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This study explores the synthesis and characterization of photochromic
Polyvinylidenefluoride/Polyvinylpyrrolidone (PVDF/PVP)-based membranes,
prepared through an in situ thiol-ene click reaction by incorporating viologen
derivatives with different counter ions. Viologens are well-known for their
light-sensitive properties and ability to change color, making them useful in
various optoelectronic applications. The membranes developed in this study
exhibit significant improvements in their interactions with light as a result of
improved morphology and enhanced ionic conductivity (≈4 × 10−4 S cm–1) with
higher porosity (Ra: 11.26–33.76 nm) compared to conventionally prepared
membranes. These membranes show the ability to block almost all ultraviolet
(UV) and a 90% of visible light after irradiation. Thanks to these properties,
the membranes undergo visible color changes when exposed to sunlight,
making them suitable for photochromic and thermochromic applications. The
findings of this study could contribute to the development of innovative coating
materials that enhance energy efficiency, potentially being applied to buildings,
automotive windows, and other surfaces.
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1 Introduction

Photochromic materials, which undergo reversible photoisomerization from a colorless
to a colorful state in the presence of ultraviolet (UV) or visible light spectrum, have
the unusual capacity to revert to their initial state in the absence of light via visible
(Vis) light or thermal relaxation (Tian and Zhang, 2016). These materials are widely
used in aesthetical decorations, photography, memory, switches, display, photo mechanics,
protection as camouflage, and photometry fields and these applications received high
interest due to their actual or future use potential (Wang et al., 2010; Zhang et al., 2013;
Shi et al., 2019; Ru et al., 2021). This inherent reversibility highlights their prospective uses
in photoelectric disciplines, specifically in the creation of smart materials such as energy-
saving membranes. Photochromic materials have been extensively studied and can be split
into two major groups: organic materials (e.g., diarylethene, azobenzene, and spiropyran)
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(Javed et al., 2016; Tsuruoka et al., 2016; Kaiser et al., 2017;Wu et al.,
2017) and inorganic (e.g., rare earth complex-es, metal halides,
and transition metal oxides) (Duncan et al., 1970; Ju et al., 2013;
Chen et al., 2015a; Chen et al., 2015b; Du et al., 2024). In general,
inorganic compounds offer great thermal stability, high strength,
and diverse coordination chemistry, whereas organic compounds
are diverse and simple to adjust or process (Tang et al., 2022).
On the other hand, viologens represent an important class of
photochromic materials (Kan et al., 2017). Due to its electron-
accepting characteristics, viologen has been extensively studied
in also electrochromics (Pathak and Moon, 2022), photovoltaics
(Sharma et al., 2003), battery (Sen et al., 2013) and supercapacitor
(Ambrose et al., 2023) applications since Michaelis discovered it
in 1932 (Michaelis, 1935). One of the most remarkable aspects of
viologen is its photoinduced color modification, which occurs when
electrons from the counter anion are transferred to the viologen
dication via a photoinduced effect (Xu et al., 2007).

Polyvinylidene fluoride (PVDF) stands as a semi-crystalline
polymer distinguished by its semi-fluorinated nature, comprising
CH2 and CF2 bonds (Dallaev et al., 2022). Notably, PVDF
exhibits superior mechanical strength when compared to
polytetrafluoroethylene (Teflon) (Rajeevan et al., 2021). PVDF
membrane has been intensively researched as a viable candidate
to use in membrane contactors and membrane distillation due
to its great mechanical strength, outstanding thermal stability,
and excellent chemical resistance (Liu et al., 2011). The polymer
boasts commendable thermal stability, chemical resistance to
ultraviolet and higher energy radiation, and resistance to a
wide spectrum of chemicals and solvents, as documented by
Lee et al. (2019). Subsequently, the purpose of using PVDF in
this research is to subject PVDF-doped membranes to high-
energy radiation under UV light for enhanced analysis. Besides,
Polyvinylpyrrolidone (PVP) is also explored in photochromic
applications due to their ability to form stable polymer matrices
that can host photoactive compounds (Kozlov et al., 2019). In such
systems, PVP’s hydrophilic nature aids in the uniform dispersion
of photochromicmolecules, enabling efficient light-induced color
changes. This makes PVP membranes suitable for use in smart
coatings, optical devices, and UV-sensitive materials, where
their transparency and flexibility further enhance performance
(Li C. et al., 2020; Li Z. et al., 2020; Kayani et al., 2021).

