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As demand for sustainable building materials rises, the use of waste rubber in
civil engineering is gaining attention. This study proposes a method to modify
waste rubber using polyvinyl alcohol (PVA) to enhance its material properties
and expand its applications. A dataset was created focusing on the mechanical
strength of cementitious materials incorporating PVA-modified waste rubber,
and multiple machine learning methods were used to develop regression
prediction models, particularly evaluating the support vector regression (SVR)
model. Results show that the SVR model outperforms others, achieving mean
squared errors of 1.21 and 0.33, and mean absolute errors of 2.06 and
0.15. Analysis indicates a negative correlation between waste rubber content
and the water-to-cohesive ratio (w/c) with strength indexes, while a positive
correlation exists between curing age and PVA. Notably, waste rubber content
significantly affects strength. Themechanical strength of cementitious materials
was notably enhanced by PVA-modified waste rubber, likely due to PVA's
dispersion and bridging effects. This study presents a novel approach to
sustainably recycle waste rubber, highlighting its potential in construction
materials.
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1 Introduction

The rapid economic development in our country has resulted in it becoming the world’s
largest consumer and producer of rubber and rubber products, leading to a significant
increase in the generation of waste rubber (Xiao et al., 2009; Ossola and Wojcik, 2014;
Thomas and Gupta, 2015; Chen et al., 2019). In the construction field, waste rubber has
been proven to be an effective additive for preparing construction materials with specific
applications (Lisi et al., 2004; Sukontasukkul, 2009; Richardson et al., 2011). However,
the incorporation of waste rubber can impair the mechanical properties of cement-
based materials (Eldin and Senouci, 1993; Mendis et al., 2017; Li et al., 2020; Steyn et al.,
2021; Mhaya et al., 2021). Recent research has focused on improving rubberized concrete
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TABLE 1 Chemical and mineral composition of OPC.

Component SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O LOI

% 22.95 8.9 3.3 57.36 2.36 2.75 1.67 0.65

FIGURE 1
XRD analysis results of OPC.

by surface treatments of waste rubber. Dong et al. applied silane
coupling agents to enhance performance of rubber (Dong et al.,
2013). Kumar et al. found sulfuric acid treatment improved the
bonding of rubber with cement paste (Kumar and Dev, 2021), while
He et al. validated urea, sulfonation, and NaOH modifications for
better bonding (He et al., 2021). Notably, studies have shown that
PVA,widely used as a construction adhesive in the building industry,
not only adsorbed rubber molecules effectively but was also non-
toxic and environmentally friendly (Fan et al., 2019; Yu et al., 2020).
Therefore, to further enhance the application of PVA-modifiedwaste
rubber in the construction industry, it is crucial to conduct research
aimed at improving its mechanical properties.

Additionally, to better guide engineering practices, many
researchers are now using machine learning models to develop and
analyze regression prediction models (Tu et al., 2022). In the field of
civil engineering, the in-depth application of machine learning has
greatly advanced the discipline (Papazek et al., 2020; Zhou, 2022).
The most frequent research involving machine learning focuses
on establishing regression models for the mechanical properties
of concrete, such as compressive strength and flexural strength
(Konstantopoulos et al., 2020; Cook et al., 2021; Zhang et al., 2021).
(Li et al., 2024) used ultra-high performance concrete (UHPC)
as the target object and identified cement, silica fume, steel
fibers, mineral powder, water-reducing agents, defoamers, and
water as the feature factors, then developed a nonlinear regression
model to predict the 28-day compressive strength of UHPC. They
employed RandomForest Regression (RF), Support VectorMachine
Regression (SVR), and Multi-Layer Perceptron Regression (MLP)

