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The TC4 alloy has become an ideal material for marine engineering due to
its excellent corrosion resistance, high specific strength and light weight in
seawater. However, componentsmade fromTC4 alloys often come into contact
with parts such as propellers and turbine engine blades, leading to severe
fretting wear during operation and significantly reducing their service life. In
this study, the untreated TC4 alloy samples were used as the control group,
and the samples after 240 min of surface mechanical attrition treatment (SMAT)
were selected to investigate the fretting wear behavior under different load
conditions in artificial seawater environment. The results show that the friction
coefficient of TC4 alloy remains relatively unaffected by load variations, both
before and after SMAT treatment. With the increase of load, the fretting regime
gradually changed from gross slip to partial slip, and the wear depth, volume and
wear rate increased. Under the same load, the wear volume of TC4 alloy after
SMAT treatment is significantly reduced, indicating that its wear performance
has been improved.
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1 Introduction

Titanium alloys have become a new generation of advantageous materials in the
field of marine engineering due to their excellent corrosion resistance in seawater, high
strength, and low weight (Oryshchenko et al., 2015; Yan et al., 2018; Mountford, 2002).
However, in marine engineering, aerospace, and other fields, titanium alloy components
often come into contact with adjacent structural elements, such as propellers, turbine
engine blades, seawater pumps, moving parts, and fasteners (Najafizadeh et al., 2024;Wood,
2017). During actual service, these components are subjected to severe fretting wear, which
significantly reduces the service life of titanium alloys (Fayeulle et al., 1993). As a result,
fretting wear has become a key factor limiting the further development and application of
titanium alloys (Wang et al., 2020).

To address this challenge, researchers are continuously exploring methods to enhance
the fretting wear resistance of titanium alloys. Common surface treatment techniques
include surface mechanical attrition treatment (SMAT) (Yang et al., 2024), laser cladding
(Qin et al., 2024), ion implantation (Vlcak et al., 2019), plasma spraying (Feng et al.,
2022), and others. These treatments aim to improve the wear resistance of titanium
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alloys by altering the surface’s microstructure, hardness, and
oxidation resistance. Since fretting damage is closely related to
the surface properties of materials (Fu et al., 2000), effective
surface modification can not only greatly enhance the material’s
wear and corrosion resistance but also significantly improve its
fretting wear performance (Fu et al., 1998). Among various surface
treatment techniques, SMAT has garnered significant attention
for its distinctive advantages. SMAT utilizes mechanical energy
to induce intense plastic deformation in the surface layer of the
material, resulting in the formation of a nanocrystalline (NG)
structure (Kanou et al., 2013). This process not only produces a
highly active nano-structured surface with an enhanced atomic
diffusion rate but also preserves the intrinsic properties of the
material bulk (Kang et al., 2023). Furthermore, SMAT treated
materials exhibit a gradient microstructure between the surface
layer and the matrix (Lu and Lu, 2004). This gradual transition
along the depth direction strengthens the bonding between
the surface and the matrix, effectively preventing delamination
or separation (Wang et al., 2006). Such structural integration
significantly enhances the material stability under complex service
conditions.

In material service, surface degradation often triggers instability
(Sun et al., 2016). Lu et al. introduced the concept of surface
nanocrystallization, which involves creating a nanostructured
surface layer on metal materials without altering their bulk
structure or chemical composition. This technique aims to
improve the overall performance and service behavior of
the material by optimizing surface properties (Ke LU, 1999).
Research has shown that surface nanocrystallization can repair
surface damage, reduce surface roughness, and enhance the
nanocrystalline surface quality of titanium alloys such as
TC4 (Wen et al., 2010). Wen et al. further demonstrated
that surface nanocrystallization improves the fatigue limit of
TC4 alloy (Wen et al., 2010).

At present, the research focus of titanium alloy wear
mainly focuses on the friction and wear behavior in air
environment or seawater environment, and explores the influence
of environment or surface treatment on wear. Chen D. et al.
(2024) studied the effect of temperature on the friction and
wear behavior of TC4 alloy, and found that the increase of
temperature would change the wear mechanism, reduce the
wear volume and increase the wear dissipation energy. Chen
and Zhang (2016) studied the electrochemical and corrosion
wear behavior of TC4 alloy in artificial seawater, and
confirmed the synergistic effect between wear and corrosion.
However, there are few reports on the fretting wear and
protection of surface treated titanium alloy in seawater
environment.