The thiol-ene click reaction is characterized by the specific
and efficient interaction between a compound containing a
thiol group and another containing an alkene group. This
reaction proceeds through a radical-mediated mechanism, which
is initiated by light or radiation (Hoyle and Bowman, 2010). Due
to these characteristics, thiol-ene systems hold significant value
in polymer science. Notably, their ability to react effectively at low
temperatures and across a broad range of solubilities makes them
particularly suitable for life sciences and biomedical applications
(Davis and Carter, 2015). In polymerization processes, the thiol-
ene click reaction facilitates the synthesis of highmolecularweight
polymers whose adaptable structures permit the incorporation
of various functional groups into the polymer chain (Davis and
Carter, 2014). Additionally, this method is crucial for creating
cross-linked network structures, which enhance the mechanical
and chemical properties of the polymers. Ultimately, these
cross-linked polymers are employed in membrane technologies,

notably in applications such as water purification and gas
separation (Martin et al., 2016). Thiol-ene-based membranes are
distinguished by their high selectivity and permeability, as well
as their chemical stability and mechanical robustness, thereby
contributing to sustainable environmental solutions (Davis et al.,
2011). Therefore, the thiol-ene click reaction, known for its high
efficiency and selectivity under UV radiation, is employed to
functionalize PVDF-doped membranes. This combination allows
for the precise modification of PVDF surfaces, enhancing their
performance in targeted applications.

Herein, this study is to demonstrate the photochromic
properties of PVDF/PVP-based membranes prepared by doping
with cross-linkable viologens containing different counter anions
(–BF4–, –ClO4

– or –PF6–) to adjust the ionic conductivity of
the membranes (Figure 1). The research aims to refine ion
exchange properties and morphological characteristics of the
membrane through fundamental characterization measurements.
Additionally, examining the absorbance/transmittance changes
under 366 nm and solar light revealed that the membrane
almost completely blocked all UV and visible regions after
light irradiation. Color changes under sunlight indicate a great
potential of M-ALV-X membranes for use as energy-saving
coating materials. This study provides essential results to guide
future research in developing cost-effective, high-performance
alternative membranes, thereby supporting the advancement
of materials science and enhancing smart energy-saving
technologies.

2 Results and discussion

First, 1,1′-diallyl-4,4′-bipyridinium bromide (ALV-Br) was
prepared from previously published procedures (Koyuncu
and Ayaşlıgil, 2023). Afterward, ALV-X molecules were
prepared using different salts using the ion exchange
method (See Supplementary Scheme S1). ALV-X structures were
characterized by FT-IR, 1H-NMR, and XRD analysis (See
Supplementary Figures S1–S5) The structural characterization
of M_ALV-X-based membranes, which were prepared with a
thickness of approximately 120 μm, was performed using the FT-
IR technique (Figure 2A).The presence of the PVP polymer in the
membranes enhances their hydrophilicity, notably reflected in the
O-H peak observed at about 3,300 cm–1 in the pure membrane.
When ALV-X was added to the membrane, the water retention
capacity of the membranes decreased due to more effective cross-
linking underUV light and a reduction in theO-Hbond transition
at 3,300 cm–1.A symmetricC-Hvibrationpeak is observedaround
2,900 cm–1. The absorption peak at 1,410 cm–1 is attributed to
−CH2 vibrations,with its intensitydiminishingduetothe influence
of viologen. At 1,185 cm–1, the C-C bond in PVDF is detected.The
peaks at 878and840 cm–1 are associatedwith theasymmetricC-C-
C stretching and C-F stretching vibrations of PVDF, respectively.
Besides, compared to the pristine PVDF/PVP membrane, peaks
corresponding to the C=O bonds of the PETMP cross-linker at
1,780 cm–1 and C-S bonds at 960 cm–1 are observed. Additionally,
peaks associated with the viologen moieties incorporated into
the structure are noted around 1,620 cm–1 and 1,170 cm–1. These
observed specific peaks indicate that the ALV-X photoactive
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FIGURE 1
Preparation of PVDF/ALV-X-based membranes.