models, and found that the SVR andMLPmodels outperformed the
RF model, with predictions falling within a 5% confidence interval.
Asteris et al. (2021) established a large database considering the age
of mortar, water-cement ratio, particle size distribution, plasticizers,
and cement grade, and discussed the applicability of SVR, RF,
Decision Tree (DT), AdaBoost, and k-Nearest Neighbors (KNN)
models in predicting the compressive strength behavior of cement
mortar, concluding that RF and AdaBoost models demonstrated the
best regression prediction capabilities. Huang et al. (2021) were the
first to use machine learning methods to predict the mechanical
properties of carbon nanotube (CNT)-reinforced cement-based
composites, and they extensively tuned the model parameters to
achieve optimal prediction results. Sensitivity analysis using the
Jacobian matrix indicated that the length of CNTs had the most
significant effect on the compressive strength of the composites,
while curing time had the greatest impact on the flexural strength,
providing a solid basis for future experimentalmix optimization and
condition design. Guan et al. (2022) proposed a machine learning
framework to predict the hardness, transverse rupture strength,
and fracture toughness of WC-Co alloys, analyzing the prediction
accuracy of KNN, MLP, RF, SVR, and Stacking Regressor (STK)
models. Their report showed that the MLP model outperformed
other models in predicting fracture performance. The results
reaffirm the remarkable significance of machine learning in guiding
the design of new materials (Lunt, 2015).

Therefore, this paper proposed a method utilizing PVA-
modified waste rubber to establish a strength index database for
cement-based materials filled with PVA-modified waste rubber
and used various machine learning methods to develop regression
prediction models. It analyzed the robustness of different feature
factors on strength, thereby providing theoretical guidance for
engineering practice. This research not only achieved the harmless
disposal of waste tire rubber but also expanded the application range
of waste rubber in civil engineering, carrying substantial practical
significance.

2 Materials and methodology

2.1 Materials

2.1.1 Ordinary portland cement (OPC)
The cement used in this study is P.O 42.5 cement produced by

Tianjin Jidong Cement Co., Ltd., which conformed to the national
standard GB175-2007. The cement exhibited a deep gray granular
appearance.The chemical composition was provided in Table 1, and
the XRD analysis results were presented in Figure 1.

2.1.2 Waste rubber particles
The waste rubber particles used in this study were produced

by Tianjin Kewei Rubber Factory, with an apparent density of
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TABLE 2 Chemical and mineral composition of the waste rubber particles.

Component Rubber
hydrocarbons

Carbon black Acetone
extract

Isoprene Ash Water Fiber Metal Others

% 45.20 25.80 14.20 12.10 0.90 0.80 0.50 0.08 0.42

FIGURE 2
The morphology of the waste rubber particles.

1,050 kg/m3. The maximum particle size of the waste rubber was
2.5 mm, with over 80% of the particles having a size between 1
and 2 mm. Additionally, the chemical composition of the waste
rubber particles was detailed in Table 2, and their morphology
was shown in Figure 2.

2.1.3 Polyvinyl alcohol (PVA) powder
The PVA used in this study was produced by Shandong Yousuo

Chemical Technology Co., Ltd. and was characterized by low water
solubility. The macroscopic appearance of the PVA was a white
powder with a mesh size of 160, while the microscopic morphology
exhibited a particulate structure, as shown in Figure 3.

2.1.4 Other chemical reagents
The chemical reagent used in this study was primarily

isopropanol, employed to terminate the cement hydration process.
Detailed information was provided in Table 3.

2.2 Macro-experimental methodology

2.2.1 Preparation of PVA solution
Themodifier used in this study was a PVA solution with a mass

fraction of 0.1%. However, PVA was not readily soluble in water at
room temperature. Therefore, the preparation of the PVA solution
was carried out using a constant-temperature magnetic stirrer, with
the temperature set at 75°C, as shown in Figure 4.

2.2.2 Tests for mechanical properties
The fundamental performance of cement-based materials was

the mechanical properties. In this study, the mechanical properties
of the specimens were tested using a YAW-300C fully automatic
compression testing machine produced by Jinan Shidai Test
Machine Co., Ltd. The strength indicators obtained from the

experiments (compressive strength and flexural strength) were used
as the dataset for the machine learning models.

2.3 Machine learning models

2.3.1 Least-squares linear regression
Linear regression (LR) is one of the most basic and

straightforward regression models, which considers a linear
relationship between the objective function and various influencing
factors. The schematic representation of LR regression was shown
in Figure 5 (Lunt, 2015; Cai et al., 2020). In the LR algorithm, a
series of coefficient values corresponding to different influencing
factors were provided to represent the feature values through a
linear combination. The mathematical expression is given below:

̂y(ω,x) = ω0 +ω1x1 +⋯+ωpxp

Where, ŷ represents the predicted value, ω0, ω1, ., ωp represent
the weight coefficients of different eigenvalues, and x1, ., xp represent
the eigenvectors corresponding to different eigenvalues.

