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Nonlinear dynamics and stability
analysis of locally active Mott
memristors using a
physics-based compact model

Wei Yi*

Sensors and Electronics Laboratory, HRL Laboratories, LLC., Malibu, CA, United States

Locally active memristors (LAMs) are a class of emerging nonlinear dynamic
circuit elements that hold promise for scalable yet biomimetic neuromorphic
circuits. Starting from a physics-based compact model, we performed small-
signal linearization analyses and applied Chua’s local activity theory to a one-
dimensional, locally active vanadium dioxide Mott memristor based on an
insulator-to-metal phase transition. This approach establishes a connection
between the dynamical behaviors of a Mott memristor and its physical device
parameters, enabling a complete mapping of the locally passive and edge-
of-chaos domains in the frequency and current operating parameter space.
This mapping could guide materials and device development for neuromorphic
circuit applications. We also examined the applicability of local analyses to a
second-order relaxation oscillator circuit, which consists of a voltage-biased
vanadium dioxide memristor coupled to a parallel reactive capacitor element
and a series resistor. Chua’s local activity criteria allows a mapping of this
second-order system’s dynamics and stability in the frequency and circuit
parameter space, which is essentially a phase diagram for complexity. It shows
that the coupling increases both the system’s dimension and its dynamical
complexity and creates a locally active and unstable region to host instabilities
and persistent oscillations. We show that global nonlinear techniques, including
nullclines and phase portraits, provide further insights into instabilities and
persistent oscillations near non-hyperbolic fixed points. Specifically, we observe
a supercritical Hopf-like bifurcation, where an orbitally stable limit cycle emerges
as a new attractorwhen a stable spiral transitions to an unstable one, with each of
the three circuit parameters acting as a bifurcation parameter. The abrupt growth
of the limit cycle resembles the Canard explosion phenomenon observed in
systems exhibiting relaxation oscillations. Finally, we show that experimental
limit cycle oscillations in a vanadium dioxide nano-device relaxation oscillator
closely match SPICE simulations based on the compact model.

KEYWORDS

local activity theory, edge of chaos, memristor, negative differential resistance, Mott
insulator-to-metal phase transition, Hopf bifurcation, limit cycle, neuromorphic circuits

1 Introduction

In recent years, a surge of interest has been witnessed in exploiting nonlinear
dynamical phenomena in emerging devices for novel circuit applications, such as
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neuromorphic computing. A subject that has been intensively
studied is one-port (two-terminal) passive memristors, which
exhibit a pinched hysteresis that always passes through the origin in
their current–voltage (I–V) loci, thereby possessing a non-volatile
memory effect (Strukov et al., 2008; Dittmann and Strachan, 2019).
Passive memristors offer a scalable and energy-efficient approach to
emulating biological synapses and implementing computationally
efficient neuromorphic learning rules (Kim et al., 2015; Wang et al.,
2017; Covi et al., 2018; Brivio et al., 2021).

Although a canonical memristor is a passive circuit element, any
one-port device that exhibits a pinched hysteresis is considered an
extended memristor (Chua, 2014), which includes a class of one-
port devices that exhibit non-monotonicity in their experimental
quasi-direct current (quasi-DC) I–V curves—a negative differential
resistance (NDR). These devices typically exhibit a pronounced
I–V hysteresis when driven by a voltage stimulus; however, the
hysteresis collapses at a finite voltage. Therefore, they only have
a transient (volatile) memory effect. Importantly, these globally
passive one-port devices are locally active within the NDR region.
Under proper biasing conditions, they can function as one-port
amplifiers that increase the power of an alternating-current (AC)
signal applied to the same port. It was recently shown that a
locally active memristor (LAM) in a distributed form can act as
an axon-like signal-amplifying transmission line (Brown et al.,
2024). Signal amplification is an essential capability for information
processing and communication, a field that has been dominated
by transistors. Figure 1 shows the comparison of typical quasi-
DC I–V curves measured from a passive memristor and a locally
active memristor. Such a measurement varies V or I stimulus slowly
and measures time-averaged device responses, which could capture
the resistance states before and after a resistance switching event
(see arrows) but not the ultrafast switching dynamics that could
occur within femtoseconds. Figure 1A shows a bipolar tantalum
oxide (TaOy-Ta2O5) passive memristor, which switches from a low-
resistance state (LRS) to a high-resistance state (HRS) if a sufficiently
large positive voltage is applied (Reset) and switches from the HRS
back to the LRS if a sufficiently large negative voltage is applied (Set).
BothReset and Set operations are nonvolatile, i.e., resistance changes
are retained even after power is turned off. In contrast, Figure 1B
shows a unipolar vanadium dioxide (VO2) locally active memristor,
which abruptly switches from an HRS to an LRS if a sufficiently
large voltage is applied, regardless of its polarity. As the voltage is
reduced below a smaller threshold level, the device switches from
the LRS back to the HRS—these resistance changes are volatile and
are lost once the power is turned off. It should be noted that the
exemplary characteristics in Figure 1 are by no means exhaustive.
Passive memristors can exhibit either bipolar or unipolar non-
volatile resistance switching behaviors, which are determined by the
intertwined ionic and electronic transport mechanisms within the
nanoscale device volume (Waser et al., 2009; Jeong et al., 2012).
They may also exhibit a fading memory effect, where the asymptotic
behavior is solely determined by the state dynamics, irrespective of
the initial condition (Ascoli et al., 2016; Pershin and Slipko, 2019).

We now focus on one-port devices that possess the peculiar
I–V characteristics shown in Figure 1B. One-port devices with
such switching characteristics have been extensively studied
and implemented in engineering practice. They have been
made out of many materials based on a variety of operating

mechanisms. A familiar category is electro-thermal threshold
switches such as ovonic threshold switches (OTSs), which show
rapid changes in resistance due to nonlinear interactions among
local temperature, metastable structural change, and electrical
conductivity (Ovshinsky, 1968; Noé et al., 2020). Being a one-
port device, LAMs and passive memristors share the same level
of 4F2 (F: half pitch in lithography) scalability in a crossbar
device geometry (Amsinck et al., 2005), resolving the trade-off
between scalability and biological fidelity.

LAMs may generally be classified into two types, namely,
current-controlled (S-type) and voltage-controlled (λ-type), where
the letters “S” and “λ” resemble the characteristic shape of NDR
in the I–V curve plotted with voltage as the x-axis (Ridley, 1963).
S-type LAMs are “normally off” devices with an HRS when the
power is turned off. λ-type LAMs such as resonant tunneling
diodes are “normally on” devices with an LRS when the power is
turned off (Esaki, 1958). Therefore, S-type LAMs are superior to λ-
type LAMs in terms of standby power consumption. Hereafter, we
focus our discussion on current-controlled LAMs.

A particularly interesting class of current-controlled LAMs is
based on the insulator-to-metal phase transition (IMT) phenomena
in strongly correlated materials that arise from a coupling
between structural distortions (Peierls transition) and electronic
instabilities (Mott transition) (Andrews et al., 2019). They possess
several attractive features for circuit applications, such as ultralow
(femtojoule) switching energy (Prinz et al., 2020), ultra-fast
(tens of femtosecond) switching speed (Jager et al., 2017), and
electroforming-free operations (Yi et al., 2018). We term all these
IMT-based LAMs “Mott memristors” without discerning the subtle
differences in their phase transitionmechanisms. Vanadium dioxide
(VO2) and niobiumdioxide (NbO2) are two intensively studiedMott
memristor materials among many others (Andrews et al., 2019).

For neuromorphic computing applications, circuits of self-
excited oscillators and spiking neuron emulators have been built
with one or more LAMs that are coupled with reactive elements
(capacitors) (Farhat and Eldefrawy, 1993; Moon et al., 2015;
Ignatov et al., 2015; Stoliar et al., 2017; Wang et al., 2018). An
illustrative example is a scalable spiking neuron, which constitutes
two oppositely energized (“polarized” in neuroscience glossary)
LAMs to mimic the voltage-gated potassium and sodium cell
membrane ion channels. When coupled with parallel membrane
capacitors and series load resistors, the composite circuit emulates
a single-compartment nerve cell, initiating all-or-nothing action
potentials upon a suprathreshold stimulus (Yi et al., 2018;
Pickett et al., 2013) or acting as a delayed buffer, which allows
bidirectional, distortion-free propagation of action potentials when
daisy-chained (Pickett and Williams, 2013; Yi, 2022). Such a
circuit topology bears some resemblance to a biologically plausible
Hodgkin–Huxley (HH) axon model (Chua et al., 2012) and
the early 1960s proposals of “neuristor” axons utilizing non-
scalable components such as inductors (Crane, 1960; Crane, 1962;
Nagumo et al., 1962). Experimental spiking neurons built with
VO2 Mott memristors have shown about two dozen biological
neuronal temporal dynamics, including all three classes of neuronal
excitability (Yi et al., 2018). Arguably, LAM-based neurons and
passive memristor-based synapses form a self-sufficient basis
to construct a transistorless neural network (Yi and Cruz-
Albrecht, 2019).

Frontiers in Materials 02 frontiersin.org

https://doi.org/10.3389/fmats.2025.1465852
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Yi 10.3389/fmats.2025.1465852

FIGURE 1
Experimental quasi-DC I–V curves for (A) a TaOy-Ta2O5 bilayer passive memristor and (B) a VO2 locally active memristor, constructed and
characterized by HRL Laboratories, LLC. Resistance switching events are indicated by dashed arrows. (A) These insets show the layer structure and
optical image of the 5×5 μm2 TaOy-Ta2O5 (y < 2) crossbar device. (B) These insets show the layer structure and scanning electron micrograph of the
50×50 nm2 VO2 nano-crossbar device (scale bar: 500 nm). Memristor crossbars are tested in a four-terminal Kelvin connection (see Yi et al. (2019) for
details). The external voltage is swept at ∼1 V/s rate in the sequence of 0→ +Vp → 0→ –Vn → 0 (repeated 10 times). Vp(Vn) = 2.5(2) V in (A) and Vp,n =
1.45 V in (B). The metal electrodes contribute a series resistance of 600–800 Ω.

Despite numerous experimental demonstrations, predictive
modeling and analysis of LAM elements and circuits remain
challenging and hinder technology development. These difficulties
are, in part, due to the fundamental mathematical challenges
associated with nonlinear differential systems. One illustrious
example is the second part of Hilbert’s 16th problem that questions
whether there exists a finite upper bound for the number of limit
cycles of planar polynomial differential systems. It remains unsolved
today, even for quadratic polynomials (degree n = 2) (Ilyashenko,
2002). Qualitative local analyses, on the contrary, are facilitated by
small-signal linearization techniques, which allow linear analysis
to be applied to a nonlinear system near a hyperbolic fixed point
with all eigenvalues of the linearization having non-zero real parts
(Perko, 1991). A key theoretical contribution made by Chua is the
local activity (LA) theorem, which provides a rigorousmathematical
definition of the LA as a necessary prerequisite for the emergence
of complexity in nonlinear systems (Chua, 2005). Moreover, Chua
provided a set of explicit and computable criteria in the parameter
space, which allows for identifying the edge-of-chaos (EOC) region
that is both locally active and stable, where most of the complexity
phenomena emerge. In recent years, Chua’s LA principle has been
applied to clarify several long unsolved fundamental problems
about dissipative systems, including Prigogine’s symmetry-breaking
instability in homogeneous cellular media (Prigogine and Nicolis,
1967); the emergence of Turing instability (Turing, 1952) and its
higher-order analog, Smale’s paradox (Smale, 1976), in reaction-
diffusion systems; and Hodgkin–Huxley all-or-nothing excitability
of nerve cells (Hodgkin and Huxley, 1952). All these complex
phenomena are associated with the EOC domain within a system’s
parameter space (Ascoli et al., 2022a; Ascoli et al., 2022b;
Ascoli et al., 2022c; Chua, 2022).

Mathematically rigorous yet unphysical toy models of nonlinear
dynamical elements were frequently used in the LA analysis

procedure (Mannan et al., 2016; Mannan et al., 2017). For
engineering practice, such toy models fall short of establishing
a connection between circuit- or network-level dynamics and
the measurable physical properties of constituent components. A
recent review thoroughly elaborated on the importance of applying
appropriate device physics into the mathematical memristor
framework and defining physically relevant model parameters to
control the circuit dynamic behavior (Brown et al., 2022b).

The main objective of this manuscript is to apply relevant
theoretical techniques to understand the dynamics and stability
of nonlinear circuits that involve locally active Mott memristors
and map the conditions for the LA regime within the design
parameter space (Messaris et al., 2021; Ascoli et al., 2021). These
theoretical techniques include essential local analysis methods
such as the small-signal linearization and the LA theorem and
global techniques such as the nullclines and phase portraits. For
engineering relevance, we base our analyses on an analytical one-
dimensional (1D) Mott memristor compact model that is built
on the laws of thermodynamics and only contains physically
relevant device parameters. The model was developed by Pickett
and Williams for NbO2 Mott memristors (Pickett and Williams,
2012). Previously, we have verified that it is also applicable to VO2
Mott memristors after replacing the material properties (Oh et al.,
2010; Berglund andGuggenheim, 1969), and our SPICE simulations
based on this model faithfully reproduced most of the measured
neuronal dynamics in neuron circuits built with VO2 memristors
(Yi et al., 2018). In this study, we demonstrate that this physics-
based compact model is mathematically tractable for applying local
and global analysis techniques, with closed-form expressions for
all the important quantities involved in the analyses. It enables a
connection between the system dynamics and component physical
parameters to guide circuit designs and process development.
The algorithmic analysis procedure we present using a VO2 Mott
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memristor model is general in nature and suitable for analyzing
other Mott memristor materials. Qualitatively, the predictions
regarding the dynamics and stability in this work are similar to those
made by compactmodels based ondifferent choices of state variables
and kinetic functions (Brown et al., 2022b).

We focus on theoretical analyses and only included a cursory
comparison between the model simulated and experimental
characteristics of a VO2 nano-device relaxation oscillator near
the end. More detailed comparisons in the context of VO2
Mott memristor neurons can be found in supplementary
materials of Yi et al. (2018). It is understood that the compact model
presented in this study has some simplifications and limitations. It
is a nontrivial task to construct a computationally efficient compact
model for locally active memristors with an appropriate balance
between the dynamical fidelity and the computational complexity
of solving the model equations. This is especially important for
digital computer simulations of a scaled network that containsmany
instances of memristor elements, which could be costly in time and
energy consumption.