FIGURE 2
FTIR analysis of pristine PVDF/PVP membrane (M) and viologen doped PVDF/PVP (M-ALV-X) (A) and XRD pat-tern of pristine PVDF/PVP membrane (M)
and viologen doped PVDF/PVP (M-ALV-X) (B).

structures have been successfully incorporated into the PVDF
membrane structure. The crystallinity of the membranes was
investigated by XRD measurements. Figure 2B shows the XRD
patterns obtained for PVDF-PVPmembranes containing different

viologens. The general features of the observed patterns prove
the existence of a semi-crystalline structure. The XRD pattern
of PVDF-PVP membranes showed the amorphous nature of the
sample with a peak around 2θ = 20.41. The crystal intensity
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FIGURE 3
AFM and SEM images of pristine PVDF/PVP-M (A) and M_ALV-BF4

– (B), M_ALV-ClO4
– (C), M_ALV-PF6

– (D) membranes.

TABLE 1 Ionic exchange capacity of M_ALV-X membranes.

Membrane Swelling
degree (%)

Water
absorption

(%)

IEC
(mmol g–1)

PVDF/PVP 8.0 19.5 0.59

M_ALV-BF4– 8.1 19.9 1.32

M_ALV-ClO4
– 8.2 19.7 1.18

M_ALV-PF6– 8.2 19.6 0.86

increased with the addition of different viologen salts in the XRD
pattern of the PVDF-PVP membranes (Bhatti et al., 2013). The
relatively more crystalline behavior of the M_ALV-X polymeric
membrane can be attributed to the crystalline properties of the
pristine ALV-X additive (See Supplementary Figure S5).

The AFM image of the pristine PVDF/PVP membrane shows
a very smooth surface (Ra: 4.32 nm). After the in situ cross-
linking reaction of ALV-X molecules within the membrane, an
increase in surface roughness and the formation of pinholes
are observed (Figure 3). Notably, the M_ALV-BF4– membrane
exhibits amore uniformly distributed hollow surface compared to
the other membranes. This uniformity can positively influence
the photochromic performance by enhancing ionic mobility
under light exposure. Conversely, due to the larger diameter
of the PF6− counterion, the roughness value (Ra) of the M_
ALV-PF6– membrane, measured at 33.76 nm, is higher than

FIGURE 4
EIS Nyquist plots of Nafion 117 and M_ALV-X membranes.

that of the other membranes (11.26 nm for M_ALV-BF4
–

and 14.35 nm for M_ALV-ClO4
–). SEM-EDX measurements

were performed on the membranes prepared to support AFM
measurements, determining both the chemical composition
and surface properties. Upon examining the SEM images, it
was observed that the addition of viologen derivatives to the
PVDF/PVP membrane resulted in the formation of rougher
surfaces, consistent with the AFM images. Additionally, SEM
images revealed somecracks andde-formationson thePVDF/PVP
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TABLE 2 Ion transport properties of Nafion 117 and M_ALV-X
membranes.

Membrane Thickness
(μm)

Resistance
(ohm)

Conductivity
(S cm–1)

M_ALV-BF4
– 120.1 12.3 3.11 × 10−4

M_ALV-ClO4
– 121.5 10.4 3.72 × 10−4

M_ALV-PF6– 119.8 19.8 1.92 × 10−4

Nafion 117 120.6 40.2 9.55 × 10−5

membrane surface, which were attributed to the crystalline
structure of the material. Furthermore, while a more uniform
porous structure distribution was observed in the M_ALV-BF4–

andM_ALV-PF6–membranes, itwasnoted that the porediameters
increased up to 400–500 nm due to the larger ion diameter of
M_ALV-PF6–. This porous structure enhances the surface area,
providing an advantage for various applications (Sun et al., 2016).
On the other hand, because of the EDX spectra of all membranes,
sulfur atoms, especially in the PETMP cross-linker, were observed
in all membranes by surface analysis. In addition, specific atoms
of other counter ions such as B, P, and Cl were also detected in the
membrane surface scan (See Supplementary Figure S6).