In LR algorithms, the least squares method is one of the most
common and fundamental approaches. It addresses the following
mathematical problem by minimizing the sum of the squared
residuals between the observed targets from experimental data and
the predicted targets obtained through linear regression:

ω = (ω1,⋯,ωp)

min
ω
‖Xω− y‖22

Where, ω represents the weight coefficients, X represents the
eigenvectors and y represents the true values.

2.3.2 Support vector machine regression
Support Vector Machine Regression (SVR) is a supervised

learning algorithm that constructs a hyperplane or a set of
hyperplanes in a high-dimensional or infinite-dimensional space
to perform regression and outlier detection on experimental
data (Moguerza and Muñoz, 2006). For a given set of regression
data, its computational form was illustrated in Figure 6
(Yu et al., 2018; Biswas et al., 2023). It was generally believed that
good separation was achieved by maximizing the margin between
the hyperplane and the nearest training data points (known as the
functional margin) in any class. Typically, a larger margin resulted
in lower generalization error of the classifier.

For a specific set of feature vectors (consisting of experimental
data in this study), SVR can solve the following mathematical form
of the problem:

min
ω,b,ξ,ξ∗

1
2
ωTω+C

n

∑
i=1

ξi + ξ∗i
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FIGURE 3
The morphology of PVA: (A) macro-morphology; (B) micro-morphology, ×2000.

TABLE 3 Detailed information of the isopropanol.

Item Chemical formula Purity Manufacturer

Isopropanol CH3CHOHCH3 AR Myriad Shanghai

FIGURE 4
The constant-temperature magnetic stirrer.

With certain restrictions:

yi −ω
TΦ(xi) − b ≤ ε+ ξi

FIGURE 5
Schematic diagram of LR calculation.

ωTΦ(xi) + b− yi ≤ ε+ ξ
∗
i

ξi,ξ∗i ≥ 0, i = 1,⋯,n

Where, ω represents the weight coefficient of the eigenvalues, b
represents the deviation coefficient,C represents the penalty factor, ε
is the given interval, ξi and ξi ∗ , represents the introduction of slack
variables.

In the SVR regression calculation process, the core component
is the use of a kernel function for analytical computation. A kernel
function is a type of function that takes vectors from the original
space as input and returns the dot product of vectors in the
feature space (where the transformed data space may be high-
dimensional). The choice of kernel function significantly affects the
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FIGURE 6
Schematic diagram of SVR calculation.

final computation results and prediction accuracy in SVR. Common
kernel functions include the Linear kernel function, Polynomial
kernel function, GaussianRadial Basis Function (RBF), and Sigmoid
function. Their functional expressions are as follows.

(1) Linear kernel function:

k(x,x′) = ⟨x,x′⟩

(2) Polynomial function:

k(x,x′) = (γ⟨x,x′⟩ + r)d, γ > 0

Where, γ is the tuning parameter of the polynomial function,
r is an optional constant, and d is the highest order term of the
polynomial function.

(3) Gaussian radial basis function:

k(x,x′) = exp(−γ‖x− x′‖2), γ > 0

Where, γ is the tuning parameter.

(4) Sigmoid function:

k(x,x′) = tanh(γ⟨x,x′⟩ + r)

Where, γ is the tuning parameter, r is an optional constant.

2.3.3 Random forest regression
Random Forest Regression (RF) is an averaging algorithm based

on random decision trees (Lund et al., 2011; Liu K. et al., 2023).
Unlike random decision trees, RF is not determined by specific
feature values or combinations, thereby enhancing randomness and
achieving better ensemble performance, resulting in lower variance

and further mitigating overfitting issues during the fitting process
(as shown in Figure 7) (Cook et al., 2021; Surehali et al., 2024). In
a random forest, each tree is constructed from samples drawn
with replacement (i.e., bootstrap samples) from the training set.
When splitting each node, the best split is found from a randomly
selected subset of all input features or their sizes. This approach
enables RF to handle nonlinear data effectively and provides faster
processing speeds. Additionally, RF can assess the interactions
between feature factors during training and further analyze the
importance of different feature factors, thus offering better guidance
for engineering practice.