The remainder of this paper is organized as follows: The first
three sections (Sections 2–4) provide the analyses of an isolated
1D Mott memristor. In Section 2, we introduce the physics-based
compact model and analyze the stability of an isolated 1D Mott
memristor by examining its power-off plot (POP) and dynamic
route map under constant input currents or voltages. This exercise
confirms that the metallic state of a Mott memristor is unstable
without power and is asymptotically stable with a finite input
current. It also reveals that varying the voltage as the bifurcation
parameter leads to a supercritical saddle-node bifurcation. In
Section 3, we solve its locus of steady states (fixed points) in the
three-dimensional (3D) state space and their two-dimensional (2D)
projections. Note that we use both fixed point and steady state
for the same concept in an interchangeable manner but avoid the
term equilibrium unless the input is 0. See Subsection 2.2 for an
elaboration on this topic.

In Section 4, we apply local analysis techniques on an isolated
Mott memristor, including linearization and small-signal analysis,
pole–zero diagram, Chua’s LA theorem, and frequency response.
Its complex domain (s-domain) equivalent circuit derived by the
Laplace transform contains three virtual elements—a negative
nonlinear capacitor in parallel with a negative nonlinear resistor,
both in series with a positive nonlinear resistor. The negative
s-domain capacitance gives rise to an apparent inductive response,
similar to the memristive models of potassium and sodium ion
channels (Chua et al., 2012). We found that an isolated Mott
memristor near a fixed point dwells either in the locally passive (LP)
or the EOC region. The EOC region coincides with the NDR region
in its steady state or DC I–V locus. Brown et al. (2022b) explained
that for an extended electro-thermal memristor, the coincidence
between NDR and EOC or LA regions is not guaranteed. Therefore,
NDR shall not be used as a sole signature for EOC. In our case, the
crossover between the LP and EOC regions also manifests itself in
the small-signal frequency response, which shows a sign reversal in
the real part of the impedance (complexity) function ReZ(s;Q), as
predicted by the fourth LA criterion. In the frequency domain, an
isolated Mott memristor is equivalent to a positive inductor in series
with a resistor that is positive in the LP region and negative in the
EOC domain. We derived the parametric Nyquist plot of the LP↔

EOC crossover at a single current level and then extended it to a 2D
color-scale map of ReZ(s;Q) to visualize the LP and EOC regions
in the parameter space spanned by frequency and current, which is
effectively a phase diagram for complexity. We also examined the
scaling trend of the EOC region versus the device size, which shows
that the VO2 conduction channel radius is the relevant dimension
for device miniaturization to enhance the EOC frequency regime.

Although an EOC region exists in an isolated 1D Mott
memristor, the topological constraint limits the dynamics it can
possess, making it impossible to exhibit persistent oscillations.
In Sections 5–6, we remove the topological constraint for an
isolated 1D Mott memristor by coupling it with one or more
reactive elements, increasing the system’s dimensionality and
dynamical complexity. For simplicity, we choose a DC voltage (Vdc)-
biased Pearson–Anson relaxation oscillator, formed using a Mott
memristor coupled with a parallel capacitor Cp and a series resistor
Rs, as an example of a 2D nonlinear system for our analysis (Pearson
and Anson, 1921). The same analysis procedure can be applied
to higher-dimensional systems, such as spiking neuron circuits
consisting of two ormoreMottmemristors coupledwith passive and
reactive elements.

In Section 5 we first apply Chua’s LA criteria and local
linearization techniques to this example system, including the
element combination approach, the Jacobian matrix method, and
the trace-determinant plane classification to study the stability and
qualitative behaviors of its hyperbolic fixed points. The element
combination approach considers a Mott memristor in parallel with
a capacitor to be a composite second-order nonlinear element.
The small-signal transfer function of the element-combined system
has a pair of complex conjugate or real poles. We derived the
Nyquist plot and a 2D phase diagram of the system’s poles. The
pole phase diagram, combined with Chua’s LA criteria, allows
a visualization of the LP, EOC and locally active and unstable
(LA\EOC) regions in the circuit parameter space. These results are
corroborated by the trace-determinant plane analysis of the Jacobian
linearized 2D system, which reveals a stability-change bifurcation
as the parametric (trace and determinant) locus crosses the zero-
trace axis as one of the three circuit parameters is varied (Rs,
Cp, and Vdc). However, analyzing the stability behavior of a non-
hyperbolic center requires additional theoretical tools since the
Hartman–Grobman theorem is not applicable due to the loss of
hyperbolicity (Hartman, 1960; Grobman, 1959).

Finally, in Section 6 we apply several global methods, such as
the nullclines and numerical phase portrait analyses to understand
qualitative behaviors of the non-hyperbolic centers in this example
2D nonlinear system. We found that each of the three circuit
parameters (Rs, Cp, and Vdc) acts as a bifurcation parameter that
switches the stability of a fixed point as the parametric (trace
and determinant) locus crosses a center. We verified that there
exists a supercritical 2D Hopf-like bifurcation, i.e., the creation
of a stable limit cycle encircling an unstable spiral as the fixed
point switches its stability from stable to unstable. We also noticed
that the limit cycle emerges abruptly over an extremely narrow
bifurcation parameter interval, a phenomenon known as “canard
explosion” in relaxation oscillations within chemical and biological
systems (Krupa and Szmolyan, 2001; Rotstein et al., 2012). This is
a prominent distinction from the classical Hopf bifurcation, which
predicts a gradual growth proportional to the square root of the
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bifurcation parameter. Each bifurcation parameter has different
bifurcation growth characteristics. We conclude the section with a
comparison between the experimental limit cycle characteristics of
aVO2 relaxation oscillator and SPICE simulations based on theMott
memristor model, showing excellent agreements between them.

We conclude the manuscript with brief remarks on the
application implications of locally active memristors and scalable
neuromorphic dynamic neurons with a high degree of complexity.

2 One-dimensional locally active Mott
memristor

2.1 Physics-based analytical compact
model

The physics-based compact model for a 1D (one state variable)
locally active Mott memristor is biphasic in nature (Pickett and
Williams, 2012). It assumes that once an IMT is triggered by Joule
self-heating beyond a threshold level, metallic and insulating phases
coexist in a constant volume conduction channel defined by the
top and bottom electrodes. For mathematical simplification, the
conduction channel has an axial symmetry with a constant radius
rch along its length. An experimental crossbar device may have a
square or rectangular cross section defined by its top and bottom
electrodes. The insulating phase has significantly lower thermal
and electrical conductivity than the metallic phase. Therefore, the
core region turns metallic first, and its radius rmet increases as
Joule heating increases. In analogy to the case of an ice–water
mixture, the maximum temperature within the metallic core is
capped to the transition temperature Tc until the whole conduction
channel turns metallic. The minimum temperature at the outer
edge of the insulator shell is fixed at the ambient temperature
T0. The temperature rise required for IMT to occur is defined as
ΔT = Tc −T0. With these assumptions, a radial temperature profile
bounded between T0 and Tc is established across the insulating shell
surrounding the metallic core. The schematic representation of this
biphasic thermal model is shown in Figure 2.

The state variable x ≜ rmet/rch is modeled as the dimensionless
volumetric fraction of the metallic phase in the conduction channel
and is bounded between 0 and 1. The model derives that the
temperature at a specific radius T(r) is a nonlinear function of x of
the form T(r) = T0 +ΔT ln ( r

rch
)/ ln (x), where rmet ≤ r ≤ rch.

Another assumption the model makes for mathematical
simplification is to ignore the axial heat exchanges with the
electrodes and the associated temperature gradients near the top and
bottom interfaces.Moreover, the thermal and electrical conductivity
of the insulating shell are approximated as constants, regardless of
the radial temperature gradient across it. This approximation holds
true if neither of them varies significantly as temperature increases
from T0 to Tc. This is probably the case for VO2 with a small ΔT
(Tc ≈ 340 K and ΔT ≈ 43 K) (Berglund and Guggenheim, 1969) but
becomes questionable for NbO2 with a very large ΔT (Tc ≈ 1080 K
and ΔT ≈ 784 K) (Janninck and Whitmore, 1966).

The compact model consists of two coupled equations that
satisfy the definition of a 1D extended memristor (Chua, 2014):
a state-dependent instantaneous relationship between voltage and
current in the form of Ohm’s law (state-dependent Ohm’s law) and a

FIGURE 2
Schematic representation of the biphasic thermal model for a Mott
memristor that undergoes an insulator-to-metal transition, illustrating
a cylindrical conduction channel with a metallic-phase core
surrounded by an insulating-phase shell. The model assumes that the
metallic core is fixed at the transition temperature Tc, and the outer
edge of the conduction channel is fixed at the ambient temperature
T0. The black solid line shows a calculated radial temperature profile.
The top and bottom electrodes are not shown for clarity.

first-order ordinary differential equation (ODE) that determines the
dynamics of the single state variable x (state equation). The kinetic
function that accounts for the state dynamics is a function of both
the state variable x and the input variable (voltage v or current i). A
Mott memristor, therefore, is a dynamical system—a system whose
state at a future time depends deterministically on its present sate
and a physical law that governs its evolution over time.

Since Joule self-heating depends on the passage of current, a
Mott memristor is a current-controlled memristor, and current i
instead of voltage v is the appropriate input variable. The model
equations take the following form:

v (x, i) = Rch (x) i, (1)

dx
dt
≜ fx (x, i) =

i2Rch (x) − Γth (x)ΔT
H′ (x)

. (2)

The single state variable x ∈ (0,1) is a dimensionless quantity
within the bounded open interval between 0 and 1. fx(x, i) is the
kinetic function of the state variable x. The derivation of fx(x, i) is
nontrivial and is the main task of building the compact model. For
Mott memristors and, more generally, electro-thermal memristors,
fx(x, i) is derived from the first law of thermodynamics, which states
that the change in the total enthalpy of a system ΔH equals the net
heat flow qp into it at constant pressure: ΔH = qp. Therefore, their

time derivatives are also equal: dΔH
dt
=

dqp
dt

. This basic law forms the
theoretical basis to interpret electro-thermal memristors, wherein
the local temperature change plays a key role. It is worth pointing
out that since there is no explicit dependence on time t in fx(x, i),
this is an autonomous system.

To simplify the expression of fx(x, i), three nonlinear auxiliary
functions are defined, namely, the state-dependent memristance
function Rch(x) (Equation 3), the state-dependent thermal
conductance function Γth(x) (Equation 4), and H′(x) ≜ dΔH

dx
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TABLE 1 Material properties and device parameters of a VO2 Mott memristor model.

Model property Symbol Value Unit Reference

Volumetric heat capacity cp 3.30× 106 Jm−3K−1 Oh et al. (2010)

Volumetric enthalpy change in IMT Δhtr 2.35× 108 Jm−3 Berglund and Guggenheim (1969)

Thermal conductivity of the insulating phase κ 3.5 Wm−1K−1 Oh et al. (2010)

Electrical resistivity of the metallic phase ρmet 3.00× 10−6 Ωm Oh et al. (2010); Berglund and Guggenheim (1969)

Electrical resistivity of the insulating phase ρins 1.00× 10−2 Ωm Berglund and Guggenheim (1969)

Temperature increase in IMT ΔT 43 K Berglund and Guggenheim (1969)

Radius of the conduction channel rch 3.60× 10−8 m Experimental

Length of the conduction channel Lch 5.00× 10−8 m Experimental

(Equation 5), which is defined as the derivative of the total enthalpy
change ΔH with regard to the state variable x.

Rch (x) =
1

A(1+Bx2)
, (3)

Γth (x)ΔT = −
C

ln x
, (4)

H′ (x) ≜ dΔH
dx
= D(1− x

2 + 2x2 ln x
2x(ln x)2

+Ex), (5)

where A = πr2ch
ρinsLch

, B = ρins
ρmet
− 1, C = 2πLchκΔT, D = πLchr

2
chcpΔT, and

E = 2Δhtr
cpΔT

are constant coefficients whose values are determined
by physical model parameters, including material properties and
device geometry. Table 1 lists the values of these physical model
parameters for the case of VO2 material.The radius and length of the
memristor conduction channel are device-dependent parameters
and can be determined experimentally by the device geometry.
The remaining model parameters listed in Table 1 are electronic,
thermal, and phase transition properties of VO2 material reported
in the literature (Oh et al., 2010; Berglund and Guggenheim, 1969).
These material property-dependent parameters can be optimized
using a calibration procedure with well-devised characterization of
VO2 devices and least-square data fitting (Brown et al., 2022a), but
this is beyond the scope of this work.

Table 2 lists the values of model coefficients A, B, C, D, and E
for three arbitrarily chosen VO2 device sizes, including the radius
rch and length Lch of the conduction channel. Coefficients B and
E are dimensionless and device size-independent. Without loss
of generality, these three device sizes are used throughout this
manuscript to illustrate the scaling trend of a calculated quantity
as the device size varies. If not mentioned explicitly, hereafter, the
modeled VO2 device is the medium-sized one in Table 2 with rch =
36 nm and Lch = 50 nm, and is referred to as the midsize VO2 Mott
memristor or midsize VO2 device.

Amore general approach to the physical modeling of an electro-
thermal memristor considers the internal temperature the sole state
variable (Brown et al., 2022b). The kinetic function is derived
from Newton’s law of cooling, which establishes a connection
between the net heating power and a time-varying device’s internal

temperature through a temperature-dependent thermal capacitance.
There is clearly a benefit of adopting a universal state variable
and a generalized formula of the kinetic function, albeit the
temperature dependence of thermal capacitance is unknown and
requires a model fitting with experimental characterization, such
as the temperature dependence of self-excited oscillation frequency
in a memristor-based relaxation oscillator (Brown et al., 2022a). It
is interesting that both approaches can yield the same qualitative
predictions regarding the system dynamics, despite differences in
model assumptions, state variables, and kinetic functions.

2.2 Stability analyses

We start the stability analyses by focusing on an isolated or
uncoupled Mott memristor. The first step is to examine the stability
of solutions for Equation 2 by considering the input current to be
a parameter with a zero or nonzero constant value and plotting
the kinetic function fx(x, i) as a function of the state variable
x. If a solution fx(x, i) = 0 exists at a point xQ, it is called a
fixed point (Shashkin, 1991). This is because the state variable
x(t) with an initial condition x(0) = xQ remains unchanged at any
future time, i.e., x(t) = xQ for t > 0. The literature from different
disciplines has adopted a variety of terminologies for the same
concept, including the stationary point, invariant point, equilibrium
point, critical point, singular point, and steady-state point. These
terms are generally interchangeable but may cause confusion if not
carefully chosen. In particular, the use of the equilibrium point may
cause misinterpretation by physical scientists for reasons we will
elaborate below.