Therefore, in view of the above problems, in this paper, the
original TC4 alloy sample was used as the control group, and
the SMAT 240 min sample with good wear performance after
SMAT was selected to carry out the fretting wear test under
different loads for a long time in seawater environment. The
protective effect of surface modification in seawater environment
was discussed. At the same time, the microstructure of TC4
alloy after surface mechanical grinding was studied to find a
technical way to improve the fretting wear resistance in seawater
environment.

2 Materials and methods

The fretting wear tests were performed on annealed TC4 alloy
and TC4 alloy samples subjected to 240 min of surface mechanical
attrition treatment (SMAT).The roughness (Ra) of TC4 alloy before
and after surfacemechanical treatment for 240 min is 366 and 1,133,
respectively. The Vickers hardness of the material was evaluated
before and after SMAT. At a depth of 60 μm from the treated surface,
the average hardness, based on five measurements, increased from
364 for the untreated material to 437 after 240 min of SMAT.
Similarly, at a depth of 160 μm, the average hardness increased
from 360 in the untreated state to 376 after 240 min of SMAT. The
original microstructure and chemical composition were shown in
Figure 1 and Table 1. The sample size was 30 mm × 30 mm × 6 mm.
The friction pair is Al2O3 ceramic ball (diameter: 5.953 mm). The
solution environment used in the fretting wear test was artificial
seawater environment. According to ASTM D1141-98 standard
(Singh et al., 2020), the artificial seawaterwith chemical composition
as shown in Table 2 was prepared, and its pH value was 8.2 ± 0.1 at
room temperature.

The frettingwear tests in seawater were conducted using the Rtec
multifunctional friction and wear tester (MFT-5000). A custom-
made liquid pool was installed on the high-frequency reciprocating
module to fix the fretting wear sample and accommodate
the solution, as shown in Figure 2. The tester was capable of
simultaneously recording three parameters: friction coefficient,
amplitude and load during the fretting wear test. The parameters
of fretting wear test were set as follows: loading force ranged from
2 to 10 N, fretting frequency was set at 10 Hz, amplitude was
150 μm, and 1 a total of 10,000 cycles were performed. To ensure
the repeatability of the results, three experiments were conducted
under each condition.

After the experiments, the specimens were cleaned
ultrasonically in alcohol for 10 min to remove any residual
debris. After drying, the worn surface morphology and cross-
sectional morphology of the wear scars on the TC4 alloy
plates were characterized by scanning electron microscope
(SEM) equipped with an energy dispersive spectrometer
(EDS) detector.

The wear volume and depth of the wear scars were quantified
using a white light interferometer, enabling the subsequent
calculation of the wear rate. Friction force and time data were
obtained from the multifunctional friction and wear tester, from
which the friction coefficient curve over time was derived to
assess the wear resistance of the TC4 alloy before and after surface
mechanical attrition treatment (SMAT). Based on these results, a
comprehensive investigation was conducted on the wear behavior
of the untreated and SMAT-treated TC4 alloy in artificial seawater
under varying load conditions.

3 Results and discussion

3.1 Effect of load on friction coefficient
(macro-level)

Figure 3A shows the friction coefficient curves of TC4 alloy after
240 min of SMAT treatment over the initial 40 cycles of fretting
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FIGURE 1
The microstructure of TC4 alloy under different microscopes. (A) Optical microscope, (B) Electron microscope.

TABLE 1 Chemical composition of TC4 alloy (At%).

Specimen Element

Ti Al V Fe C N H O

TC4 alloy Bal 6.26 4.07 0.16 0.0062 0.011 0.0053 0.12

TABLE 2 Chemical composition of artificial seawater.

Compound Concentration (g/L)

MgCl2·6H2O 11.10

CaCl2 1.16

SrCl2·6H2O 0.04

KCl 0.69

NaHCO3 0.20

KBr 0.10

H3BO3 0.03

NaF 0.003

NaCl 24.54

Na2SO4 4.094

wear under loads of 2 N, 4 N, 6 N, 8 N, and 10 N. Figure 3B shows
the friction coefficient curve over an extended 50,000-cycle fretting
wear period under these loads. From Figure 3A, it is evident that
the friction coefficient for all samples rises rapidly during the
initial 3 to 4 cycles. This is followed by a slower increase in the
friction coefficient over the subsequent 3 to 10 cycles, showing
a fluctuating pattern of down-up oscillations. In Figure 3B, after
approximately 10 cycles, the friction coefficient of each sample
exhibits a gradual upward trend, stabilizing more slowly with
increasing cycles. Additionally, it is noted that, within the first

10,000 cycles, the friction coefficient under all loads experiences
an initial increase before reaching a relatively stable state after
10,000 cycles.