2.3.4 Integrated algorithmic regression
The implementation of Ensemble Regression involves

combining multiple individual models to enhance machine
learning performance, often resulting in better predictive outcomes
compared to single models (Nilsen et al., 2019; Yang et al., 2024). In
this study, the ensemble method employed involves simultaneously
training the aforementioned SVR and RF models using the same
training data. The final regression analysis decision is made
based on a voting mechanism, where the principle of majority
rule is applied to determine the outcome. This approach is
used to evaluate the accuracy and effectiveness of the machine
learning models under the ensemble regression framework
(Han et al., 2020; Lapeyre et al., 2021).

2.3.5 Multilayer prceptron-artificial neural
network regression

Artificial Neural Networks (ANNs) represent a category of
machine learning models based on the neural synaptic networks
of animals, used for distributed parallel information processing
algorithms (Zhang, 2016; Kumar et al., 2024). The constructed
neural network relies on the complexity of the system and adjusts
the connections between internal data to achieve the intended
information processing goals (Murthy et al., 2024; Liu et al., 2024).

The Multilayer Perceptron (MLP) is a fundamental type of
artificial neural network. As a feedforward neural network, it
consists of multiple layers of neurons and is commonly used for
solving classification and regression problems. As shown in Figure 8,
the most basic structure of an MLP comprises a single input
layer, a single hidden layer, and a single output layer, with
each layer consisting of one or more neurons. Each neuron
performs a weighted sum of input values and produces an output
through an activation function. During this process, MLP utilizes
a backpropagation algorithm to recalculate the weights and biases
between neurons, aiming to minimize the error between the
predicted and actual outputs to achieve higher accuracy. During
training, the gradient of the loss with respect to the weights is
expressed as follows:

Loss( ̂y,y,W) = 1
2n

n

∑
i=0
‖ ̂yi − yi‖

2
2 +

α
2n
‖W‖22

2.4 Machine learning models

The evaluation of different machine learning models can be
carried out through various evaluation metrics, including having
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FIGURE 7
Fitting problems of machine learning models.

FIGURE 8
Basic structure of MLP-ANN.

TABLE 4 Descriptive statistics of dataset characteristics.

Parameters Unit Minimum Maximum Average

Rubber content % 0 25 12.5

w/c ratios 0.3 0.4 0.35

Ages Day 3 28 13

PVA 1 2 1.5

Compressive
strength

MPa 21.5 63.3 40.09

Flexural
strength

MPa 4.4 13.9 8.93

mean absolute error (MAE), mean square error (MSE), root mean
square error (RMSE), and correlation coefficient R2, which are
mathematically expressed as follows:

MAE = 1
n

n

∑
i=1
| ̂yi − yi|

MSE = 1
n

n

∑
i=1
( ̂yi − yi)

2

RMSE = √ 1
n

n

∑
i=1
( ̂yi − yi)

2

R2 = 1− RSS
TSS
= 1−

n

∑
i=1
( ̂yi − yi)

2

n

∑
i=1
(yi − yi)

2

Where, yi represents the true value, ŷi represents the predicted
value, ӯi represents the mean of the true value, and n represents the
number of samples.

3 Models establishment

3.1 Establishment of data sets

The data used in this study was derived from the compressive
strength and flexural strength of cement-based materials filled
with PVA-modified waste rubber. The influencing factors, or input
features, include rubber content, water-to-cement (w/c) ratio, age,
and the presence of PVA.Compressive strength and flexural strength
were considered as the output variables. The rubber content values
are 0%, 5%, 10%, 15%, 20%, and 25%; the w/c ratio were 0.3, 0.35,
and 0.4; the ages were 3, 7, 14, and 28 days; and the presence
of PVA was denoted by one and 2, representing 0% PVA and
0.1% PVA, respectively. Table 4 presented the characteristics of the
collected data, including units, maximum values, minimum values,
and averages. Figures 9, 10 illustrated the distribution of data in the
compressive strength and flexural strength datasets, respectively.