A system at equilibrium remains stable over time and does not
require a net flow of energy or work to maintain that condition.
A steady state also has stable internal conditions that remain
unchanged over time. However, it requires a continuous energy
input or work from the external environment to remain in a constant
state. A memristor with stable internal states while a finite current
flows through it is in a non-equilibrium steady state rather than
equilibrium since there is a net heat transfer qp into the memristor.
In this manuscript, we mainly use the term fixed point because
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TABLE 2 Values of model coefficients for three VO2 device sizes.

Coefficient Formula Unit rch = 10 nm rch = 36 nm rch = 56 nm

Lch = 10 nm Lch = 50 nm Lch = 100 nm

A πr2ch
ρinsLch

Mho 3.141 59× 10−6 8.143 01× 10−6 9.852 03× 10−6

B ρins

ρmet
− 1 Unitless 3332.3 3332.3 3332.3

C 2πLchκΔT Watt 9.456 19× 10−6 4.7281× 10−5 9.456 19× 10−5

D πLchr
2
chcpΔT Joule 4.457 92× 10−16 2.888 73× 10−14 1.398× 10−13

E 2Δhtr

cpΔT
Unitless 3.31219 3.31219 3.31219

of its prevalence in mathematics. Steady state will also be used as
a descriptive term when it facilitates interpretation. For example,
steady-state resistance is a preferred termover fixed-point resistance.

For a current-controlled memristor, current is the appropriate
input variable for stability analysis. However, one can still consider
voltage v to be an input and run the same type of analysis.
Interestingly, doing so would result in a bifurcation—a qualitative
change in the solution of a nonlinear system incurred by a small
change in a parameter, such as the creation or annihilation of fixed
points or a change in their stability.

2.2.1 Power-off plot
The question of whether a memristor is non-volatile can

be answered by examining the power-off plot (Chua, 2015).
For a current-controlled memristor, its POP is the locus
of the kinetic function fx(x, i) as a function of the state
variable x at zero input current, i.e., the locus of fx(x,0) vs x
(Equation 6).

By setting the input current to 0 in Equation 2, we obtain

fx (x,0) =
−Γth (x)ΔT

H′ (x)
= 2Cx ln x
D[1− x2 + 2x2 ln x+ 2E(x ln x)2]

. (6)

If fx(x,0) has an intersection with the x-axis, then the intersection
is an equilibrium point xQ. The memristor state x(t) with an initial
state x(0) = xQ remains unchanged at any future time, i.e., x(t) = xQ
for any t > 0.

Figure 3 shows that for a Mott memristor at zero input current,
fx(x,0) remains negative for any state variable x ∈ (0,1). It is
plausible since if there were a finite fraction of the conduction
channel in the metallic phase at the beginning, it is unstable without
the presence of Joule heating and will always vanish over time.
The memory effect in a Mott memristor is, therefore, transient or
volatile in nature and will be lost, given sufficient time after the
removal of electrical power. Figure 3 inset shows that the negative
rate of change in x increases dramatically as x approaches 1.0
asymptotically. The calculations are performed using VO2 model
parameters, but this conclusion is generally applicable to other Mott
memristor materials.

2.2.2 Dynamic route map at constant input
current

If input current is fixed at a finite constant level i0 ≠
0, one can plot the dynamic route (DR)—the locus of the

FIGURE 3
Analytically calculated power-off plots fx(x,0) vs x for three
different-sized VO2 Mott memristors (as labeled) in the small x region
(0 < x < 0.3). Inset shows the same power-off plots for a much wider
range of 0 < x < 1.

kinetic function fx(x, i0) as a function of the state variable x
at a constant input current i0 (Chua, 1969). A set of dynamic
routes parameterized by input current (or voltage for a voltage-
controlled memristor) is called a dynamic route map (DRM) (Chua,
2018). Rewriting fx(x, i) in Equation 2 by replacing the auxiliary
functions Rch(x), Γth(x), and H′(x) with their explicit expressions,
we obtain

fx (x, i0) =
2x(ln x)2

A(1+Bx2)
i20 + 2Cx ln x

D[1− x2 + 2x2 ln x+ 2E(x ln x)2]
. (7)

As shown in Figure 4A, even a tiny input current of a few
μA creates a positive slope for the DR locus of the midsize VO2
device, flipping the fourth-quadrant POP locus up into the first
quadrant once a finite current is supplied. The slope of the DR
then levels off and becomes negative again as x further increases.
Consequently, a constant-current DR locus always intersects the
x-axis at a single fixed point xQ. This is confirmed by Figure 4B
which shows the DRM loci over a much wider current range
from 0 to 3 mA.
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FIGURE 4
Analytically calculated dynamic route map of fx(x, i0) at constant input current levels for the midsize VO2 Mott memristor, plotted with (A) a narrow
range of i0 ranging from 0 to 10 μA and (B) a broad range of i0 ranging from 0 to 3 mA. The open circle in (A) and (B) highlights a fixed point Q, where
the fx(x, i0) locus intersects the x-axis. Arrowheads show the direction of movement for a solution x(t) starting from an initial state located close to Q.

The theory of nonlinear dynamics indicates that the fixed point
xQ is asymptotically stable because the solution x(t) starting from
any initial state x(0) ≠ xQ approaches the fixed point xQ as t→
∞. For x < xQ, dx/dt > 0. For x > xQ, dx/dt < 0. The arrowhead
pointing to the right indicates that the solution x(t) starting from
any initial state x(0) ≠ xQ on the DR above the x-axis must move
to the right of x(0) because dx/dt > 0 for t > 0, as long as x(t)
lies above the x-axis. Conversely, the arrowhead pointing to the
left indicates that the solution x(t) starting from any initial state
x(0) ≠ xQ below the x-axis on the DR must move to the left
of x(0) because dx/dt < 0 for t > 0, as long as x(t) lies below
the x-axis.

2.2.3 Dynamic route map at constant input
voltage: saddle-node bifurcation

Although a Mott memristor is a current-controlled device, it
is interesting to examine the state dynamics for the case where
a constant finite input voltage is applied. Replacing current i by
voltage v in Equation 2, the kinetic function can be rewritten as
a function of x and v. At a constant input voltage v0, it takes the
following form:

fx (x,v0) =
1

H′ (x)
(

v20
Rch (x)
− Γth (x)ΔT)

=
2Ax(ln x)2 (1+Bx2)v20 + 2Cx ln x

D[1− x2 + 2x2 ln x+ 2E(x ln x)2]
. (8)

Figure 5A shows the DRM loci of fx(x,v0) in Equation 8 vs x
at constant v0 levels, ranging from 0 to 1.2 V in 0.1 Vs, interval for
the midsize VO2 device. Figure 5B is a zoomed view, which reveals
three behaviorally distinctive regions determined by the amplitude
of v0. At a very small v0 < 0.0973 V, the DR locus stays in the
fourth quadrant and does not intersect with the x-axis. In other
words, fx(x,v0) < 0 is satisfied at any x ∈ (0,1). It indicates that at
such small input voltages, even if the initial condition is a metallic
phase, aMott memristor always returns to the insulating state after a

finite time. Physically speaking, the Joule heating level at such small
voltages is too small to sustain a metallic filament at the IMT critical
temperature against the heat loss. At v0 = 0.0973 V, the DR locus
becomes tangent to the x-axis with only one intersection point close
to x0 = 0.606. At a v0 > 0.0973 V, the DR locus “swings” from the
fourth quadrant to the first quadrant, and then, it swings back to the
fourth quadrant, intersecting the x-axis at two distinctive points to
the left and right of x0.

For a 1D nonlinear ODE system, a saddle-node (tangent)
bifurcation is the generic bifurcation in which the number of fixed
points changes as a parameter varies. If additional conditions are
met, a transcritical or pitchfork bifurcation may occur. A simple
example of a saddle-node bifurcation is dx/dt = μ± x2, where μ is
the bifurcation parameter and the sign determines whether it is
supercritical (μ− x2) or subcritical (μ+ x2). For the supercritical
case, as μ increases through μ0 = 0 (the bifurcation value), the
number of fixed points changes from 0 to 1 and then to 2. If μ < μ0,
dx/dt is always negative and no fixed point exists. At μ = μ0, there is
one non-hyperbolic, semi-stable fixed point (x = 0). At μ > μ0, a pair
of stable (x = √μ) and unstable (x = −√μ) hyperbolic fixed points
are created.

Figure 6 illustrates that if a VO2 Mott memristor is biased by a
constant voltage v0, a small change in v0, acting as the bifurcation
parameter, results in a supercritical saddle-node bifurcation. For the
midsize VO2 device, the bifurcation value for v0 is approximately
0.0973 V. Figure 6A shows the re-plots of the two DRM loci in
Figure 5 at v0 levels of 0.0973 V and 0.1 V. At v0 = 0.0973 V, there is
a single semi-stable fixed pointQ0 ( × ). Increasing the input voltage
by a small amount to v0 = 0.1 V results in a qualitative change in
the solution structure and creates a pair of fixed points—the left one
Q1 (◦) is unstable and the right one Q2 (•) is stable. The stability
of a fixed point is told by the arrowheads, indicating the direction
of move for a solution x(t) starting from an initial state located
close to it. Figure 6B shows the bifurcation diagramof the 1D saddle-
node bifurcation with the input voltage as the bifurcation parameter.
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FIGURE 5
(A) Dynamic route map of fx(x,v0) at constant input voltages in the range of 0–1.2 V, calculated for the midsize VO2 Mott memristor. (B) Zoomed-in
portion of (A) shows that at v0 > 0.0973 V, the DR locus intersects the x-axis at two distinctive locations. At v0 = 0.0973 V, the DR locus becomes
tangent to the x-axis with only one intersection point. At v0 < 0.0973 V, the DR locus stays in the fourth quadrant and does not intersect the x-axis.

FIGURE 6
(A) Dynamic routes of fx(x,v0) at constant input voltages of 0.0973 V and 0.1 V, calculated for the midsize VO2 Mott memristor. At v0 = 0.0973 V, the
single intersection point Q0 ( × ) with the x-axis is a semi-stable fixed point. At v0 = 0.1 V, the left intersection point Q1 (◦) with the x-axis is an unstable
fixed point, and the right intersection point Q2 (•) with the x-axis is a stable fixed point. Arrowheads show the direction of movement for a solution x(t)
starting from an initial state located close to a fixed point. (B) Bifurcation diagram of the same device, showing a 1D supercritical saddle-node
bifurcation with v0 as the bifurcation parameter. The solid (dashed) line shows the stable (unstable) solutions of fixed points xQ.

Solid and dashed lines show the stable and unstable solutions of fixed
points xQ, respectively.

3 Loci of steady states

In the present approach, the internal temperature is embedded
in the biphasic model and is not considered a state variable. The set
of all fixed points (xQ, iQ,vQ) in the 3D (x, i,v) state space that satisfy
the instantaneous relationship vQ = Rch(xQ)iQ and (dx/dt)|Q = 0 is
defined as the steady-state or DC locus of a Mott memristor. Solving
the steady-state locus of an isolated Mott memristor is among the

first steps for the local linearization analysis. Henceforth, both the
(xQ, iQ,vQ) locus and its 2D projections are called the steady-state
loci without discerning the dimensional difference.

To obtain the steady-state (xQ, iQ,vQ) locus, one can first define
a sequence of iQ ∈ ℝ and then find the solutions of the state
variable x = xQ(iQ) numerically. This is achieved by setting the
numerator in Equation 7 to be 0, which provides an equation
CA(1+Bx2

Q) = − i
2
Q lnxQ that can be solved numerically. After

solving xQ(iQ), voltage vQ can be calculated using the Ohm’s law
relationship vQ(iQ) = Rch(xQ(iQ))iQ.

However, there is a much easier way to obtain the steady-state
(xQ, iQ,vQ) locus. Instead of numerically solving the value of xQ from
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FIGURE 7
(A) Loci of the steady-state current iQ(xQ) calculated using Equation 9 and transposed to xQ(iQ) with current as the independent variable. (B) Loci of the
memristance function Rch(xQ) vs iQ(xQ). (C) Loci of the steady-state voltage vQ(xQ). Insets are the very small xQ (left) and halfway regions (right). The
dashed line represents v0 = 0.0973 V. Q0 ( × ) is the semi-stable fixed point shown in Figure 6. (D) Loci of the steady-state (iQ,vQ) showing the
zero-crossing property of memristors and a PDR-to-NDR crossover at iQ ≳ 2.522μA, 9.077 μA, and 14.122 μA, respectively, for the three VO2 device
sizes, as labeled. The inset reveals another NDR-to-PDR crossover at iQ ≳ 269.77μA, 971.18 μA, and 1510.73 μA, respectively, on the same three loci.

a given iQ, one can first define a sequence of xQ ∈ (0,1) and then
calculate iQ(xQ) analytically using the following formula:

iQ (xQ) = √
−CA(1+Bx2

Q)

lnxQ
. (9)

Voltage vQ is then calculated using the Ohm’s law vQ(xQ) =
Rch(xQ)iQ(xQ). The sequence of xQ can be chosen to be evenly
spaced on a linear or logarithmic scale, depending on how fast these
functions vary with xQ. We verified that steady states calculated by
both methods are consistent with each other. The analytical method
is used for discussions hereafter.

Figure 7A shows the steady-state loci of (xQ, iQ)
calculated using Equation 9 for three different VO2 device sizes,
plotted as xQ(iQ), since Mott memristors are current-controlled
devices. At small currents, the fraction of the metallic phase xQ
remains negligibly small. xQ starts to increase with current in a
sublinear fashion once iQ exceeds a size-dependent threshold level.
The current threshold increases with the device size and is at μA
level for the shown device sizes.

Figure 7B shows the loci of the memristance function Rch(xQ)
vs iQ, which reveal that Rch(xQ) has similar crossover characteristics
at the same iQ thresholds. At small currents, Rch(xQ) remains

elevated with negligible current dependence. Once iQ exceeds a
size-dependent threshold, Rch(xQ) decreases rapidly with current
in a nonlinear fashion. For the midsize VO2 device (rch = 36 nm
and Lch = 50 nm), Rch(xQ) decreases by more than three orders of
magnitude from 122.8 kΩ to 97 Ω as iQ increases from 0 to 1 mA.