During the initial 5 cycles, the friction pair enters a running-
in stage characterized by a low friction coefficient (Chen L. et al.,
2024), with a maximum value below 0.2. This lower coefficient
is attributed to the presence of an oxide film on the TC4 alloy
surface, which initially provides a lubricating effect. However, as
friction progresses, this oxide film begins to degrade, resulting in
increased adhesion and plastic deformation between the contact
surfaces, causing the friction coefficient to rise sharply. Between
3 and 10 cycles, the oxide film is fully worn away, exposing the
TC4 alloy to direct contact with the grinding ball. This exposure
enlarges the actual contact area, leading to a continued rise in
friction coefficient, though at a slower rate than the initial stage.
Around 10 to 10,000 cycles, a transition occurs from two-body
to three-body contact. At this stage, wear debris accumulates
between the contact surfaces, acting as a third body that provides
lubrication (Zabihi et al., 2024), similar to tiny rolling elements.
This accumulated debris moderates the friction coefficient, causing
it to stabilize. However, due to the rate of debris formation
exceeding its removal rate, localized increases in friction are
observed, though overall, the friction coefficient continues a gradual
climb from approximately 0.2 to over 0.5. Beyond 10,000 cycles,
continuous particle exfoliation and oxidation of wear debris occur
under fretting forces, creating a dynamic balance as the debris
formation rate equals its removal rate. This results in minimal
fluctuations in the friction coefficient, which stabilizes between
0.5 and 0.65.

From Figures 3A, B, it can be seen that during the fretting
wear process of 50,000 cycles, the friction coefficient for the 2 N
and 10 N loads remains relatively low, while the coefficients for
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FIGURE 2
Equipment for fretting wear. (A) Rtec multifunctional friction and wear tester, (B) Fretting wear platform.

FIGURE 3
The friction coefficient curves of TC4 alloy after SMAT treatment for 240 min under different cycles of 2 N, 4 N, 6 N, 8 N and 10 N loads. (A) 40 cycles,
(B) 50,000 cycles.

other loads exhibit similar values. This suggests that, under the test
conditions, there is no clear relationship between friction coefficient
and applied load (Chen et al., 2002).

3.2 Effect of load on surface morphology
(meso-level)

Figure 4 shows the two-dimensional wear surface profile of the
original TC4 alloy and after SMAT treatment for 240 min after
fretting wear for 50,000 cycles under 2 N, 4 N, 6 N, 8 N and 10 N
loads. It can be seen from the figure that under the condition of
2N load [Figure 4 (a1) and (a2)], both the untreated and SMAT
treatment samples exhibit an elliptical wear scar contour, indicating
a gross slip fretting regime under these conditions. The wear scar
width (along the fretting wear direction) and height (perpendicular
to the wear direction) were measured from the edge distances of
the wear scar. At a 4 N load [Figure 4 (b1) and (b2)], the width-
to-height ratio of the wear scar decreases, and the SMAT-treated
sample shows a smaller width-to-height ratio than the untreated
sample, suggesting a more focused wear pattern post-treatment. As
the load increases to 6 N [Figure 4 (c1) and (c2)], the width-to-
height ratio of both wear scars further reduces, nearing a ratio of

1, indicating an evolution in wear shape towards more symmetric
contours. When the load reaches 8N [Figure 4 (d1) and (d2)], the
wear scar of the SMAT treatment sample achieves a nearly circular
profile with a width-to-height ratio close to 1. Although the wear
scar of the untreated sample also trends toward circularity, it remains
slightly elliptical. Finally, under the 10 N load [Figure 4 (e1) and
(e2)], the edge contours of the wear scars for both the untreated
and SMAT treatment samples are approximately circular, signifying
an advanced stage of wear symmetry and uniform contact area
distribution at higher loads.