The accuracy of machine learning models is influenced by the
input features; thus, it is necessary to conduct a correlation analysis
of the influencing factors for both compressive strength and flexural
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FIGURE 9
Distribution of data in the compressive strength dataset.

strength models to verify their validity (Serban et al., 2024). In this
study, Pearson correlation coefficients were used to analyze the
correlations between the influencing factors (input features), with
results presented in Figures 11, 12. The Pearson correlation analysis
showed that, for both compressive strength and flexural strength
models, the correlation coefficients between different influencing
factors were close to 0, indicating that there was no significant
correlation between the factors and that each factor was necessary
and non-negligible (Janiesch et al., 2021).

For both compressive strength and flexural strength, the rubber
content was identified as themost influential factor, with correlation
coefficients of −0.76 and −0.81, respectively. In contrast, the effect
of PVA on compressive strength and flexural strength was relatively
minor, with correlation coefficients of 0.13 and 0.17, respectively.
Among the four influencing factors, rubber content and w/c ratio
were negatively correlated with both compressive strength and
flexural strength, while age and PVA exhibited a positive correlation
with these properties. Specifically, an increase in rubber content
and w/c ratio decreased the mechanical properties of PVA-modified
waste rubber-filled cement-based materials, whereas an increase in
age and the presence of PVA enhanced the mechanical properties

of cement-based materials, consistent with the experimental results
discussed earlier.

3.2 Development and tuning of machine
learning models

In this study, the model was developed with a ratio of 1:3
between the test set and the training set, using 25% of the
compressive strength and flexural strength dataset to evaluate the
model’s accuracy and generalization ability.

Furthermore, considering the substantial mean differences
among various influencing factors (as shown in Table 4), it was
essential to standardize the dataset before training to ensure the
effectiveness and accuracy of the machine learning models. The
formula for data standardization was as follows:

x′ =
x− μ
σ

Where, μ represents the mean of the feature data and σ
represents the standard deviation of the feature data.
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FIGURE 10
Distribution of data in the flexural strength dataset.

In each model, some hyperparameters needed to be adjusted
to achieve superior predictive performance. In this study,
hyperparameters were optimized using learning curves and grid
search, considering cross-validation while exploring the given
parameter combinations. Ten-fold cross-validation was employed
in this study to iteratively adjust the hyperparameters of each
model, improving the accuracy of the predictions to meet our
requirements.

Figure 13 illustrated the principle of cross-validation. The
10-fold cross-validation used in this study involved randomly
dividing the sample dataset into 10 subsets, using one subset
as the test set while the remaining subsets were used as
the training set. The mean squared error (MSE) of each
iteration was averaged to evaluate the parameter adjustments
and assess the accuracy of the model under the current
hyperparameters, ultimately determining the optimal combination
of hyperparameters.

In summary, the steps of a complete machine learning model
implementation were shown in Table 5.

4 Results and discussion

4.1 Model hyper-parameterization

Based on the results of 10-fold cross-validation, the final
model parameters for this study, after multiple adjustments, were
summarized in Table 6. The hyperparameters listed in Table 6
were determined using learning curves and grid search, while the
hyperparameters for other models and those not listed were set to
the default values. Notably, during the hyperparameter tuning of the
SVR model, we observed that the gamma value for the compressive
strength model was lower than that for the flexural strength model,
whereas the C value was higher. This suggested that the SVR
model was more prone to overfitting when predicting compressive
strength, which adversely affected the prediction accuracy. Indeed,
during model validation, overfitting was more prevalent in the
predictions of compressive strength compared to flexural strength.
Nevertheless, the issue was effectively addressed by 10-fold
cross-validation.
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FIGURE 11
Analysis of Pearson’s correlation coefficient in compressive strength modeling.

FIGURE 12
Analysis of Pearson’s correlation coefficient in flexural strength modeling.
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FIGURE 13
Schematic of 10-fold cross-validation.

TABLE 5 Steps in machine learning model establishment.

Steps Processes

1 Load various module packages required by the model

2 Read pre-prepared data files

3 Divide the training set and test set according to a certain ratio

4 Normalize the data set.

5 Instantiate the model after parameter tuning and train on the
training set.

6 Perform prediction on the divided test set.

7 Calculate and output each model evaluation index

TABLE 6 Machine learning model hyper-parameterization.