Figure 7C shows the steady-state loci of (xQ,vQ) plotted as
vQ(xQ), which resemble the shape of a left handled cup. The open
left handle is nearly vertical. In other words, at very small xQ levels,
a tiny change in xQ will cause a large change in vQ. Figure 7C
(left inset) shows the plots of the extremely small xQ region of
the (xQ,vQ) loci on a log–log scale, which reveals that at a given
device size, there is a corresponding asymptotic lower bound of
steady-state vQ as xQ approaches 0. For the midsize VO2 device
(rch = 36 nm and Lch = 50 nm), the vQ lower bound turns out to be
0.0973 V (dashed line). Figure 7C (right inset) shows the plot of the
halfway xQ region in linear scale, illustrating that the vQ = 0.0973 V
horizontal line is tangent to the (xQ,vQ) locus at its trough, located
at Q0 = (0.60628,0.0973V) (marked as × ); this corresponds to the
same semi-stable fixed point Q0 identified in the DR analysis. A
slight increase in vQ would bifurcate Q0 into a pair of fixed points
on its left and right. The left inset also indicates that in this case,
another fixed point would emerge at an extremely small xQ level
(at vQ = 0.2 V, xQ is only 10−63), i.e., an insulating steady state exists
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at a finite voltage. These observations corroborate our previous DR
analysis shown in Figure 6. All three (xQ,vQ) loci have a sharp peak
at xQ = 0.00567 and a rounded trough at xQ = 0.60628, resembling
the shape of a cup. Notably, the xQ coordinates of these two extrema
are size-independent.

Figure 7D shows the steady-state loci of (iQ,vQ)plotted as vQ(iQ).
As current-controlled memristors, the (iQ,vQ) loci are “N”-shaped
when plotted with current as the x-axis. They are symmetric with
respect to the origin in the first and third quadrants. Therefore, one
only needs to analyze the first-quadrant halves. Each (iQ,vQ) locus
has three distinctive regions: a lower positive differential resistance
(PDR) region from 0 to a critical current ic1; anNDR region between
ic1 and the second critical current ic2 (see inset); and an upper PDR
region for even higher currents. Therefore, ic1 and ic2 produce a
local maximum and minimum in the (iQ,vQ) loci. For the shown
device sizes, values of ic1 (ic2) are 2.522 μA (269.77 μA), 9.077 μA
(971.18 μA), and 14.122 μA (1510.73 μA), respectively. Figure 7D
also shows that the steady state or DC loci of (iQ,vQ) always pass
through the origin (0, 0), satisfying the zero-crossing property
of memristors.

It should be noted that the volumetric enthalpy change in IMT
Δhtr appears only in the denominator of the kinetic function fx(x, i)
via the coefficient E. Therefore, it has no effect in determining the
steady-state (iQ,vQ) loci. The main effect of IMT on the shape of
steady-state (iQ,vQ) is applied via coefficient B—the coefficient of
the quadratic nonlinearity in the memristance function. Coefficient
B is approximately the electrical resistivity ratio ρins

ρmet
between the

insulating and metallic phases.
The sets of loci plotted in Figures 7A, C, D are 2D projections

of the steady-state loci (xQ, iQ,vQ) in the 3D state space. Figure 8
shows the locus of (xQ, iQ,vQ) calculated for the midsize VO2 device
(rch = 36 nm and Lch = 50 nm). It resembles a twisted handle of
a binder clip. The two open legs of the clip are rotated out of
the plane defined by the looped clip head. Figure 9 provides a
zoomed-in view of Figure 8 to visualize the low-current region
of the same (xQ, iQ,vQ) locus, allowing its 2D projections onto
the (i,x), (v,x), and (i,v) planes to be directly compared with the
loci shown in Figures 7A, C, D, respectively.

4 Local analysis of an isolated Mott
memristor

4.1 Linearization and small-signal analysis

Chua’s LA theory outlines an algorithmic analysis procedure on
nonlinear dynamical electronic circuits using equivalent linearized
circuits (Chua, 2005). The linearized LA analysis examines the locus
of fixed points of the composite circuit, the fluctuations around these
fixed points, and their Laplace transforms. To explore the complex
phenomena of nonlinear dynamical circuits, one can simply apply
the LA criteria to access the locally active parameter domain
rather than applying a time-consuming trial-and-error search in
the parameter space. A good illustration of this procedure is the
memristive HH axon circuit model (Chua et al., 2012). In this study,
we apply the local linearization analysis and the LA theory to an
isolated VO2 Mott memristor to gain insights into its behavior near
fixed points.

FIGURE 8
Locus of fixed points (xQ, iQ,vQ) in the 3D state space of (x, i,v)
calculated for the midsize VO2 Mott memristor (blue line) and its 2D
projections (green, black, and red lines).

FIGURE 9
Zoomed-in view of Figure 8 to visualize the low-current region of the
fixed-point locus (xQ, iQ,vQ) calculated for the midsize VO2 Mott
memristor. Its 2D projections (green, black, and red lines) can be
compared with the loci iQ(xQ), vQ(xQ), and (iQ,vQ) shown in Figure 7.

4.1.1 Linearization around a fixed point
Considering a fixed point Q with a coordinate (xQ, iQ) on the

steady-state locus of an isolated Mott memristor, one can expand
voltage v at the fixed point (xQ, iQ) in a Taylor series:

v(xQ + δx, iQ + δi) = vQ + iQR
′
ch (xQ)δx+Rch (xQ)δi+ h.o.t., (10)

where R′ch(xQ) ≜
dRch
dx
|Q and h.o.t. denotes higher-order terms in

δx and δi. Neglecting h.o.t., in Equation 10 we obtain a linear
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equation as follows:

δv = iQR
′
ch (xQ)δx+Rch (xQ)δi = a11 (Q)δx+ a12 (Q)δi, (11)

where coefficients a11(Q) ≜ iQR
′
ch(xQ) and a12(Q) ≜ Rch(xQ).

Similarly, the kinetic function fx(x, i) can be expanded at the fixed
point (xQ, iQ) in a Taylor series as follows:

fx (xQ + δx, iQ + δi) = fx (xQ, iQ) +
∂ fx (x, i)

∂x
|Qδx

+
∂ fx (x, i)

∂i
|Qδi+ h.o.t.. (12)

Note that fx(xQ, iQ) = 0 since it is a fixed point (xQ, iQ) on the
steady-state locus. Neglecting h.o.t., in Equation 12 we can recast
the nonlinear state equation dx

dt
= fx(x, i) into the following linear

differential equation:

d
dt
(δx) =

∂ fx (x, i)
∂x
|Qδx+

∂ fx (x, i)
∂i
|Qδi = b11 (Q)δx+ b12 (Q)δi,

(13)

where coefficients b11(Q) ≜
∂fx(x,i)

∂x
|Q and b12(Q) ≜

∂fx(x,i)
∂i
|Q. Applying

Equations 2, 3, one can easily obtain the expressions for the
following three linear-term coefficients:

a11 (Q) = −
2BiQxQ

A(1+Bx2
Q)

2 , (14)

a12 (Q) = Rch (xQ) =
1

A(1+Bx2
Q)
, (15)

b12 (Q) =
4xQ(lnxQ)

2iQ

DA(1+Bx2
Q)[1− x

2
Q + 2x

2
Q lnxQ + 2E(xQ lnxQ)

2]
. (16)

To obtain the expression for b11(Q), we rewrite fx(x, i)
as fx(x, i) =

i2X(x)+Y(x)
Z(x)

, where the three auxiliary functions

are defined as X(x) = 2x(ln x)2

A(1+Bx2)
, Y(x) = 2Cx ln x, and Z(x) =

D[1− x2 + 2x2 ln x+ 2E(x ln x)2]. Applying the quotient rule
d
dx

X(x)
Z(x)
= X′(x)Z(x)−X(x)Z′(x)

Z(x)2
, we obtain

b11 (Q) = i2Q
X′ (x)Z (x) −X (x)Z′ (x)

Z(x)2
|
Q

+
Y′ (x)Z (x) −Y (x)Z′ (x)

Z(x)2
|
Q
. (17)

The formulas for X′(x) ≜ dX(x)
dx

, Y′(x) ≜ dY(x)
dx

, and Z′(x) ≜ dZ(x)
dx

are X′(x) = 2 ln x(2Bx2−Bx2 ln x+ln x+2)
A(1+Bx2)2

, Y′(x) = 2C(ln x+ 1), and Z′(x) =
4Dx ln x[1+E(ln x+ 1)], respectively.

Figures 10A–D show the plot of the current dependence of
the linear-term coefficients a11, a12, b11, and b12, calculated using
Equations 14–17 for three different VO2 device sizes.They show that
coefficients a11 and b12 are odd functions of the driving current,
while coefficients b11 and a12 are even functions of the driving
current. a12 is the same as the memristance Rch and is always
positive. In contrast, b11 is always negative.

4.1.2 Complex-domain equivalent circuit
Many insights can be gained about an isolated Mott memristor

through complex analysis. As the second step of the local analysis,

we can obtain its complex-domain equivalent circuit using the linear
Laplace transform ̂f(s) ≜ ∫∞0− f(t)e

−stdt that maps a function f(t)
in the time domain to a function ̂f(s) in the complex domain ℂ,
whose elements are complex frequencies s = σ+ iω. The complex
domain is also known as the s-domain. One direct benefit of the
Laplace transform is that it converts a differential equation into an
algebraic equation.

Taking the Laplace transforms of Equations 11, 13, we obtain

v̂ (s) = a11 (Q) ̂x (s) + a12 (Q) ̂i (s) , (18)

s ̂x (s) = b11 (Q) ̂x (s) + b12 (Q) ̂i (s) , (19)

where ̂x(s), v̂(s), and ̂i(s)denote the Laplace transforms of δx(t), δv(t),
and δi(t), respectively. Solving Equation 19 for ̂x(s), we obtain

x̂ (s) =
b12 (Q) ̂i (s)
s− b11 (Q)

. (20)

Substituting Equation 20 for ̂x(s) in Equation 18 and solving for
the impedance function Z(s;Q) ≜ v̂(s)/ ̂i(s), we obtain the s-domain
impedance function as follows:

Z (s;Q) =
a11 (Q)b12 (Q)
s− b11 (Q)

+ a12 (Q) . (21)

For a current-controlled memristor, the impedance function
Z(s;Q) in Equation 21 is the proper choice for its transfer function
H(s;Q). For a voltage-controlled memristor, admittance function
Y(s;Q) should be used. Chua pointed out that for a 1D system with
just one-port state variable, its transfer function is also the scalar
complexity function that forms the basis for the LA analysis (Chua,
2005). In Chua’s original LA formulations for reaction-diffusion
systems, a port state variable of a “reaction” cell (equivalent to a
lumped circuit element) interacts with the neighboring cells via an
energy or matter flow such as diffusion. On the other hand, a non-
port state variable describes isolated internal dynamics and does not
interact with other cells. The concept of LA is defined concerning
only port state variables. Clearly, the state variable x in the Mott
memristormodel is a port state variable as it interacts with a coupled
circuit element through the current (energy) flow.

Since the s-domain representation of a capacitor looks like
a “resistance” 1/sC, one can recast the small-signal impedance
function Z(s;Q) of a Mott memristor at a fixed point Q as an
equivalent circuit that consists of three virtual elements: a capacitor
C1 in parallel with a resistor R1 and both of them in series with a
second resistor R2.

Z (s;Q) =
( 1
sC1
)R1

( 1
sC1
) +R1

+R2, (22)

where

R1 ≜ −
a11 (Q)b12 (Q)

b11 (Q)
, (23)

R2 ≜ a12 (Q) = Rch (xQ) , (24)

C1 ≜
1

a11 (Q)b12 (Q)
. (25)
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FIGURE 10
Current dependences of the linear-term coefficients (A) a11, (B) a12, (C) b11, and (D) b12 in the linearized expressions of voltage v and the kinetic function
fx(x, i) at a fixed point on the steady-state locus of three different-sized VO2 Mott memristors, as labeled.

Figures 11A–C plot the current dependence of the three
virtual circuit elements, namely, R1, R2, and C1, calculated using
Equations 23–25, respectively, for three different VO2 device sizes.
They are all even functions of the driving current, so we only plot
the positive x-axis halves. The first thing to notice is that R1 and C1
stay negative at any current for all three device sizes calculated. In
contrast, R2 remains positive at any current. Note that R2 is the same
as a12 andRch(xQ).Therefore, in the s-domain, aMottmemristor can
bemodeled as a nonlinear positive resistor in series with a composite
reactive element consisting of a nonlinear negative capacitor and
a nonlinear negative resistor placed in parallel. This small-signal
equivalent circuit in the s-domain is shown in Figure 11B inset.

Since a negative capacitance value corresponds to a positive
frequency-dependent inductive reactance, it indicates that a Mott
memristor (or generally a current-controlled LAM) exhibits an
apparent inductive reactance without involving a magnetic field.
In physiology, an anomalous inductive reactance was observed as
early as 1930s in voltage clamp measurements of the squid giant
axon (Cole, 1941), but this perplexing phenomenon was not fully
understood until Chua’s memristive formulation for the potassium
and sodium ion channels (Chua et al., 2012).

Figure 11D shows the plots of the current dependence for the
sum of the two resistances (R1 +R2). At small currents, (R1 +R2)
is positive and remains nearly constant. As the current increases,
(R1 +R2) decreases abruptly and becomes negative once the current

exceeds a limit identical to the critical current ic1 for the lower PDR
to NDR transition on the steady-state (iQ,vQ) loci (see Figure 7D) at
2.522 μA, 9.077 μA, and 14.122 μA, respectively, for the three device
sizes. The negative (R1 +R2) then starts to increase with the current.
Inset of Figure 11D shows that (R1 +R2) becomes positive again
as the current exceeds a much larger limit identical to the critical
current ic2 for the NDR to the upper PDR transition on the steady-
state (iQ,vQ) loci (see Figure 7D inset) at 269.77 μA, 971.18 μA, and
1510.73 μA, respectively, for the same three devices. The one-to-
one correspondence between the sign of (R1 +R2) and the sign of
the slope on the steady-state (iQ,vQ) loci indicates that the three-
element equivalent circuit shown in Figure 11B inset is the proper
small-signal representation of a Mott memristor in the s-domain.