As the load increases from 2 N to 10 N, the wear scar
morphology tends to be approximately circular whether it is before
or after SMAT treatment, indicating that the wear mode of the
sample gradually tends from gross slip regime (GSR) to partial slip
regime (PSR) (Vingsbo and Söderberg, 1988; Garcin et al., 2015).
Moreover, the sample after SMAT treatment can approach the partial
slip regime faster with the increase of load. Under the same load, the
wear scar of the sample after SMAT treatment is smaller than that
of the sample without SMAT treatment, which reflects that SMAT
has a certain improvement effect on the wear resistance of TC4
alloy surface.

Figures 5, 6 show the SEM and EDS images of the wear
scars of TC4 alloy without SMAT treatment and after SMAT

Frontiers in Materials 04 frontiersin.org

https://doi.org/10.3389/fmats.2024.1520286
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Liu et al. 10.3389/fmats.2024.1520286

FIGURE 4
The two-dimensional wear surface profile of the original TA4 alloy and SMAT treatment for 240 treatment utes under different loads. (a1) and (a2) 2 N,
(b1) and (b2) 4 N, (c1) and (c2) 6 N, (d1) and (d2) 8 N, (e1) and (e2) 10 N.

treatment for 240 min under different loads, respectively. From
the SEM images, it can be observed that the wear scars on the
surface of the material are approximately elliptical or circular

whether before or after SMAT treatment, and the shape of the
wear scars tends to be circular with the increase of the load.
Notably, a ring of wear debris can be observed protruding from
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FIGURE 5
The SEM and EDS images of the wear morphology of the original TC4 alloy under different loads. (A) 2 N, (B) 4 N, (C) 6 N, (D) 8 N, (E) 10 N.

the matrix plane around the wear scars. This accumulation of
wear debris occurs due to the material removal during the wear
process, where debris is either expelled or squeezed out from the
grinding pit as a result of the relative motion between the ball

and the plate. The presence of this wear debris may influence the
friction and wear behavior by providing a lubricating effect (Blau,
1981), potentially contributing to a reduction in the
overall wear rate.
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FIGURE 6
The SEM and EDS images of the wear morphology of the SMAT treatment for 240 min under different loads. (A) 2 N, (B) 4 N, (C) 6 N, (D) 8 N, (E) 10 N.

It can be found from the EDS images that the content of Ti in
the wear scar is higher than in both the surrounding wear debris
and the matrix. This increased Ti concentration is attributed to
the presence of an oxide film on the substrate, which has been

removed from the wear scar area by the grinding ball during the
wear process.The overall O in the wear scar is lower compared to the
surrounding region, while theO concentrationwithin the grooves of
the wear scar area is elevated. This suggests that the majority of the
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FIGURE 7
The wear morphology SEM images of the original TA4 alloy and SMAT
treatment for 240 min under different loads. (a1) and (a2) 2 N, (b1) and
(b2) 4 N, (c1) and (c2) 6 N, (d1) and (d2) 8 N, (e1) and (e2) 10 N.

wear scar is less influenced by oxidation compared to mechanical
actions during wear. Consequently, oxidative wear does not appear
to be the primary wear mechanism; however, oxidation is more
pronounced in the grooves. In the wear debris area, the content of
O is significantly higher, while the Ti content is relatively low. This
indicates that the wear debris undergoes a complete reaction with
oxygen as it detaches from the matrix, potentially resulting in the
formation of TiOx wear debris products (Shi et al., 2023).

Figure 7 shows the wearmorphology SEM images of the original
TA4 alloy and SMAT treatment for 240 min under different loads. At
a load of 2N [Figure 7 (a1) and (a2)], the groove is basically evenly
distributed on the whole wear scar surface, with an abundance of
whitewear debris accumulating near these grooves.This observation
suggests that abrasive wear predominates at this stage, as abrasive

particles scratch the substrate, resulting in the formation of grooves
and the accumulation of wear debris around them.With the increase
of the load, the main area of the grooves gradually changes from
the whole wear scar to its edges. The central area of the wear
scar shows a reduction in the depth and presence of grooves,
leading to a smoother grinding surface. Consequently, the number
of abrasive particles also decreases. This trend is consistent with
the findings in Figure 4, which indicate that at a load of 2 N, the
fretting wear is carried out in a gross slip regime. However, as the
load increases, the fretting wear changes to the partial slip regime.
At the edges of the wear scar, relative motion occurs between the
grinding materials, resulting in the formation of numerous grooves
due to abrasive wear (Rajendhran et al., 2023). In contrast, in
the central region of the wear scar, the increase in load leads to
a decrease in groove depth, significantly reducing the extent of
abrasive wear. Here, adhesive wear emerges as the primary mode
of wear, highlighting the transition in wear mechanisms as load
conditions change.

