequency range of
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FIGURE 2
Dispersion relations of (A) PC I and (B) PC II.

FIGURE 3
Band gap structure of PC I at different temperatures.

the topological state can be changed by the temperature, which
realizes the non-contact active regulation of the topological
zero-refraction property.

2 Band structure and topological
phase transition

The honeycomb solid phononic crystal unit proposed in this
paper is depicted in Figure 1A, in which the purple border
represents metallic tungsten, and the gray area is epoxy. The
primitive cell structure is illustrated in the inset. This formation is
a standard hexagonal honeycomb lattice, made up of six metallic
arms (each side length l = 24 mm and width t) along with six
extra counterweights (rectangles of length h = 10.11 mm, width
w) located at the vertices of the hexagon, and the lattice constant

as = √3l. The selected material parameters are as follows: the mass
density of tungsten ρTun = 19100 kg/m

3, Young’s modulus ETun =
391.18 GPa, and the Poisson’s ratio vTun = 0.35; the mass density of
epoxy ρExp = 1180 kg/m

3, Young’s modulus EExp = 0.559 GPa, and
the Poisson’s ratio vExp = 0.368. The solid mechanics module of
COMSOL Multiphysics is employed to calculate the band structure
and displacement field distribution of this phononic crystal. The
Floquet periodic boundary conditions is applied to the single cell
(supercell) obtained by scanning the first Brillouin zone to solve the
bulk (edge) band dispersion relationship.

Figure 1B illustrates the dispersion relation of the honeycomb
lattice phononic crystal at t = 0.18 mm and w = 3.98 mm.
Observations show the phononic crystal’s bandgap close at 21.3 kHz,
creating a quadruple accidentally degenerate Dirac point (purple
point). Altering the structural parameters can open the quadruple
accidental degeneracy of Dirac points, forming a topologically
complete bandgap. Figures 2A, B illustrate the single-cell band
structures of phonon crystal I (PC I, t = 0.36 mm, w = 3.98 mm)
and phonon crystal II (PC II, t = 0.06 mm, w = 3.4 mm), with their
double degenerate eigenstates at the Γ-point are marked by blue and
red dots. To further characterize the topology of PC I and PC II,
k⋅p perturbation theory (Lu et al., 2017b; Yan et al., 2018) is utilized
to compute their topological invariants. The effective Hamiltonian
near the Г-point for in-plane polarizer elastic waves in the designed
honeycomb lattice phononic crystal structure can be expressed as
(Mei et al., 2012):

He f f
ij =H

′
ij +∑α

H′iαH
′
αj

εi − εα
(1)

where i, j = 1, 2, 3, 4, ε1,2 = εp and ε3,4 = εd are the eigenfrequencies
of four eigenstates at the Γ point. H′ij is the first order perturbation
term andH′iαH

′
αj comes from the second order perturbation. On the

basis p+, d+, p-, d-, the effective Hamiltonian of Equation 1 can be
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FIGURE 4
(A) Compressive stress distribution at T = 0°C and (B) T = 40°C.

FIGURE 5
(A) The supercell structure is composed of 10 Type-I (Δh = −1 mm) structures and 10 Type-II (Δh = 1 mm) structures; (B, C) Projected band structures at
20°C and 60°C. (D) E (wave vector kx = −0.02× (2π/a), left), F (wave vector kx = 0.02× (2π/a) , right) two points are in the velocity field of the edge state,
with the same eigenfrequencies of points A and B.
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FIGURE 6
Relationship between temperature and the onset and cut-off
frequencies of the topological bandgap.

rewritten as:

Heff (k) =(

M−Bk2 Ak+ 0 0
A∗k− −M−Bk2 0 0
0 0 M−Bk2 Ak−
0 0 Ak+ −M+Bk2

) (2)

Where k± = kx ± iky,M = (εd − εp)/2, is the difference of
frequency between d and p eigenstates around the Γ-point.
Parameter A is determined by the off-diagonal elements of the
first-order perturbation. Parameter B comes from the second-
order perturbation term, and is typically negative. The effective
Hamiltonian quantity in Equation 2 can be used as the elastic
counterpart of the quantum spin Hall effect. The pseudospin Chern
numbers in the elastic wave systems can be calculated by

Cs = ±
1
2
[sgn(M) + sgn(B)] (3)

It can be seen from Equation 3 that the sign of M directly
determines the pseudospin Chern number. The corresponding
displacement field distributions of these double degenerate
eigenstates are displayed in the inset of Figure 2. The results show
that for the PC I structure, the frequency of the pseudo-spin dipole
mode (p-state) is above that of the pseudo-spin quadrupole mode
(d-state), and hence M = (εd − εp)/2 < 0 with the corresponding
pseudospin Chern numbers Cs = ± 1, which implies that the
bandgap is topologically non-trivial band. For the PC II structure,
M = (εd − εp)/2 > 0 with the d-type states exceed the p-type states,
we obtain the pseudospin Chern numbersCs = 0, which implies that
the bandgap is topologically trivial band. Thus, topological phase
transitions from non-trivial states to trivial states occurred in these
two types of phononic crystal structures.