4.2 Pole–zero diagram and Chua’s local
activity theorem

4.2.1 Poles and zeros of the transfer function
For a dynamical system, the poles and zeros of its transfer

function H(s;Q) in the s-domain provide important insights into
the system’s response without requiring a complete solution of the
differential equations.Thefirst step of pole–zero analysis is to rewrite
the s-domain small-signal transfer function H(s;Q) as a rational
function of s, i.e., a ratio of two polynomials. For the case of a
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FIGURE 11
Current dependences of the three virtual circuit elements (A) R1, (B) R2, and (C) C1 comprising the s-domain impedance function Z(s;Q) at a fixed point
on the steady-state (iQ,vQ) loci of three different-sized VO2 Mott memristors, as labeled. R1 and C1 remain negative at any current for all three device
sizes. (B) The inset shows the small-signal equivalent circuit in the s-domain. (D) Current dependence for the sum of the two resistances (R1 +R2).
(R1 +R2) turns negative as the current exceeds a size-dependent limit. (D) The inset shows that (R1 +R2) becomes positive again when the current
exceeds a much larger size-dependent limit. These two current limits are identical with the critical currents ic1 at the lower PDR to NDR and ic2 at the
NDR to upper PDR transitions on the steady-state (iQ,vQ) loci, respectively (see Figure 7D and inset).

1D current-controlled Mott memristor, both the denominator and
numerator s polynomials have a degree of n = 1. Therefore, its
impedance function Z(s;Q) is written as follows:

Z (s;Q) =
b1s+ b0

a1s+ a0
, (26)

where all the coefficients of s polynomials in the denominator and
numerator are real numbers. Using Equation 22, the expressions for
these four coefficients are derived as follows:

a0 = 1, (27)

a1 = R1C1, (28)

b0 = R1 +R2, (29)

b1 = R1R2C1. (30)

Since a0 is a constant and b0 = R1 +R2 has already beendiscussed
(see Figure 11D), we only need to examine a1 = R1C1 and b1 =
R1R2C1. Both of them are even functions of the input current. Their

dependence on current is plotted in Figure 12 for three differentVO2
device sizes.

A rational transfer function can be further rewritten in a
factored or pole–zero form by expressing the s polynomials in the
denominator and numerator as products of linear factors. The roots
of the denominator polynomial are the poles, and the roots of the
numerator polynomials are the zeros. For any polynomial with real
coefficients, its roots are either real or complex conjugate pairs.

For an isolated 1D Mott memristor, there is just one pole and
one zero. To obtain the expressions for the zero and the pole of
Z(s;Q), Equation 26 is rewritten as follows:

Z (s;Q) =
k (s− z)
(s− p)
, (31)

where k = b1/a1 = R2 is a positive real coefficient and z and p denote,
respectively, the zero and the pole of Z(s;Q). The expressions for z
and p are as follows:

z = −
b0

b1
= −

R1 +R2

R1R2C1
, (32)

p = −
a0

a1
= − 1

R1C1
= b11. (33)
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FIGURE 12
Current dependences for two of the four s-polynomial coefficients: (A) a1 (low-current part), (B) a1 (wide range), (C) b1 (low-current part), and (D) b1

(wide range) in the rational function representation of the impedance function Z(s;Q) at a fixed point on the steady-state (iQ,vQ) locus of three
different-sized VO2 Mott memristors, as labeled. The other two coefficients are a0 = 1 and b0 = R1 +R2 (see Figure 11D).

Figure 13 show the loci of the zero z and the pole p versus
input current for three different VO2 device sizes calculated using
Equations 32, 33. It is conspicuous that both z and p are located
on the real axis in the complex plane, and both are even functions
of current. It may be noted that p is already plotted in Figure 10C
in the form of b11. It is replotted in Figure 13B for a side-by-side
comparison with z.

Since both the zero and the pole of Z(s;Q) are located on the real
axis, their signs can be examined to determine the local dynamical
behaviors at a fixed point, as discussed in the next subsection.
Generally speaking, for a 1D uncoupled Mott memristor, its pole p
(or b11) remains negative at any current level. In contrast, its zero z
has two sign reversals at two distinctive input current levels. These
characteristics are illustrated in Figure 14, which shows the current
dependence of p and z of Z(s;Q) calculated for the midsize VO2
device (rch = 36 nm and Lch = 50 nm).

Figures 14A, B show the loci of p(iQ) for the low-current part
(up to 100 μA) and the broader range (up to 2 mA), respectively.
p exhibits a non-monotonic dependence on current, but the
condition p < 0 always holds true. Figure 14C shows that z is
initially negative at small currents, and then, it turns positive
when the current is higher than ≈9.077 μA, as indicated by a
pair of nearby fixed points {Q1,Q2} across zero. Their coordinates
[xQ, iQ,vQ,Re(z)] are [0.00566,9.075μA,1.007V,−5.882× 106]

for Q1 and [0.00567,9.078μA,1.007V,3.388× 106] for Q2,
respectively. Figure 14D shows that z becomes negative again
if the current exceeds ≈971.18 μA, as indicated by a pair of
nearby fixed points {Q3,Q4} across zero. Their coordinates
are [0.60628,971.171μA,0.097V,3.854× 104] for Q3 and
[0.60629,971.203μA,0.097V,−8.477× 104] forQ4, respectively. The
two critical currents corresponding to sign reversals in z match
exactly with those that delineate the NDR region from the lower
and upper PDR regions on the steady-state (iQ,vQ) locus of the same
device, as shown in Figures 14E, F. The coincidences are confirmed
by examining the locations of the same two pairs of nearby fixed
points {Q1,Q2} and {Q3,Q4} on the (iQ,vQ) locus.

4.2.2 Chua’s local activity theorem
Chua’s local analysis method established a practical set of

criteria to classify the dynamics of an isolated or uncoupled
nonlinear circuit element around its fixed points. To determine
whether a linearized element is LP or locally active around a
fixed point Q = (xQ, iQ,vQ), one must find out whether small input
fluctuations lead to dissipating output fluctuations over time or,
conversely, result in amplification. For the discussion, we choose
the example of a 1D current-controlled memristor with current
as the input and voltage as the output. Their roles are exchanged
for a voltage-controlled memristor by duality. Mathematically,
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FIGURE 13
Current dependence of (A) the zero z and (B) the pole p of the s-domain impedance function Z(s;Q) at a fixed point on the steady-state (iQ,vQ) locus
of a VO2 Mott memristor, calculated for three different device sizes as labeled.

FIGURE 14
Current dependence of the pole p of Z(s;Q) in (A, B) and the zero z in (C, D) for the midsize VO2 Mott memristor. p remains negative at any current. For
z, (C) (−) → (+) sign reversal is observed at 9.077 μA, as indicated by a pair of nearby zeros {z1,z2} with the opposite sign; (D) (+) → (−) sign reversal is
observed at 971.18 μA, as indicated by a pair of nearby zeros {z3,z4} with the opposite sign. (E, F) Corresponding parts of the steady-state (iQ,vQ) locus
of the same device. The crossovers between the NDR region (red) and the lower and upper PDR regions (blue) at the local voltage extrema coincide
with the sign reversals in z, as indicated by the locations of {Q1,Q2} and {Q3,Q4} pairs of fixed points on the (iQ,vQ) locus.
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with a homogeneous initial condition (δx(0),δi(0),δv(0)) = 0 (no
fluctuation at t = 0), a linearized element is LP if and only if (iff) the
fluctuation energy integrated over time remains positive:

LP⇔∫
t′

0
δi (t) ⋅ δv (t)dt ≥ 0, (34)

for any finite time interval t′ > 0. The uncoupled element is locally
active at a fixed pointQ iff there exists an input fluctuation δi(t) and
a finite time 0 < T <∞ such that the integrated fluctuation energy
becomes negative. For a multidimensional element, the fluctuation
power to be integrated is a scalar “dot” product between the two
vectors δi(t) and δv(t).

However, it is not practical to inspect the time-domain
integral in Equation 34 for all possible input fluctuations. By
applying the Laplace transform, Chua derived a mathematically
equivalent yet more practical formula for the local passivity theorem
in the complex domain. For the 1D scalar case, the necessary and
sufficient condition for an uncoupled 1D circuit element to be LP
is that its complexity function or transfer function H(s;Q) is a
positive real (PR) function, which satisfies both (1) Im[H(s;Q)] =
0 if Im[s] = 0 and (2) Re[H(s;Q)] ≥ 0 if Re[s] ≥ 0. Condition (1) is
always satisfied since H(s;Q) is a rational function. Condition (2)
means that the closed right half plane (RHP) of smaps into the closed
RHP of H(s;Q). A simple example for a PR function is H(s;Q) =
a+ bs+ cs−1, where a, b, and c ≥ 0.

Chua proved the following local passivity theorem as a
practical test for the PR condition: an uncoupled 1D circuit
element is LP at a fixed point iff all the following four criteria
are satisfied.

i) H(s;Q) has no poles in the open RHP (Re(s) > 0).
ii) H(s;Q) has no higher-order poles (degree n ≥ 2) on the

imaginary axis (Im axis).
iii) If H(s;Q) has a simple pole s = iωp on the Im axis, then the

residue of H(s;Q) at iωp must be a PR number.
iv) The Im axis (excluding poles) maps into the closed RHP of

H(s;Q), i.e., Re[H(iω;Q)] ≥ 0 for allω ∈ (−∞,∞), where s = iω
is not a pole.

The LA theorem is derived by negating any one of the
abovementioned conditions. In other words, an uncoupled 1D
circuit element is locally active at a fixed point iff any one of the
following four criteria is satisfied.

i) H(s;Q) has a pole in the open RHP Re(s) > 0.
ii) H(s;Q) has a higher-order pole (degree n ≥ 2) on the Im axis.
iii) H(s;Q) has a simple pole on the Im axis with negative-real or

complex residue.
iv) At least some points on the Im axis map into the open left

half plane (LHP) of H(s;Q), i.e., Re[H(iω;Q)] < 0 for some
ω ∈ (−∞,∞).

For a system of higher dimensions, Chua proved a similar set
of four test criteria for LA, where the complexity function H(s;Q)
for an 1D element is replaced by the complexity matrix for a
multidimensional element.

As explained by Brown et al. (2022b), the local stability of a
fixed point is a property that is independent of the local activity of
dynamics around it. Near a fixed point, an isolated memristor may
have four possible combinations of local stability and local activity

properties that can lead to persistent or decaying dynamics. Since
the condition of being both LP and locally unstable is physically
unrealizable, one generally only needs to consider three possible
scenarios: LP and stable, locally active but asymptotically stable,
which is termed as edge of chaos (EOC) by Chua, and locally active
and unstable (LA\EOC).

For a 1D uncoupled memristor, if its transfer function has a
positive coefficient (k > 0 in Equation 31), the classification of its
dynamics around a fixed point is determined by the locations of
the pole and zero of its transfer function in the complex plane, as
specified below.

i) Locally passive⇔ pole in the open LHP (Re(p) < 0) and zero
in the closed LHP (Re(z) ≤ 0)

ii) Edge of chaos⇔ pole in the open LHP (Re(p) < 0) and zero in
the open RHP (Re(z) > 0)

iii) Locally active but unstable ⇔ pole in the closed RHP
(Re(p) ≥ 0)

Plots of Im(p) versus Re(p) and Im(z) versus Re(z), known
as pole–zero diagram, thus, offer a graphical determination of
local steady-state dynamics without resorting to time-domain
integration.

As discussed previously, for a current-controlled Mott
memristor both the pole and the zero are located on the real axis.The
pole p of its impedance function Z(s;Q) is always in the open LHP
(Re(p) < 0); therefore, it does not possess the LA\EOC dynamics
in (iii). On the other hand, the zero z of Z(s;Q) can reside in either
the closed LHP or the open RHP, depending on the input current
amplitude. Figure 14 shows that Re(z) flips its sign twice depending
on the input current, and the two sign reversals in Re(z) coincide
with the crossovers between the NDR region and the lower and
upper PDR regions on the steady-state (iQ,vQ) locus.

4.2.3 Pole–zero diagram
Figure 15 visualizes the evolution of p and z locations in the

complex plane as functions of the input current for the current-
controlled midsize VO2 Mott memristor. Figure 15A shows that
Re(p) < 0 is always satisfied. The coordinates [xQ, iQ,vQ,Re(p)]
for the minimal and maximal calculated values of p, labeled as
pmin and pmax, are [0.998,25.268mA,0.935V,−9.543× 1013] and
[1× 10−145,1.074μA,0.132V,−3.273× 109], respectively. As may be
noted, pmin and pmax in our calculations are not the actual bounds
of p since xQ can approach to its asymptotes 0 and 1 very closely but
will never reach them.

Figure 15B shows that the zero z is located in the LHP at zero
current, and it shifts to the right as the current increases. z crosses
the Im axis into theRHP at a critical current of 9.077 μA, as indicated
by a pair of nearby fixed points {z1,z2} on the opposite side of the
Im axis (the same ones as shown in Figure 14). z continues shifting to
the right with current until it reaches a maximum value at zmax with
a coordinate of [0.03549,24.482μA,0.578V,1.327× 1010]. Then, it
reverses course and shifts to the left with current. z crosses the
Im axis again and returns to the LHP at a second critical current of
971.18 μA, as indicated by a pair of nearby fixed points {z3,z4} on the
opposite side of the Im axis (the same ones as shown in Figure 14).
Continuously increasing the current will drive xQ asymptotically
toward 1 and further decrease z. We stop the calculation at zmin
with a coordinate of [0.998,25.268mA,0.935V,−9.467× 1013]. We
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FIGURE 15
Locations of (A) the pole p and (B) the zero z in the complex plane as functions of the input current, calculated for the midsize VO2 Mott memristor.
Both p and z are located on the real axis. p remains in the LHP, with its minimal and maximal calculated values indicated by pmin and pmax, respectively.
z is located in the LHP at iQ = 0 and shifts to the right with current, crossing the imaginary axis into the RHP at 9.077 μA, as indicated by {z1,z2}. It
continues to shift to the right until reaching zmax at 24.482 μA, then shifts to the left with current, and reenters LHP at 971.18 μA, as indicated by {z3,z4}.
The minimum of z is represented as zmin. The part of z locus between 0 and 24.482 μA (brown) is shifted vertically for clarity. The LP and EOC regions
are highlighted by blue and red colors, respectively.

use the same blue and red colors, as shown in Figure 14 to highlight
the LP and EOC regions, respectively.