Furthermore, Table 1 presents the comparative swelling, water
retention, and ion conductivity of pristine PVDF/PVP (M) and
M_ALV-X-based membranes. Water absorption and swelling are
different outcomes. Since water absorption in the membranes
enhances ion transfer, it is a desirable property. As shown in
Table 1, the addition of ALV-X-based materials increased both
the water absorption rate and swelling values. Unlike water
absorption,maintaining low values is crucial, as excessive swelling
disrupts the membrane’s bond structure, leading to mechanical
instability. The PVDF membrane, known for its high chemical
resistance, showed swelling rates similar to the Nafionmembrane,
even with the addition of ALV-X. The quantity of ion groups
within a material is indicated by its ion exchange capacity (IEC),
which is a critical factor of conductivity and, consequently,
the transport properties of the membranes (Berezina et al.,
2008). IEC of the membranes increased significantly with the
addition of ALV-X. While the IEC of the pure PVDF membrane
was 0.59 mmol g–1, this value increased more than threefold
to 0.86 mmol g–1 at M_ALV-PF6–. With the addition of ALV-
ClO4

–, the IEC value reached 1.18 mmol g–1. The proportional
increase in water absorption supports the relationship between
water absorption and ion (OH–) transfer. The highest value was
obtained withM-ALV-BF4–, resulting in an IEC of 1.32 mmol g–1.
Thus, all M-ALV-X-based membranes displayed higher IEC
values compared to Nafion 117 tested under similar conditions,
while the swelling and water retention values remained within
acceptable limits (Sharma et al., 2021).

Besides, electrochemical impedance spectroscopy (EIS)
revealed the charge transfer behavior between the components
of ALV-X membranes due to counterion exchange (Figure 4).
Since the photochromic behavior of ALV-X depends on the
mobility of counterions, high ionic conductivity is desired to

achieve anexcellent photochromic effect.Thehighest conductivity
values, resulting from low resistance, were observed in M_ALV-
ClO4

– and ALV-BF4–, respectively. M_ALV-PF6– exhibited lower
mobility due to its relatively larger ionic radius and showed higher
resistance according to impedance measurements. Compared to
the conventional Nafion 117 membrane (Neves et al., 2010),
all viologen-based ALV-X membranes were exhibited high ionic
conductivity (Table 2).

The photochromic effect of the membranes was achieved by
applying a 366 nm UV lamp (30 W) to the surface and scanning
the UV-Vis transmittance spectrum between 300 and 1,100 nm in
10-second intervals. Before the light exposure, it was determined
that allmembranesweremore than 50% transmissive in the visible
region, despite their light brown color. It was observed that the
color of the membranes changed from light brown to dark green
as the transmissive in the visible region decreased due to the
bands centered at 610 nm and the shoulder bands at 575 nm,
670 nm, and 740 nm, which formed over time with the exposure
of 366 nm. Additionally, according to the kinetic measurements
taken at 610 nmunder 366 nm, the transmittance ofM_ALV-BF4–

decreased from49.6%to4.8% inapproximately 380 s. ForM_ALV-
ClO4

–, the 610 nm transmittance decreased from 44.6% to 6.7%
in 1,000 s. In the case of M_ALV-PF6–, this change occurred from
60% to 22.4% in approximately 1,800 s. The faster transmittance
changes andalso color turning response times inM_ALV-BF4– and
M_ALV-ClO4

– compared toM_ALV-PF6–maybe attributed to the
better ionmobility of BF4− and ClO4