3 The influence of temperature on the
topological band structure

Traditional acoustic metamaterials lack adjustable bandgap
characteristics after structural creation, making them unable to
meet different operating conditions and limiting their potential
applications. Since temperature is easy to precisely control, altering
the topological frequency through temperature adjustment is a
feasible option. Figure 3 depicts the band structure of the phononic
crystal I under varying temperature conditions. Observations show
a reduction in its bandgap frequency with rising temperatures.
Specifically, the frequency of its bandgap drops from 21.65 kHz-
22.73 kHz to 20.97 kHz-22.13 kHz as the temperature rises from 0°C
to 40°C. Consequently, this enables the adjustment of the topology
frequency through temperature modifications.

Vibration theory suggests that the modal characteristics
of the phononic crystal structure can be solved through the
subsequent equation

(K−ω2M)U = 0 (4)

wherein K represents the entire structural rigiditymatrix,M denotes
the mass matrix, and U signifies the vector of vibration modes.

Under the thermal environment, the structure modal state is
primarily influenced by how material parameters fluctuate with
temperature and the internal thermal stresses caused by the
thermal environment. Upon thermal loading of the phononic crystal
structure, the change of the mass matrix M in Equation 4 can
be negligible, while the structural material parameters undergo
significant changes with increasing temperature. Taking into
account the impact of temperature, the structural stiffness matrix
can be expressed as:

KT = ∫
Ω
BTDTBdΩ (5)

where B represents the geometric matrix and D denotes the elastic
matrix linked to the material’s elastic modulus E and Poisson’s ratio c.

On the other hand, fluctuations in temperature induce thermal
stresses inside the structure, factors that should be considered in its
stiffness matrix, which can then be described as follows:

Kσ = ∫
Ω
GTSGdΩ (6)

Here, G represents the matrix for strain-displacement and S
denotes the matrix for structural thermal stress. To address the
structural modal parameters within the thermal environment, it’s
crucial to consider the alterations in material parameters due to
the thermal environment and the effects of thermal stresses on the
stiffness matrix. Combining Equations 5, 6, the complete stiffness
matrix K for the structure under thermal environment conditions is.

K = KT +Kσ (7)

where KT represents the matrix of structural stiffness and Kσ
represents the matrix of thermal stress.

In Equation 7, the structural stiffness matrix KT is related to
the physical properties of the structure. As the temperature rises,
the elasticity modulus of the metal tungsten diminishes, leading
to a downward trend in the overall stiffness matrix. The thermal
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FIGURE 7
(A) Displacement field and acoustic pressure field distributions in water. (B) The equifrequency curve analysis in water.

FIGURE 8
Topological zero refraction at incidence angles of (A) 60° and (B) 90°, respectively.

stress stiffness matrix Kσ is related to the form of thermal stresses
in the structure. Under conditions of tensile thermal stress, Kσ is
positive and the inherent frequency of the structural formation rises.
Conversely, under compressive thermal stress,Kσ turns negative and
the natural frequency tends to diminish.

Following the preceding analysis, the distribution of
compressive stress in phononic crystal II across various
temperatures was analyzed, as depicted in Figure 4. At a temperature
of T = 0oC, a negative compressive stress signifies tensile stress,
making Kσ is positive and the structure’s natural frequency ascends;
However, at T = 40oC, the compressive stress becomes positive,
while the natural frequency tends to decline. This is consistent with
the effect of temperature on the bandgap structure in Figure 3.
Conclusively, by adjusting the temperature, the total stiffness of the
structure can be modulated effectively, and then the band structure
can be adjusted. There exists an inverse relationship between the
structure’s inherent frequency and temperature.