Applying the pole–zero diagram LA criteria specified above,
we conclude that an uncoupled 1D Mott memristor at a
fixed point either belongs to the LP class or the EOC class
but can never belong to the LA\EOC class. For the midsize
VO2 device, the LP → EOC transition occurs at (xQ, iQ,vQ) ≈
(0.00567,9.076μA,1.007V). The EOC → LP transition occurs at
(xQ, iQ,vQ) ≈ (0.60629,971.2μA,0.0973V).

4.3 Frequency response

An important question arises: for an uncoupled 1D Mott
memristor that is current-biased in the EOCregion (which coincides
with its NDR region), will it remain to be locally active, capable of
amplifying a small sinusoidal input fluctuation at arbitrarily high
frequencies? Otherwise, is there a finite upper limit for the input
fluctuation frequency, beyond which the element can no longer
provide an AC signal gain? In this section, we shift the small-signal
analysis to the frequency domain,which allows us to apply the fourth
criterion in Chua’s LA theorem to answers these questions.

For dynamical systems, it is useful to study the system’s
frequency response. In small-signal analysis, this is performed by
applying a single-frequency sinusoidal fluctuation of current input
i(t) = I sin ωt with an angular frequency ω = 2π f, where f is the
frequency of the sine wave. The amplitude I≪ 1 is very small to
satisfy the small-signal condition. For a 1DMottmemristor at a fixed
pointQ, substituting s = iω for the complex frequency s in the small-
signal impedanceZ(s;Q) in Equation 26 and rearranging into its real
and imaginary parts, we obtain

Z (iω;Q) = [
a0b0 + a1b1ω

2

a2
0 + a

2
1ω

2 ]+ i[
(a0b1 − a1b0)ω

a2
0 + a

2
1ω

2 ]. (35)

The functions ReZ(iω;Q) and ImZ(iω;Q) are the real and
imaginary parts of the frequency response, respectively; these are
expressed in terms of the small-signal impedance Z(iω;Q), both of
which are rational functions of ω:

ReZ (iω;Q) =
a0b0 + a1b1ω

2

a2
0 + a

2
1ω

2 , (36)

ImZ (iω;Q) =
(a0b1 − a1b0)ω

a2
0 + a

2
1ω

2 , (37)

where the coefficients a0, a1, b0, and b1 are provided in
Equations 27–30.

Figures 16A, B show the plot of the frequency dependence
of ReZ(iω;Q) and ImZ(iω;Q) (also referred to as ReZ and
ImZ, respectively, hereafter) at different steady-state current levels
between 2 μA and 10 μA for the midsize VO2 Mott memristor
calculated using Equations 36, 37. We replaced angular frequency ω
with frequency f as the x-axis for engineering convenience. Notice
that positive andnegative frequencies refer to the opposite directions
of rotation for the complex exponential eiωt vector in the complex
plane. ReZ is an even function of frequency, while ImZ is an odd
function of frequency. At small currents, ReZ is in the order of 105Ω
and shows very weak frequency dependence. Increasing current will
“pull” it toward the negative direction and develop a dip centered at
zero frequency. The higher the current is, the stronger the frequency
dependence becomes.

Frequency response of ReZ shows a dramatic change as the
current increases from 9 μA to 10 μA. From the pole–zero diagram
analysis, we already know that for the midsize VO2 Mott memristor,
the critical current at the LP (lower PDR) to EOC (NDR) crossover
is ic1 ≈ 9.077 μA. At iQ = 9 μA, ReZ still remains positive at any
frequency, but its minimum at zero frequency is very close to
the origin. At iQ = 10 μA, ReZ turns negative at frequencies lower
than the limit | fmax| ≈ 0.88 GHz, indicating that the element is
locally active within certain frequency upper bound. This (+) →
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FIGURE 16
Small-signal impedance Z(iω;Q) frequency response of the midsize VO2 Mott memristor biased at constant steady-state currents in the range of 2 μA
to 10 μA. (A) ReZ(iω;Q) vs ω/2π (in GHz). At iQ < 9.077 μA, ReZ > 0 at any frequency, and the memristor remains LP. At iQ = 10 μA, an EOC region exists
with ReZ < 0 at | f| < 0.88 GHz. (B) ImZ(iω;Q) vs ω/2π. Inset is a part of the same figure plotted in log–log scale. (C) Nyquist plot of ImZ(iω;Q) vs
ReZ(iω;Q). (D) Zoomed portion of (C) reveals the loci at smaller currents.

(−) sign reversal in ReZ is yet another hallmark of the LP → EOC
transition and provides new information on the boundary of the EOC
region in the frequency domain.

The value of fmax can be derived fromChua’s fourth LA criterion.
For an uncoupled 1D current-driven memristor in the frequency
domain, ReZ(iω;Q) < 0; for some finite angular frequencies, ω ∈
(−∞,∞) is a sufficient condition for it to be LA. From Equation 35,
this means a0b0 + a1b1ω

2 < 0 or ω2 < −a0b0
a1b1

. Therefore, a 1D
uncoupled Mott memristor is locally active if the angular frequency
is lower than the upper bound specified as follows:

|ω| < ωmax = √
−a0b0

a1b1
, (38)

which also requires that a0b0
a1b1
< 0 so that ωmax in Equation 38 is a

real number.
At small currents, ImZ is both very small and shows very weak

frequency dependence. As the current increases, its amplitude and
frequency dependence become more pronounced. The amplitude of
ImZ first increases rapidly with frequency before reaching a peak at
a characteristic frequency fp, and then, it decreases with frequency

and asymptotically approaches the x-axis. | fp| increases with the
current and reaches 1.51 GHz at iQ = 10 μA. Inset of Figure 16B
presents the same frequency dependence of ImZ plotted on a
log–log scale, which shows that ImZ is proportional to the frequency
for | f| < | fp| and inversely proportional to the frequency for | f| >
| fp|.

4.3.1 Nyquist plot
It is instructive to plot the locus of ImZ(iω;Q) vs. ReZ(iω;Q)

in Cartesian coordinates, with ω indicated as a parameter. Such a
parametric plot is called a Nyquist plot, a graphical technique used
to provide insights into the stability of a dynamical system.

Figure 16C shows the loci of the Nyquist plot for the same VO2
device, as shown in Figures 16A, B. Figure 16D presents a zoomed-
in portion of it to reveal those much smaller loci at iQ ≤ 7 μA.
Ostensibly, the locus of small-signal ImZ(iω;Q) vs ReZ(iω;Q) at a
finite steady-state current appears to be a circle centered on the
x-axis. Increasing the current will inflate the radius of the circle
and move its center toward the negative direction. Points in the
upper half-plane correspond to positive frequencies, and those in
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the lower half-plane correspond to negative frequencies. Increasing
the frequencymodulus will move a point in the right direction along
the upper or lower arm of the locus. A closer look reveals that the
left half of the locus intersects the x-axis at zero frequency. For the
right half, the distance between the locus and the x-axis approaches
0 as | f| →∞, but there is no intersection at any finite frequency.
In other words, the x-axis is a horizontal asymptote for the right
half of the locus. Therefore, the locus of ImZ(iω;Q) vs ReZ(iω;Q)is
actually an open set of points rather than a closed loop. At iQ ≈ 9.077
μA, the locus crosses the y-axis into the LHP, as illustrated by the
two loci at 9 μA and 10 μA. Therefore, the Nyquist plot provides
another visualization of the LP→ EOC transition as the steady-state
current increases.

Figure 17 is an annotated Nyquist plot for the ImZ vs ReZ
locus of the same VO2 device at iQ = 10 μA, highlighting several
key points on the locus. We use the same blue and red colors,
as shown in Figures 14, 15 to represent the LP and EOC regions,
respectively. Clearly, the lower half of the locus is a reflection of
the upper half over the x-axis, by negating the values of ImZ
and frequency at the same ReZ value. The solid dot (•) at ReZ ≈
−3.17× 104 represents the x-intercept of the locus at zero frequency,
as indicated by a pair of nearby points at f = 1 Hz and f = −
1 Hz. The open circle (◦) at ReZ ≈ 9.72× 104 represents the x-
asymptote of the locus as | f| →∞, as indicated by a pair of nearby
points at f = 1 THz and f = − 1 THz. The two pairs of points
at f = ± 0.871 GHz and f = ± 0.895 GHz indicate the crossover
from the EOC (red) region to the LP (blue) region as frequency
exceeds 0.88 GHz.

4.3.2 Frequency-domain equivalent circuit
The frequency-domain equivalent circuit of an isolated Mott

memristor can be readily obtained by substituting a0, a1, b0,
and b1 in Formula 35 of Z(iω;Q) with R1, R2, and C1 using
Equations 27–30. The real part of Z(iω;Q) as shown in Formula 36,
now defined as the frequency-domain resistance function,
takes the form of

Rω (ω,Q) ≜ ReZ (iω;Q) =
(R1 +R2) + (R1C1)2R2ω

2

1+ (R1C1)2ω2 , (39)

which can be further rewritten by replacing C1 with
−1/b11R1 using Equation 33

Rω (ω,Q) =
b2
11 (R1 +R2) +R2ω

2

b2
11 +ω

2 . (40)

The sign of Rω(ω,Q) can be either positive or negative,
depending on the (ω,Q) coordinate. Rω(ω,Q) ≥ 0 maps to the LP
region, and Rω(ω,Q) < 0 maps to the EOC region. The angular
frequency in Formula 38 to satisfy Chua’s fourth LA criterion
now becomes

|ω| < ωmax = −b11√
−(R1 +R2)

R1
. (41)

Since the memristance R2 is always positive, this indicates that
(R1 +R2) must be negative for ωmax to be a real number. From the
previous discussion of Figure 11D, (R1 +R2) < 0 maps into the NDR
(EOC) region on the steady-state (iQ,vQ) locus.

We now look at the imaginary part of Z(iω;Q). By substituting
a0, a1, b0, and b1 in Formula 37 of ImZ(iω;Q) with R1, R2, and C1,
we rewrite ImZ(iω;Q) as

ImZ (iω;Q) ≜ Lω (ω,Q)ω = [
−R2

1C1

1+ (R1C1)2ω2 ]ω, (42)

where Lω(ω,Q) is defined as the frequency-domain inductance
function. Evidently, the sign of Lω(ω,Q) is determined by the
sign of C1. Since C1 remains negative at any fixed point Q (see
discussion on Figure 11C), Lω(ω,Q) is always positive, regardless of
the location of Q in the LP or EOC region. Therefore, the frequency-
domain reactance of an isolated Mott memristor is always inductive,
causing its voltage output to lead a sinusoidal current input in
phase. ImZ(iω;Q) can be further rewritten by replacing C1 with
−1/b11R1 as follows:

Lω (ω,Q)ω = (
b11R1

b2
11 +ω

2)ω. (43)

Finally, the frequency-domain small-signal impedance function
is expressed as

Z (iω;Q) = Rω (ω,Q) + iLω (ω,Q)ω. (44)

Through Equations 39–44, we conclude that in the frequency
domain, an uncoupled Mott memristor can be considered a positive
inductor in series with a resistor that is negative up to a certain
maximum frequency (the EOC region) and positive beyond it (the
LP region) (Liang et al., 2022).

4.3.3 Phase diagram for complexity
The fourth criterion in Chua’s LA theorem states that a negative

real part of the complexity function of an uncoupled 1D circuit
element at some finite frequencies is a sufficient condition for it
to be locally active. For a current-driven memristor, its complexity
function is the impedance function Z(iω;Q). Since Z(iω;Q) depends
on both the angular frequency ω and the steady-state current
iQ, plotting ReZ as a color scale with current and frequency as
the (x,y) coordinate provides a visualization of the LP and EOC
regions in the operating parameter space. The ReZ = 0 contour
outlines the border between these regions. One could refer to
such a 2D graphical representation of ReZ a phase diagram
for complexity.

Figure 18 shows the plot of the 2D color-scale map of ReZ(iQ, f)
for the midsize VO2 Mott memristor. Figure 18A presents the
low-current region, plotted up to 20.8 μA. It shows that at lower
frequencies, the LP→ EOC transition occurs at a nearly frequency-
independent critical current ic1 ≈ 9.077 μA, as indicated by an almost
vertical ReZ = 0 contour. At frequencies higher than ∼0.88 GHz,
the critical current increases drastically, and consequently, the
direction of the ReZ = 0 contour turns almost parallel to the
current axis. Figure 18B shows the same color-scale ReZ map, with
a much wider current range up to 2 mA, revealing an EOC → LP
transition that occurs at a nearly constant critical current ic2 ≈ 971.18
μA at low frequencies. The direction of the ReZ = 0 contour shows
a similar crossover from nearly vertical at frequencies lower than
∼0.88 GHz to almost horizontal at higher frequencies.

Tounderstand the scaling trendof the local activity region versus
device size, we plotted the 2D color-scale map of ReZ(iQ, f) for
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FIGURE 17
Nyquist plot of ImZ(iω;Q) vs ReZ(iω;Q) of the midsize VO2 Mott memristor at a constant steady-state current iQ = 10 μA. The LP and EOC regions are
highlighted in blue and red colors, respectively.

FIGURE 18
2D color-scale map of ReZ(iQ, f) for the midsize VO2 Mott memristor as a visualization of the LP and EOC regions in the frequency and current
parameter space, showing (A) its low-current region up to iQ = 20.8 μA and (B) a wide-range map plotted up to iQ = 2 mA. Frequencies are plotted on a
logarithmic scale.

VO2 Mott memristors with different combinations of rch and Lch
sizes. Figure 19 shows the main results of this analysis. We found
that ReZ is independent of the VO2 channel length Lch. This is not
unexpected since theVO2 compactmodel is essentially 2D in nature.
Figure 19A presents a zoomed-in view of the ReZ = 0 contours for

VO2 devices with rch in the range of 5–60 nm. The shaded area
under each contour is the EOC region that satisfies ReZ(iQ, f) < 0.
The apex of each contour corresponds to the maximum frequency
fmax at which the device remains locally active. Figure 19B shows
that fmax increases super-exponentially as the VO2 channel radius
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FIGURE 19
(A) Zoomed-in view of the ReZ = 0 contours for VO2 Mott memristors with channel radius rch in the range of 5 nm–60 nm. Shaded areas under the
contours are the EOC regions, where ReZ(iQ, f) < 0. The apex of each contour at f = fmax shows the maximum frequency of the EOC region. (B) Scaling
of fmax (brown) and iQ( fmax) (green) vs. rch. fmax increases super-exponentially as rch decreases. iQ( fmax) scales linearly with rch. A linear regression
(dashed line) yields a slope of 671±3 (A/m) and a coefficient of determination R2 = 0.99988.

rch shrinks. For a VO2 device with rch as small as 5 nm, fmax
reaches as high as 132.1 GHz.This favorable device scaling enhances
the operational bandwidth for using Mott memristors as locally
active components. It also reveals that the steady-state current
at fmax is directly proportional to the radius of the conduction
channel rch.