Model Parameters Value_
compressive

Value_
flexural

SVR

kernel rbf rbf

gamma 0.081 0.098

C 77.89 47.03

epsilon 0.01 0.042

RF
n_estimators 20 125

max_depth 8 -

MLP-ANN

solver lbfgs lbfgs

hidden_layer_
sizes

(204) (172)

activation tanh logistic

4.2 Comparison of actual and predicted
values

The actual values from the test set were compared with the
predicted values generated by each model to visually assess the
accuracy of themachine learningmodels’ predictions. Figures 14, 15
showed that, whether in the compressive strength regression
prediction model or the flexural strength regression prediction
model, all machine learning models exhibited excellent regression
prediction capabilities. Specifically, all predicted values in the test
set fall within ±20% of the actual values, with no outliers detected,
indicating that themachine learningmodels demonstrated excellent
regression prediction performance and were suitable for application
and promotion in engineering practice.

4.3 Evaluation metrics analysis

Table 7 summarized the final evaluation metrics for the
compressive strength and flexural strength regression prediction
models to clearly analyze the regression prediction capabilities of
different models.

For the compressive strength regression prediction model,
the SVR, Ensemble, and MLP-ANN models exhibited high R2

values of 0.98 on the test set, indicating excellent accuracy and
generalization ability in predicting compressive strength. Among
these, SVR and MLP-ANN models performed the best, with the
smallestMAE,MSE, and RMSE, and the highest R2. Specifically, the
evaluationmetrics for the SVRmodel were 1.21, 2.06, 1.43, and 0.98,
respectively, while those for the MLP-ANN model were 1.05, 2.14,
1.46, and 0.98, showing clear superiority over other models.

In the flexural strength regression prediction model, the
SVR, Ensemble, and MLP-ANN models also stood out, with R2

values exceeding 0.95 in the flexural strength test set. The SVR
model performed the best, with the smallest MAE, MSE, and
RMSE, and the highest R2 values of 0.33, 0.15, 0.39, and 0.96,
respectively, which indicated that the SVR model achieved the
highest prediction accuracy and generalization ability in the flexural
strength regression model.
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FIGURE 14
Comparison of actual and predicted values in the regression prediction model of compressive strength: (A) LR; (B) SVR; (C) RF; (D) Ensemble;
(E) MLP-ANN.

Conversely, the LR model performed the worst in
both the compressive strength and flexural strength
regression prediction models. This may be due to the

dataset exhibiting more non-linearity, making simple linear
fitting less effective in capturing the relationships between
influencing factors and output features. Nevertheless,
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FIGURE 15
Comparison of actual and predicted values in the regression prediction model of flexural strength: (A) LR; (B) SVR; (C) RF; (D) Ensemble; (E) MLP-ANN.

the LR model’s R2 values were still greater than 0.90,
reflecting its reasonably good regression prediction capability
in an absolute sense. Therefore, the LR calculation

results were retained in this study and used for the
robustness analysis of the influencing factors in subsequent
sections.
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TABLE 7 Summary of machine learning model evaluation metrics.

Models Compressive strength Flexural strength

MAE MSE RMSE R2 MAE MSE RMSE R2

LR 2.52 9.01 3.00 0.92 0.52 0.36 0.60 0.90

SVR 1.21 2.06 1.43 0.98 0.33 0.15 0.39 0.96

RF 1.91 4.77 2.18 0.96 0.44 0.26 0.51 0.93

Ensemble 1.26 2.29 1.51 0.98 0.35 0.18 0.42 0.95

MLP-ANN 1.05 2.14 1.46 0.98 0.34 0.17 0.41 0.95

FIGURE 16
Characteristic importance analysis based on line model (LR) and tree model (RF): (A) compressive strength; (B) flexural strength.

4.4 Characteristic importance analysis

Feature importance analysis in machine learning models can
effectively assess the impact of different influencing factors (input
features) on the dependent variable (output feature). In the LR
model, a series of fitting coefficients for the influencing factors
were provided, where the magnitude of these coefficients’ absolute
values could directly reflect the level of influence of each factor.
In the RF model, feature importance was evaluated based on
how frequently different influencing factors were used in the
tree model or their importance in splitting decisions. Figure 16
presented the normalized importance values of these factors. In
both the compressive strength and flexural strength regression
prediction models, the feature importance rankings given by the
LR and RF models were consistent. The importance rankings for
the influencing factors were as follows: rubber content > age >
w/c ratio > PVA. The results indicated that rubber content and age
were the two most significant variables affecting the compressive
and flexural strengths of PVA-modified waste rubber-filled cement-
based materials, while the w/c ratio and PVA have relatively smaller
effects. The predictions aligned with the findings of Zvonarić et al.