3.3 Wear depth and wear volume

According to Figure 8, the wear scar exhibits an approximately
hemispherical crater shape. The part that is absent below the
matrix corresponds to the wear volume measured during the tests.
For the measurement of wear depth, as shown in Figure 8, it is
represented by the height difference ΔZ between the height R line
at the intersection with the wear scar and the height M line at the
intersectionwith thematrix profile.Thewear depth is recorded from
the center of thewear scar to determine itsmaximumdepth. All wear
depths referenced in this paper pertain to thismaximumwear depth.
The wear rate is calculated by formula (Arnaud et al., 2017):

W = V
t

(1)

Where V is the wear volume, t is the wear time.
Table 3 shows the wear depth, wear volume and wear rate

(Calculated by Equation 1) for both the original TC4 alloy sample
and the sample subjected to SMAT treatment for 240 min across
various loads. At a load of 2 N, the wear depth is 18.83 μm, and
the wear volume is 4.67 × 10 μm3. Notably, these values are the
lowest observed during the fretting wear tests across all loads,
with the wear time remaining consistent, indicating that the wear
rate and wear volume exhibit similar trends. With the increase of
load, both the wear depth and wear volume also demonstrate a
corresponding increase (Wei et al., 2024). When the load reaches
10 N, the maximumwear depth is 31.39 μm, and the wear volume is
7.55 × 10 μm3.The trends of wear depth andwear volume in relation
to load are illustrated in Figures 9A, B.

Figure 9A shows the relationship between wear depth and
load. The diagram reveals that at a load of 2 N, the wear depth
difference before and after SMAT treatment is minimal, with both
measurements falling within the range of 18 and 19 μm. When the
load increases to 4 N, there is a significant increase in wear depth for
both samples. Specifically, the wear depth before SMAT treatment
reaches 25.37 μm, and the wear depth after SMAT treatment reaches
23.12 μm, indicating a notable reduction inwear depth due to SMAT
treatment. When the load increases to 6 N, the wear depth before
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FIGURE 8
Measurement analysis diagram of cross-section profile.

TABLE 3 Wear scar under different loads before and after SMAT.

Load (N) Wear depth (μm) Wear volume (μm3) Wear rate (×106 μm3/s)

SMAT 240 min Original TC4
alloy

SMAT
240Please
provide a
caption for
Fig. 10 min

Original TC4
alloy

SMAT 240 min Original TC4
alloy

2 18.72 18.83 3.99 4.67 0.798 0.934

4 23.12 25.37 5.39 6.74 1.078 1.348

6 27.16 27.81 5.72 6.99 1.144 1.398

8 27.81 29.4 6.45 7.55 1.29 1.51

10 29.58 31.39 6.69 8.07 1.338 1.614

and after SMAT treatment further increases. The wear depth before
SMAT treatment reaches 27.81 μm, and the wear depth after SMAT
treatment reaches 27.16 μm.Thewear depth after SMAT treatment is
still less than the wear depth before SMAT treatment.When the load
increases to 8 N, the wear depth before and after SMAT treatment
still keeps increasing. The wear depth before SMAT treatment
reaches 29.4 μm, and the wear depth after SMAT treatment reaches
27.81 μm. When the load increases to 10 N, the wear depth of both
reaches the maximum. Overall, the curve indicates that the wear
depths for both samples at 2 N are similar, and that wear depth
gradually increases with increasing load. Throughout the entire
testing process, the wear depth of the untreated sample consistently
exceeds that of the SMAT treatment sample at equivalent loads,
demonstrating the effectiveness of SMAT treatment in enhancing
wear resistance. Figure 9B shows the relationship between wear
volume and load. It can be seen from the diagram that when the
load is 2 N, the wear volume before and after SMAT treatment
is very small (Tang et al., 2024). The wear volume before SMAT
treatment reaches 4.67 μm3, and the wear volume after SMAT
treatment reaches 3.99 μm3. When the load increases to 4 N, the
wear volume before and after SMAT treatment increases greatly.
The wear volume before SMAT treatment reaches 6.74 μm3, and
the wear volume after SMAT treatment reaches 5.39 μm3, which is
significantly smaller than the wear volume before SMAT treatment.
When the load increases to 6 N, the wear volume before and after