5 Local analysis of reactively coupled
Mott memristors: two-dimensional
relaxation oscillator

The topological constraint of an isolated 1D Mott memristor
limits the dynamics it can exhibit, making damped or persistent
oscillations impossible. However, this constraint may get lifted
when the memristor is coupled to one or more reactive elements.
The coupling may increase both the system’s dimension and the
complexity of its dynamics. For continuous dynamical systems, the
Poincaré–Bendixson theorem states that chaos only arises in three
or more dimensions.

For simplicity, we will limit our discussions to 2D cases.
Experimentally, it is difficult to characterize an isolated memristor
without inadvertently coupling it to one or more reactive elements.
On the other hand, such couplings introduce interesting phenomena
such as self-excited persistent oscillations or stable limit cycles.
Limit cycles belong to an important category of attractors, alongside
fixed points. A nonlinear system consisting of a Mott memristor
coupled with reactive elements may exhibit a local Hopf-like
bifurcation. As a bifurcation parameter is varied, its local stability
abruptly switches between a fixed point and a limit cycle around
it. Persistent oscillations that arise out of Hopf-like bifurcations
are well-studied in the Hodgkin–Huxley and FitzHugh–Nagumo
models of biological nerve cells (Hastings, 1974; Troy, 1978; Rinzel
and Miller, 1980; Dogaru and Chua, 1998), and they are relevant
for the intriguing neuronal signaling phenomena such as firing
action potentials. However, finding the limit cycle solutions for a
dynamical system is generally a very difficultmathematical problem.
The unsolved second part of Hilbert’s 16th problem is a well-known

example. The local analysis techniques that we have discussed so
far are not sufficient, and one needs to resort to global nonlinear
techniques such as nullcline analysis and Lyapunov stability theory.
In this section, we apply local analysis to a simple example of a
reactively coupled Mott memristor. In the next section, we take a
cursory glance at global analysis using the same example to illustrate
its usefulness.

5.1 Voltage-biased relaxation oscillator
circuit

A voltage-biased Pearson–Anson (PA) relaxation oscillator
circuit is a simple yet very useful example to illustrate the effect of
such external couplings. As shown in Figure 20, if a Mott memristor
M is connected to a capacitor Cp in parallel and both of them are
connected to a resistor Rs placed in series, then together they form
a composite circuit, which can be represented as {(M‖Cp) +Rs}. In
practice, onemay inadvertently form such a circuit when attempting
to test an individual memristor device without explicitly connecting
Cp and Rs. Cp may arise from the geometric capacitance between
the two electrodes of a thin-film metal-oxide-metal device or from
the stray capacitance of coaxial cables. Rs may arise from the
output resistance of a voltage source, the resistance of metal lead
wires, and contact resistance at the metal–oxide interfaces. If a
DC voltage bias Vdc is applied to one terminal of Rs, and the
other terminal of Rs connected to the memristor is taken as the
output node, the {(M‖Cp) +Rs} circuit forms a PA or relaxation
oscillator. If the passive elements and voltage bias are appropriately
valued, it exhibits persistent self-excited oscillations that will be
elaborated below.

Over the past 100 years, the prototype {(M‖Cp) +Rs} relaxation
oscillator circuit has been implemented by a variety of physical
mechanisms for the locally active element M. The original PA
oscillator, invented in 1921 (Pearson and Anson, 1921), used a
gas-discharge neon bulb, which achieves the EOC region through
glow discharge once the gas ionization breakdown threshold voltage
is reached. In the silicon age, many types of voltage-controlled
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FIGURE 20
Circuit diagram of a DC voltage-biased Pearson–Anson relaxation oscillator formed by a Mott memristor M in parallel with a capacitor Cp and both
connected in series with a resistor Rs. Formulas in blue are the s-domain impedances of M and Cp (with an initial condition v(0) = 0) used to derive the
total impedance ZCM (see Equations 45, 46).

oscillator (VCO) circuits have been developed for applications in
digital and RF systems; among these, astable multivibrators based
on relaxation oscillations offer certain benefits, such as guaranteed
startup and the elimination of unscalable inductors (Newcomb
and Sellami, 1999). Conceptually, an astable multivibrator is based
on one energy storage element (a capacitor) and one hysteretic
threshold switch, e.g., a Schmitt trigger that can be built with an
operational amplifier comparator circuit. It produces a square wave
output instead of the sawtooth output waveforms in LAM-based
relaxation oscillators.

From the scalability perspective, it is desirable to reduce the
circuit element count. An emitter-coupled Schmitt trigger can be
built using two transistors connected in a positive feedback loop
with typically five resistors to set the desired hysteresis thresholds.
A single-transistor silicon relaxation oscillator can be realized by
configuring a bipolar junction transistor (BJT) as a reverse-biased
diode. For example, in the circuit shown in Figure 20, one can
use an npn BJT as the element M by connecting its emitter to
the positive node, its collector to the ground, and leaving its base
terminal open. As the capacitor is charged up until its voltage
reaches a threshold between 5 and 7 V, an avalanche breakdown
is triggered across the emitter and collector, and the BJT suddenly
conducts current, producing an NDR region. Including the voltage
drop across the series resistor, a silicon BJT relaxation oscillator
typically requires a supply voltage of at least 12 V, which is a
clear disadvantage compared to a Mott memristor oscillator that
can operate at a much lower supply voltage like 1 V. Another
advantage of Mott memristor oscillators is their higher operating
frequencies. Silicon multivibrators operate between a few kHz and
a few hundred MHz, depending on the transistor technology.
As shown in the previous section, the maximum frequency for
the EOC region of a VO2 Mott memristor increases super-
exponentially as the device is miniaturized. Operating at 1–10 GHz
is feasible using device sizes within the reach of modern lithography
capability.

5.2 Small-signal analysis: the element
combination approach

The {(M‖Cp) +Rs}Mott memristor PA circuit is a second-order
system with two state variables, namely, charge qC stored in the
capacitorCp (or equivalently voltage v acrossCp andM) and fraction
of the metallic phase x in the memristor M. This second-order
system is described by two coupled differential equations. Its steady
states or fixed points can be found using the global nullclinemethod,
which are covered in the next section. For the sake of continuity in
the discussion, we assume that fixed points of the PA oscillator have
already been determined and focus, for now, onwhat can be inferred
from local analysis. We can combine (M‖Cp) into a composite
second-order nonlinear element (dashed box in Figure 20) and then
apply the small-signal local analyses and Chua’s LA criteria to the
system consisting of the composite element in series with Rs.

To perform small-signal analysis, we first need to find out
the transfer function of the composite circuit. In the s domain,
impedance of a capacitor Cp is 1/sCp when the initial condition
v(0) = 0 is assumed. ImpedanceM in its pole–zero form isZM(s;Q) =
k(s−z)
(s−p)

(Equation 31). One can derive the transfer function H(s;Q)
of the PA oscillator at a fixed point Q using the voltage divider
formula as follows:

H (s;Q) = Vout/Vdc = ZCM/(Rs +ZCM) , (45)

where ZCM is the total impedance of Cp in parallel with M such that

ZCM = ZCZM/(ZC +ZM) =
k (s− z)

kCps
2 + (1− kCpz) s− p

. (46)

Substituting the expression of ZCM in the transfer function
formula, we obtain

H (s;Q) =
k (s− z)

kRsCps
2 + (Rs + k− kRsCpz) s− (Rsp+ kz)

. (47)
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One can see that H(s;Q) of a Mott memristor PA oscillator has
the same zero as an uncoupled memristor, but it has a pair of two
poles instead of one pole for an uncoupled memristor.

To simplify the expression of H(s;Q) in Equation 47, we define
a time constant τ0 ≜ RsCp and a cutoff frequency ω0 ≜ (RsCp)−1. We
also substitute kwith the positive real memristance function Rch and
rewrite H(s;Q) in the pole–zero form as follows:

H (s;Q) =
k′ (s− z)

d2s
2 + d1s+ d0

=
k′ (s− z)
(s− p+)(s− p−)

, (48)

where

k′ = ω0, (49)

d2 = 1, (50)

d1 =
Rs +Rch −Rchτ0z

Rchτ0
= (1+

Rs

Rch
)ω0 − z, (51)

d0 =
−(Rsp+Rchz)

Rchτ0
= −

Rs

Rch
ω0p−ω0z. (52)

Here, k′ in Equation 49 is a positive real coefficient, p and z in
Equations 51, 52 are the pole and zero of the memristorM. We then
derive the pair of poles p± in Equation 48 for the PA oscillator by
finding the roots of the quadratic equation d2s

2 + d1s+ d0 = 0

p± =
−d1 ±√d2

1 − 4d2d0

2d2
=
−d1 ±√d2

1 − 4d0

2
. (53)

The discriminant d2
1 − 4d2d0 of the quadratic equation is

expressed as follows:

d2
1 − 4d2d0 = z2 + 2ω0z(1−

Rs

Rch
)+(1+

Rs

Rch
)

2
ω2

0 + 4ω0p(
Rs

Rch
).

(54)

If d2
1 − 4d2d0 ≥ 0, then p± are positive or negative real numbers.

Otherwise, if d2
1 − 4d2d0 < 0, then p± form a complex conjugate

pair. Without loss of generality, we retain the standard expression
for the discriminant of a quadratic equation instead of replacing
d2 with 1 (Equation 50) for the particular case of a Mott memristor
PA circuit.

To understand the effects of parameters Rs, Cp, and Vdc on
the dynamical behavior of a Mott memristor PA oscillator, we
first calculated the values of the pair of poles p± of its small-
signal transfer function H(s;Q), using Equation 53 by varying one
parameter while keeping the other two parameters fixed. We then
applied the parametric Nyquist plot technique to gain insights into
the stability of the second-order system.

Let us first examine the effect of varying Rs while keeping Cp
and Vdc fixed. Figure 21A shows the Nyquist plot of Im(p±) vs
Re(p±) for the midsize VO2 Mott memristor PA oscillator with Cp =
1 pF, Vdc = 1.2 V, and Rs stepped from 100 Ω to 27 kΩ at a 100
Ω interval. It reveals three distinctive regions as Rs increases: (1)
when Rs = 100Ω− 200Ω, p+ and p− are negative real numbers. (2)
WhenRs = 300Ω− 7.5kΩ, p+ and p− form a complex conjugate pair.
(3) When Rs = 7.6kΩ− 27kΩ, p+ and p− are positive real numbers.
Figure 21B presents a zoomed-in view of Figure 19A, which reveals
that increasing Rs from 3.3 kΩ to 3.4 kΩ flips the sign of Re(p±)

from negative to positive, i.e., the pair of poles crosses over from
the LHP to the RHP. If we consider the second-order system an
uncoupled one-port element and apply the first criterion of Chua’s
LA theorem the element is locally active and unstable (LA\EOC)
at Rs ≥ 3.4 kΩ since H(s;Q) has a pair of poles in the open RHP. At
Rs ≤ 3.3 kΩ, both poles lie in the LHP, implying a local asymptotic
stability. Since both the EOC and LP regions are locally stable,
we need to use the fourth LA criterion (LA if Re[H(iω;Q)] < 0
for some finite ω) to examine the system’s activity. It shows that
the system is in the EOC region for 1135.4 Ω ≤ Rs ≤ 3.3 kΩ. At
Rs < 1135.4 Ω, the system is LP. The second-order system’s EOC-
LP crossover occurs when the oscillator’s load line V = Vdc − IRs
intersects the steady-state locus of the memristor M at the critical
point Q0 = (i0,v0) between the NDR and upper PDR regions (see
Figure 14F). For the midsize VO2 memristor, i0 = 971.18 μA and
v0 = 0.0973 V. Note that this crossover coincides with the EOC-LP
crossover for an isolatedmemristorM (see Section 4.2.3). Extracting
Re[H(iω;Q)] from Formula 47, one can derive the frequency limit

for the EOC region as fmax =
1
2π
√ −(Rszp+R2z2)

Rs+R2
. At a fixed Vdc, fmax

grows with Rs in a sublinear fashion. For the case ofVdc = 1.2 V, fmax
rises from 182.5 MHz at Rs = 1.2 kΩ to 653.7 MHz at Rs = 3.3 kΩ.

A similar crossover is observed by varying Vdc while keeping Rs
and Cp fixed. Figure 21C shows the Nyquist plot of Im(p±) vs Re(p±)
for the midsize VO2 Mott memristor PA oscillator with Rs = 3.4kΩ,
Cp = 1 pF, and Vdc stepped from 0.55 V to 13.5 V at 50-mV interval.
It reveals the following two distinctive regions as Vdc increases: (1)
when Vdc = 0.55V− 0.65V, p+ and p− are positive real numbers. (2)
WhenVdc = 0.7V− 13.5V, p+ and p− form a complex conjugate pair.
Figure 21D shows a zoomed-in view of Figure 21C, which reveals
that increasing Vdc from 1.2 V to 1.25 V flips the sign of Re(p±)
from positive to negative, i.e., the pair of poles crosses over from
the RHP to the LHP. Applying the first LA criterion in a similar
manner, the system is LA\EOC at Vdc ≤ 1.2 V since H(s;Q) has a
pair of poles in the open RHP. At Vdc ≥ 1.25 V, the system is locally
stable since both poles lie in the LHP. The fourth LA criterion can
be used to determine the system’s activity. It shows that the system
is in the EOC region at 1.25 V ≤ Vdc ≤ 3.3993 V. At Vdc > 3.3993 V,
the system is LP. Once again, the system’s EOC-LP crossover occurs
when the load line interects the steady-state locus of M at Q0. At a
fixed Rs, the frequency limit fmax for the EOC region decreases with
Vdc in a nonlinear fashion. For the case of Rs = 3.4 kΩ, fmax drops
from 649.6 MHz at Vdc = 1.25 V to 100.7 MHz at Vdc = 3.35 V.