(2024) and Liu L. et al. (2023). This served to validate the reliability
of the model.

However, not allmachine learningmodels provided self-ranking
of features like LR and RF models. Therefore, it was necessary to
introduce a special calculation method applicable to any model. In
this study, SHAP values were used for additional feature importance
analysis. SHAP, which stood for SHapley Additive exPlanations,
originated from cooperative game theory (Wang et al., 2024). For
each sample to be predicted, themodel generated a prediction value,
and SHAP values represented the contribution of each feature to this
prediction for each sample.Thekey advantage of SHAPwas its ability
to reflect the degree of influence of each feature on every sample and
to indicate the direction of the feature’s effect (positive or negative).

Figure 17 presented the SHAP value analysis for the compressive
strength and flexural strength regression models, respectively. For
PVA-modified waste rubber-filled cement-based materials, rubber
content and age were identified as the two most significant
factors, consistent with the feature importance results from the
LR and RF models. Additionally, the SHAP values for rubber
content and w/c ratio were negative, while age and PVA had
positive impacts on the output features. The results suggested
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FIGURE 17
Summary charts for SHAP interpretation: (A) Compressive strength; (B) Flexural strength.

that increasing rubber content and w/c ratio negatively affected
the mechanical properties of PVA-modified waste rubber-filled
cement-based materials, whereas increasing age and adding PVA
significantly positively influence the mechanical properties of
the materials. The positive effects of PVA were encouraging.
Lotfy et al. (2024) observed that the enhancement in mechanical
properties may be attributed to the function of the modified
material as a dispersant, which improved the wettability of cement-
based materials and accelerated the hydration rate. Conclusions
similar to those presented here were reached by Zhu et al. (2024).
These findings indicated that the application of PVA represents
a novel approach for the modification of rubber-cement-based
materials. Indeed, prior research conducted by Niu and colleagues
demonstrated that PVA can enhance the toughness of rubber-
cement-based materials through a “bridging effect,” as substantiated
by digital image correlation (DIC) technology (Zhang et al., 2023).

5 Conclusion

Based on experimental data, this study investigated the
compressive and flexural strength of cement-based materials filled
with PVA-modified waste rubber. The following main conclusions

were drawn from the construction and evaluation of various
machine learning regression prediction models.

(1) All employed machine learning models demonstrated good
performance in predicting the compressive and flexural
strength of cement-based materials modified with waste
rubber and PVA. Specifically, the Support Vector Regression
(SVR) model exhibited superior performance with a mean
squared error (MSE) of 1.21 and 0.33, and a mean absolute
error (MAE) of 2.06 and 0.15 on the test set. The prediction
errors for this model were consistently within 20%. Overall
evaluation metrics indicated that the SVR model achieved the
best prediction accuracy and generalization ability compared
to other models.

(2) The use of PVA-modified waste rubber significantly enhanced
the mechanical strength of cement-based materials. This
modification approach provides a means to enhance material
performance in practical engineering applications, while
also effectively utilizing waste rubber resources, thereby
reducing environmental impact. Economically, the application
ofmodified waste rubber can lowermaterial costs and improve
the overall performance of the materials.

(3) Analysis using model-internal evaluation metrics and
SHAP values revealed that rubber content and water-to-
cement ratio negatively correlated with both compressive
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and flexural strength, while curing age and PVA showed
positive correlations with these strength indicators. Among all
influencing factors, rubber content had the most significant
impact. Our study indicates that the application of PVA-
modified waste rubber in cement-based materials has
significant engineering implications and practical value. The
SVR model excelled in predicting these effects but attention
should be given to the model’s sensitivity to certain conditions.

It is worth noting that the model presented in this study may
have certain limitations, such as potential overfitting and biases due
to hyperparameter tuning, a dataset that may not be sufficiently
large due to computational constraints, and a more comprehensive
sensitivity analysis of hyperparameters. These limitations will be
addressed in future work.
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