SMAT treatment increases further. The wear volume before SMAT
treatment reaches 5.99 μm3, and the wear volume after SMAT
treatment reaches 5.74 μm3.Thewear volume after SMAT treatment
is still smaller than the wear volume before SMAT treatment. When
the load increases to 8 N, the wear volume before and after SMAT
treatment still maintains an increasing trend. The wear volume
before SMAT treatment reaches 7.55 μm3, and the wear volume
after SMAT treatment reaches 6.45 μm3. When the load increases
to 10 N, the wear volume of both reaches the maximum. From the
overall trend of the curve in the figure, as the load increases, the
wear volume gradually increases. In the process of 2–4 N, the wear
volume increases rapidly; in the process of 4–10 N, the wear volume
growth is relatively flat, which is due to the wear mode from gross
slip regime to partial slip regime, and the wear volume of partial
slip regime is less than that of gross slip regime (Pinto et al., 2020;
Xin et al., 2017). In thewhole process, thewear volume before SMAT
treatment is always larger than that after SMAT treatment under the
same load. Figure 9C shows the relationship between wear rate and
load. From the diagram, it can be found that the wear rate gradually
increases with the increase of load. In the process of 2 N–4 N, the
wear rate increases rapidly; in the process of 4 N–10 N, the wear
rate growth is relatively flat. During the whole process, the wear
rate after SMAT treatment is always lower than that before SMAT
treatment under the same load. The trend of the figure is consistent
with the trend of wear volume changing with load in Figure 9B,
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FIGURE 9
(A) The change curve of wear depth with load before and after SMAT. (B) The change curve of wear volume with load before and after SMAT. (C) The
change curve of wear rate with load before and after SMAT.

because the wear rate is the ratio of wear volume to wear time. In this
paper, the wear time under different loads before and after SMAT
treatment is consistent, so the wear rate and wear volume trend are
consistent (Shuai et al., 2024).

Overall, the improvement in fretting wear performance
by SMAT is primarily related to its effect on the material’s
surface microstructure. SMAT treatment applies high-frequency
vibration and impact force to the material’s surface, causing plastic
deformation in the surface layer and forming fine nanocrystalline
(NG) structures (Yang et al., 2024). Nanocrystals possess higher
hardness and better wear resistance, effectively reducing wear
during friction. This nanocrystalline layer exhibits a gradient
structure between the surface and the matrix, which strengthens
the bond between the surface layer and the matrix, preventing
delamination or separation due to external forces, thus enhancing
wear resistance (Han et al., 2024). SMAT treatment also introduces
compressive residual stress in the surface and subsurface layers,
which helps inhibit the propagation of microcracks and reduces
the likelihood of fatigue failure during fretting wear (Zhou et al.,

2022). Experimental results show that the wear depth and wear
volume of SMAT-treated samples are consistently smaller than
those of untreated samples under various loads, indicating that
the introduction of surface compressive stress effectively enhances
fatigue resistance.

4 Conclusion

In this study, the fretting wear scars of thematrix without SMAT
treatment and the samples treatment by SMAT for 240 min under
2 N, 4 N, 6 N, 8 N and 10 N conditions were characterized by SEM,
EDS and white light interferometer. The variation trend of friction
coefficient, wear depth, wear volume and wear rate with load was
studied. The conclusions are as follows:

1. In the artificial seawater environment, the fretting wear test
was carried out with the test parameters of frequency of 10 Hz,
amplitude of 150 μm, cycle number of 50,000 and different
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loads. For the sample treatment by SMAT for 240 min, the
friction coefficient does not change much under different load
test conditions, indicating that the friction coefficient is not
significantly affected by the load.

2. With the increase of load, the fretting wear regime of the
original TC4 alloy sample and the sample treatment by SMAT
for 240 min changed from gross slip regime to partial slip
regime. When the load is 2 N, both of them are in a gross slip
regime; when the load reaches 10 N, the two are approximately
in a partial slip regime.

3. With the increase of load, the wear depth, wear volume and
wear rate of the original TC4 alloy sample and the sample
treatment by SMAT for 240 min increased after fretting wear.
Moreover, under the same load conditions, the wear volume of
the sample treatment with SMAT for 240 min is smaller than
that of the sample without SMAT treatment. It can be seen that
SMAT treatment improves the wear resistance of TC4 alloy
under different loads.
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