− as counterions compared to
the larger ion PF6–. Moreover, as seen from the AFM images, the
more uniform particle distribution of M-ALV-BF4– and M-ALV-
ClO4

–whencompared to theM-ALV-PF6–mayalsobe effective for
the response time. In addition, after the membranes reached color
saturation, the 366 nm UV light was turned off and the bleaching
time was determined under room conditions. After 5,000 s, while
the transmittance ofM_ALV-BF4– at 610 nm increased from 4.8%
to 9.2%, this value increased from 6.7 to 17.2 for ALV-ClO4

–, and
from 22.4% to 35.7% for M-ALV-PF6–, respectively (Figure 5).
While a long time of approximately 12.5 h was required for M_
ALV-BF4– for the color to fully return and themembranes to return
to theirpreviousstate, itwasmeasured thatapproximately7and3 h
were required for M_ALV-ClO4

– and M_ALV-PF6
–, respectively

(See Supplementary Figures S7–S8). In addition, as a result of 10
consecutive scans, it was determined that the optical behaviors
of M_ALV-BF4

–, M_ALV-ClO4
–, M_ALV-PF6

– were preserved by
81%, 89% and 96%, respectively (See Supplementary Figure S9).

Figure 6 shows the color change of M_ALV-X membranes due
to the transmittance change observed over 10 min under natural
sunlight. Consistent with laboratory measurements conducted
under 366 nm light, M_ALV-BF4– and M_ALV-ClO4

– exhibited a
more intense color change in the UV and visible regions compared
to M_ALV-PF6–.

The chromic mechanism of viologens is based on a redox
reaction that causes a color change when exposed to energy (i.e.,
voltage or light, etc.,) (Li et al., 2024; Wu et al., 2024). Viologens,
typically 1,1′-disubstituted-4,4′-bipyridinium salts, have initially
no absoption band at the visible range thus they are colorless
(Monk et al., 2013). Upon light exposure, they undergo reduction,
where they accept an electron and form a radical cation, which is
colored. This process can occur due to the electron gaining energy

Frontiers in Materials 05 frontiersin.org

https://doi.org/10.3389/fmats.2024.1490273
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Tohtayeva et al. 10.3389/fmats.2024.1490273

FIGURE 5
UV-Vis transmittance changes of M_ALV-BF4

– (A), M_ALV-ClO4
– (B), M_ALV-PF6

– (C) and color changes kinetics of M_ALV-BF4
– (D), M_ALV-ClO4

– (E),
M_ALV-PF6

– (F) with and without light exposure.

FIGURE 6
UV-Vis transmittance changes of M_ALV-BF4

– (A), M_ALV-ClO4
– (B), M_ALV-PF6

– (C), and color changes after 10 min under natural sunlight (D,E).

from UV or visible light. The resulting radical cation should be
stable in membrane and exhibits a distinct color change due to
altered electron transitions (Striepe and Baumgartner, 2017). When

the light source is removed, the viologen radical cation is oxidized
back to its original colorless form, completing the reversible redox
cycle. As a result, ALV-X based membranes exhibit photochromic
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FIGURE 7
Proposed photochromic mechanism of M_ALV-X membranes.

effects as a result of the movements of counter ions with an external
light source (Figure 7).

3 Conclusion

This study effectively demonstrates the photochromic
properties of PVDF/PVP-based membranes doped with cross-
linkable viologens with various counter anions (–BF4

–, –ClO4
–,

or –PF6–). Themembranes exhibit enhanced morphology and ion
exchange ability. The porous structure increases the surface area,
advantageous for multiple applications. They nearly completely
block UV and visible light post-irradiation and show color
changes under natural sunlight, consistent with lab observations.
M-ALV-BF4

– and M-ALV-ClO4
– displayed faster and more

intense color changes than M-ALV-PF6–, attributed to better
ion mobility. These findings highlight the potential of M_ALV-
X membranes as energy-saving coatings. This research provides
valuable insights for developing high-performance, cost-effective
alternative membranes, advancing materials science, and smart
energy-saving technologies.
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