4 The influence of temperature on the
frequency range of topological
channel transmission

Excitation and outcoupling of topological edge states play a
crucial role in achieving protected refractions. The body-boundary
correspondence principle posits that topological edge states are
present at the interface of supercells composed of phononic crystals
with two different topological properties. Figure 5A displays a
supercell consisting of 8 PC I structures and 8 PC II structures,
in which the boundaries are indicated by red dashed lines.
Through the finite element method, Floquet boundary conditions
are applied to both the upper and lower sides of the supercell to
obtain the dispersion diagram at varied temperatures, as shown
in Figures 5B, C, with the gray region denoting the bulk state
and the red and blue lines indicate the edge states. The range
of 21.67 kHz–22.46 kHz at 20°C, and 21.04 kHz–21.66 kHz at
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FIGURE 9
Topological refraction properties of pseudo-spin edge states from topological waveguide into the polyurethane background medium. (A) The total
displacement field distributions at f = 21.8 kHz. (B, C) The real longitudinal and transverse polarized displacement gradient field, respectively. (D) The
corresponding k-space analysis on the out-coupling of the edge states through the zigzag termination at f = 21.8 kHz. The Brillouin zone is depicted
by the black solid line. The red-orange (cyan) dashed circles indicate the dispersions of longitudinal (transverse) waves in polyurethane.

60°C, suggests that temperature fluctuations can manipulate the
topological bandgaps. Figure 5D displays the in-plane displacement
field distributions for eigenmodes of the edge states at points A
and B. Observation reveals that the maxima of their displacement
amplitudes are mainly concentrated at the interface between the
two phononic crystal structures and decay rapidly to the two sides
of the body, suggesting that these topological fringe states can be
well localized at the interface. The enlarged view in Figure 5D plots
the velocity field at points A (wave vector kx = − 0.02× (2π/a))
and B (wave vector kx = 0.02× (2π/a)). Since the opposite velocity
directions of points A and B approximate angular momentum, there
is a similar quantum spinHall effect for pseudo-spin up and pseudo-
spin down states in electronic systems. It is worth noting that the
velocity fields and pseudo-spin directions of point A contrast with
those at point B. Consequently, the intersection point at an identical
frequency on the boundary represents two distinct pseudo-spin
states. The pair of interdependent pseudo-spin edge states share
identical velocitymagnitudes and divergent orientations, facilitating
the transmission of dependent pseudo-spin acoustic waves.

Subsequently, the impact of temperature on the topological
bandgap received additional examination, as depicted in Figure 6.
Observations indicate an increase in compressive stress within
supercells as temperature rises and a decrease in the structure’s total
stiffness, leading to a shift in both the upper and lower boundary
frequencies of the topological channel to lower frequencies. The
results suggest that altering the temperature could enable the
modulation of the elastic wave topological transmission state
without physical contact.

5 Tunable topological zero-refraction
insulators

Investigating the topological refractive characteristics of elastic
valley projection edge states outcoupling into free space, a topological
waveguide consisting of PC Ⅰ and PC Ⅱ with a zigzag-type boundary
at the outgoing end surrounded by water is constructed as shown in
Figure 7. For an in-depth examination of the coupling characteristics
between solid waveguides and liquid materials, a discussion on the
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FIGURE 10
Topological refractive properties in different background media at different temperatures. (A, B) Displacement field and acoustic pressure field
distributions in water at 20°C and 60°C, respectively. (C, D) Displacement field and acoustic pressure field distributions in polyurethane at 20°C and
60°C, respectively.

topological refractive qualities of the valley edge states into water is
undertaken. Figure 7A illustrates the displacement field and acoustic
pressure field distributions of the topological waveguide submerged in
water, under an excitation frequency of f = 21.8 kHz at 20oC. It is
noteworthy that the elastic wave propagates along the normal of the
terminals after passing through the topological waveguide, suggesting
a typical zero refraction.

To better analyze the negative refraction behavior, the
equifrequency curve examining the coupling between the
edge states and free space in wave vector space is performed,
as shown in Figure 7B. The black solid hexagon denotes the
first Brillouin zone, the purple-red dashed circle depicts the
equifrequency curve of longitudinal waves in free space, and the
black dashed line represents the normal to the zigzag terminal, kl
and kt denote the wave vectors of longitudinal and transverse waves
in free space, respectively. The topological edge states propagating
from left to right are projected from the K′valley and follow the
conservation of the wave vector components parallel to the zigzag
termination when leaving the phononic crystal. Therefore, the
refracted wave vector Kout in free space should be satisfied:

Kout  ⋅ ezig  = K ⋅ ezig  (8)

Here, ezig represents the unit vector along the terminal
boundary of the phononic crystal, |K| = 2

3
× 2π

as
denotes the

magnitude of the incident wave vector K. The equifrequency
curve of the longitudinal wave in free space is determined by
the following equation:

|Kout | =
2π f
cl(ct)

(9)

where f represents the incident wave frequency, cl and ct
denotes the longitudinal wave and transverse wave velocities
in free space. As depicted in Figure 7B, based on the above
phase matching condition, the terminal normal intersects with
the equifrequency curve at the frequency f = 21.8 kHz, which
further confirms the negative refraction phenomenon of in-
plane bulk elastic waves after leaving the phononic crystal. Thus,
based on Equations 8, 9, this negative refraction angle γ can be
determined by the following equation:

|Kout | ⋅ cos (90° + γ) = |K| ⋅ cos 90° (10)

Therefore, γ = 0o can be obtained from Equation 10 when the
frequency f = 21.8 kHz, and the theoretical predictions are in good
agreement with the simulation results.
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According to the phase-matching condition, the edge state of
incident pseudo-spin polarization is locked at the Г-point and its
wave vector is independent of the angle concerning the normal of
the zigzag termination. The direction of the outgoing beam depends
on the intersection of the black dashed lines in Figure 7B intersecting
with the equifrequency curves in free space. We further investigate the
topological edge state transmission at different incidence angles. The
corresponding total displacement field distributions of the topological
waveguide at incident angles α = 60o and α = 90o are given in Figure 8.
These results indicate that in any direction of the topological interface,
this externally couplededgestatealways refracts at zeroangle, exhibiting
as an elastic near-zero refractive index metamaterial. This topological
solid phononic crystal structure opens a new avenue for designing
collimators in fluid environments using the topological refraction
effect of elastic waves.

Subsequently, the coupling between the designed topological
waveguide and different background media is analyzed and its
topological zero-refraction properties are verified in different fluid
and solid environments. Figure 9 investigates and analyzes the
topological refraction properties of the pseudo-spin edge state from
topological waveguide into the polyurethane background medium
at 20°C. Unlike acoustic waves in the fluid domain, refracted waves
can be divided into longitudinal and transverse components after
leaving the waveguide based on the vector characteristics of in-
plane body elastic waves.The total displacement field distribution as
well as the longitudinal and transverse polarization displacement
gradient fields of the edge state entering polyurethane at f =
21.8 kHz are given in Figures 9A–C, respectively. It can be observed
that after passing through the topological straight waveguide,
the refracted waves all propagate along the terminal normal,
exhibitingzero-angle refractioncharacteristics. Inorder toaccurately
explain the refracted longitudinal and transverse wave modes, the
outcoupling of the edge states was analyzed by equifrequency curve,
as shown in Figure 9D. The presence of longitudinal (ΓA) and
transverse (ΓB) modes in the polyurethane background medium,
respectively, and their refractive angles γalso satisfy the phase
matching condition Kout  ⋅ ezig  = K ⋅ ezig , which can be calculated as
γΓA = γΓB = 0°. The theoretical predictions are in good agreement
withthesimulationresults inFigures 9B, C.Theaboveresultsconfirm
that topological zero refraction can be achieved by in-plane bulk
elastic waves within such elastic solid systems in different fluid and
solid environments.

Then, we investigated the effect of temperature on the
topological zero refraction characteristics. The acoustic response
of the topological acoustic system in different background media
at different temperatures and an excitation frequency of 21.2 kHz
was calculated, as shown in Figure 10. At the temperature of 20°C,
the topological refraction characteristics under both water and
polyurethane background media become chaotic and irregular [as
showninFigures 10A, C].Then,we increase the temperature to60°C,
and the acoustic system in both backgroundmedia can present clear
topological zero refraction characteristics [Figures 10B, D]. This
shows that the increase in temperature can change the topological
characteristics of the acoustic system.The topological zero refraction
transmission frequency range can be effectively controlled by
temperature tomeet the noise and vibration control requirements in
different environments.

6 Conclusion

In this paper, topologically protected edge states of bulk elastic
waves are realized in a two-dimensional two-component phononic
crystal, and the effect of temperature on the topological bandgap and
topological zero-refraction properties are analyzed and discussed.
First, the effect of temperature on the band structure of acoustic
wavecrystals is investigatedbynumerical calculationsandtheoretical
analysis. Then, the refractive properties of the edge state outcoupled
to free space are investigated, and it is found that the topological
zero-refraction properties are independent of the incident angle
and exhibit metamaterial properties with near-zero refractive index.
Finally, some numerical examples demonstrate the modulation of
the topological zero-refraction transmission frequency achieved
by controlling the temperature. This research can be used to
flexibly control and direct acousticwaves, providing a corresponding
reference for underwater communication and intelligent control of
vibration, among others.
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