Instead of using the sign of Re(p±) in the Cartesian coordinate
as a test for the first LA criterion, one can also use the argument
(phase) of a pole in the polar coordinate. The p+ pole is located in
the first and second quadrants, including the Re and Im + axes. Its
complex conjugate p− is located in the third and fourth quadrants,
including the Re and Im− axes. We only need to examine arg(p+),
argument of the p+ pole ofH(s;Q), as a test for the first LA criterion.
A crossover from LA\EOC to EOC occurs if arg(p+) increases from
below 90° to above 90°, i.e., p+ moves from the first quadrant to the
second quadrant by crossing the Im + axis.

At a fixed Cp parameter, one can thus visualize the LA
and LP operating regions of a Mott memristor PA oscillator
by plotting a 2D color-scale map of arg(p+) with Rs and Vdc
parameters as the x and y coordinates, respectively. The arg(p+) =
90◦ contour line separates the EOC and LA\EOC regions. Then
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FIGURE 21
(A) Nyquist plot of Im(p±) vs Re(p±) for the pair of poles p± of the small-signal transfer function H(s;Q) of the midsize VO2 Mott memristor PA oscillator
with Cp = 1 pF, Vdc = 1.2 V, and Rs stepped from 100 Ω to 27 kΩ at a 100-Ω interval. (B) Zoomed-in view of (A), showing that increasing Rs from 3.3 kΩ to
3.4 kΩ turns Re(p±) from negative to positive. (C) Nyquist plot of the same PA oscillator with Rs = 3.4kΩ, Cp = 1 pF, and Vdc stepped from 0.55 V to 13.5 V
at a 50-mV interval. (D) Zoomed-in view of (C), showing that increasing Vdc from 1.2 V to 1.25 V turns Re(p±) from positive to negative.

the critical points from the load line analysis Vdc = v0 + i0Rs is
superimposed to the color-scale map as the border line between
the LP and EOC regions. Now, this 2D map can be referred to as
a phase diagram for complexity for the second-order system. The
procedure is then repeated at different Cp values to observe how
the LA and LP regions evolve as Cp is adjusted. Figure 22 shows
four 2D color-scale maps of arg(p+) for the midsize VO2 Mott
memristor PA oscillator at Cp = 0.1 pF (a), 1 pF (b), 10 pF (c), and
100 pF (d), respectively.

We consider Figure 22A as an example to discuss their common
characteristics. From the complex domain aspect, arg(p+) has three
distinctive regions if one navigates along the top right to bottom

left diagonal. At small Vdc and large Rs (the top-right pink region),
arg(p+) = 0° and p+ is a positive real number on the Re + axis. At
larger Vdc and smaller Rs, p+ is a complex number (the middle
colored region) in either the first quadrant (LA\EOC) or the second
quadrant (EOC), divided by the 90° contour line. At even larger Vdc
and smaller Rs, arg(p+) = 180° and p+ is a negative real number on
the Re− axis. A notable feature is that all the borderlines between
adjacent regions are straight lines that extend from the top left to
the bottom right. Despite their appearance, they do not intersect at
a common point if extrapolated toward the top-left direction. Note
that the borderline separating the LP andEOCregions (dashedwhite
line) does not vary with Cp.
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FIGURE 22
2D color-scale maps of arg(p+)(Rs,Vdc), argument of the p+ pole of H(s;Q), with Rs and Vdc as the x and y coordinates, respectively, for the midsize VO2

Mott memristor PA oscillator at (A) Cp = 0.1 pF, (B) Cp = 1 pF, (C) Cp = 10 pF, and (D) Cp = 100 pF, respectively. In each plot, the LA\EOC region
(Re(p+) > 0) and the EOC region (Re(p+) < 0 and meets the fourth LA criterion) are separated by the 90° contour line (solid black line marked by “+“).
The LP region (Re(p+) < 0 and fails the fourth LA criterion) and the EOC region are separated by the straight line Vdc = v0 + i0Rs derived from the load
line analysis (dashed white line). Here i0 = 971.18 μA and v0 = 0.0973 V. We use a cyclic color map with four distinct colors to allow four orientations or
phase angles to be visualized. Both arg(p+) = 0° and arg(p+) = 180° are shown with the same color (pink).

The effect of Cp can be observed by comparing the four color-
scale maps. As Cp increases from 0.1 pF to 10 pF, the arg(p+) = 90°
borderline rotates clockwise, and the rotation stalls as Cp further
increases to 100 pF. The arg(p+) = 0° (positive real) region at the
top right corner continuously expands with an increase in Cp, while
the complex region shrinks with an increase in Cp. The arg(p+) =
180° (negative real) region at the bottom left corner initially shrinks
significantly asCp increases from 0.1 pF to 1 pF, and then, it recovers
a little as Cp further increases. The size of LP region remains
unchanged as Cp increases, while the size of EOC region gets
compressed. At Cp = 100 pF, the EOC region barely exists as the two
borderlines almost merge.

Using the element combination approach, we have shown
that when a Mott memristor is coupled to a capacitor, both the
system’s dimension and its dynamical complexity increases — a
new LA\EOC region emerges to host instabilities and persistent
oscillations. One can also examine the case of an inductively coupled
Mott memristor, e.g., connecting an external inductor in parallel
with a Mott memristor. It is found that the poles of the transfer

function of such a composite circuit remain in the LHP; thus,
the composite circuit does not satisfy the LA criterion to exhibit
instabilities or persistent oscillations (Brown et al., 2022b). This is
not surprising since an isolated Mott memristor has an inherently
inductive reactance.

5.3 Jacobian matrix method

For second or higher-order nonlinear systems, the Jacobian
matrix method is a linearization technique that allows local stability
analysis near a hyperbolic fixed point. As an introduction in a
nutshell, consider an autonomous system of ODEs ẋ = f(x), where
ẋ is the component-wise time derivative for the set of state variables
x. x corresponds to a point in an open subset of real n-space, E ⊂ ℝn.
f:E→ℝn is a differentiable function that describes the dynamics
of x. f is also called a vector field since the mapping from x to
f(x) assigns a vector. For a 2D (planar) system described by dx

dt
=

f(x,y) and dy
dt
= g(x,y), f(x) = ( f(x,y),g(x,y)) can be visualized using
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a vector based at the point (x,y), whose x- and y-components are
f(x,y) and g(x,y), respectively. The set of solutions ϕ(t,x0) of the
initial value problem ẋ = f(x), with x(0) = x0 ∈ E, is called the flow of
the ODE or the flow of the vector field f. For each initial condition
x0, ϕ(t,x0) provides the trajectory of a unique solution of the ODE,
which is called the orbit of x under ϕ.

In autonomous systems, f does not explicitly depend on time.
If f(xQ) = 0, i.e., its time derivative is 0, then xQ is a fixed point.
The Jacobian matrix Df, or simply Jacobian, is the matrix of all
the first-order partial derivatives of f(x). The Hartman–Grobman
theorem and the stable manifold theorem guarantee that the
local qualitative behavior of a nonlinear system ẋ = f(x) near a
hyperbolic fixed point xQ is determined by a linear system ẋ =
Ax, where A = Df(xQ) is the Jacobian of f at xQ. In other words,
the flow of a nonlinear system is topologically conjugate to that
of its linearized system in some neighborhood of a fixed point,
provided the fixed point is hyperbolic. If the Jacobian is a square
matrix and none of the eigenvalues of Df(xQ) is a pure imaginary
number, then the fixed point is hyperbolic, and its stability can be
told by the signs of the real parts of the eigenvalues, as will be
elaborated later.

Next, we consider the Jacobian matrix approach to analyze the
local stability of a Mott memristor PA oscillator. This second-order
system is described by Equations 55–57.

v = Rch (x) iM, (55)

dx
dt
= fx (x, iM) , (56)

dv
dt
= 1
Cp
(
Vdc − v
Rs
− iM), (57)

where fx(x, iM) and Rch(x) are the kinetic and memristance
functions of the memristor M, respectively. iM is the current
flowing through M. Substituting it with v/Rch(x), we obtain
the two coupled ODEs (Equations 58, 59) that describe the
system dynamics.

dx
dt
≜ f (x,v) = fx(x,

v
Rch (x)
) , (58)

dv
dt
≜ g (x,v) = 1

Cp
(
Vdc − v
Rs
− v
Rch (x)
) . (59)

In a vector form, the system is described as ẋ = f(x). Here, ẋ =
[x,v]T is the state variable vector, and f(x) = [ f(x,v),g(x,v)]T is the
differentiable function that describes the dynamics of x. Around a
fixed point Q with a coordinate (xQ,vQ), the Jacobian matrix Df of
the system is a 2 × 2 matrix of all the first-order partial derivatives
of f(x) that takes the following form:

Df|Q = [

[

ξ11 ξ12
ξ21 ξ22

]

]
=
[[[[

[

∂ f (x,v)
∂x
|
Q

∂ f (x,v)
∂v |Q

∂g (x,v)
∂x
|
Q

∂g (x,v)
∂v |Q

]]]]

]

. (60)

The four elements of the Jacobian matrix are derived as follows:

ξ11 =
∂ f (x,v)

∂x
|
Q
= b11 (Q) −

b12 (Q)a11 (Q)

Rch (xQ)
, (61)

ξ12 =
∂ f (x,v)

∂v
|
Q
=

b12 (Q)

Rch (xQ)
, (62)

ξ21 =
∂g (x,v)

∂x
|
Q
=

a11 (Q)

Rch (xQ)Cp

, (63)

ξ22 =
∂g (x,v)

∂v
|
Q
= −( 1

RsCp
+ 1
Rch (xQ)Cp

). (64)

The eigenvalues of the Jacobian around a fixed point Q derived
through Equations 60–64 are calculated by solving its characteristic
equation that can be expanded to a quadratic polynomial.

(Df− λI) |Q = λ2 − tr (Df)λ+ det (Df)

= λ2 − (ξ11 + ξ22)λ+ (ξ11ξ22 − ξ12ξ21) , (65)

where I is the identity matrix. tr(Df) is the trace of the Jacobian
matrix, and det(Df) is its determinant. For simplicity, we use
tr and det to represent them hereafter. Their expressions are
derived as follows:

tr = −[ω1(1+
R1

Rch
)+ω0(1+

Rs

Rch
)], (66)

det = ω1ω0(1+
R1

Rch
+

Rs

Rch
), (67)

where we define another cutoff frequencyω1 ≜ (R1C1)−1, in addition
to the previously defined cutoff frequency ω0 = (RsCp)−1, to simplify
the expressions.

The two roots λ+ and λ− of the characteristic equation
(Equation 65) are

λ± =
tr±√tr2 − 4det

2
. (68)

Note that λ+ + λ− = tr and λ+λ− = det, i.e., trace is the sum
of eigenvalues, and determinant is the product of them. The
discriminant tr2 − 4det of the characteristic equation in the
expanded form is

tr2 − 4det = ω2
1(1+ γ1)

2 +ω2
0(1+ γs)

2 − 2ω1ω0 [(1− γ1)γs + (1+ γ1)] , (69)

where we define two dimensionless resistance ratios γ1 ≜
R1
Rch

and

γs ≜
Rs
Rch

to simplify the expression.

5.4 Trace–determinant plane classification

For a 2D homogeneous linear system ẋ = Ax, the parameter
space of a trace–determinant (tr–det) plane allows the qualitative
classification of its fixed points. In this study, a homogeneous linear
system is defined in contrast to a nonhomogeneous linear system
ẋ = Ax+ h(t), which includes a vector of functions h(t) that are
independent of solutions and their derivatives. For a 2D nonlinear
system, after linearization, one needs to be cautious when applying
the tr–det planemethod since linearizationmay change the nature of
its fixed points, especially along the borderlines on the tr–det plane.
Here, we examine the tr–det plane method on a linearized Mott
memristor PAoscillator to checkwhether one can gain some insights
into the original nonlinear system.
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TABLE 3 Trace–determinant (tr–det) plane classification of fixed points for 2D linear homogeneous systems. In the tr–det plane, the only stable region
is the closed second quadrant, i.e., tr ≤ 0 and det ≥ 0.

Determinant Trace Eigenvalues Stability and class ID

det < 0 Any λ+ > 0 > λ− Unstable saddle point 1

det = 0

tr < 0 λ+ = 0,λ− < 0 Stable line of fixed points 2

tr = 0 λ+ = λ− = 0 Parallel lines or entire plane 3

tr > 0 λ+ > 0,λ− = 0 Unstable line of fixed points 4

det > 0

tr < −√4det 0 > λ+ > λ− Stable node (sink) 5

tr = −√4det
Repeated Stable degenerate node

6 and 7
λ± = tr/2 < 0 (6) or stable star (7)

−√4det < tr < 0
Complex conjugate

Stable spiral sink 8
Re(λ±) < 0

tr = 0
Complex conjugate Stable center

9
Re(λ±) = 0 (Not asymptotically stable)

0 < tr < √4det
Complex conjugate

Unstable spiral source 10
Re(λ±) > 0

tr = √4det
Repeated Unstable degenerate node

11 and 12
λ± = tr/2 > 0 (11) or unstable star (12)

tr > √4det λ+ > λ− > 0 Unstable node (source) 13

In a tr–det plane, a coordinate (tr, det) corresponds to a
Jacobian matrix with trace tr and determinant det. The location of
this point relative to the parabola curve tr2 − 4det = 0 determines
the geometry of the phase portrait. The sign of the discriminant
tr2 − 4det in Equation 69 divides the eigenvalues of Df into the
following regions.

a) If tr2 − 4det > 0, λ+ and λ− are real and distinct.
b) If tr2 − 4det < 0, λ+ and λ− are complex conjugates with a

nonzero imaginary part.
c) If tr2 − 4det = 0, λ+ and λ− are real and repeated (identical).

Within each of these three regions, the tr–det plane further
classifies the dynamics and stability of isolated or non-isolated
fixed points as enumerated below. The numbers within () that
appear out of order are class identifiers (IDs), provided in Table 3,
which is a tabulated summary of the tr–det plane classification. It is
notable that the only stable region in the tr–det plane is the closed
second quadrant, i.e., tr ≤ 0 and det ≥ 0. If a fixed point is stable, its
eigenvalues λ+ and λ−must both be negative real: (λ+,λ−) ≤ 0 or they
are complex conjugates with a negative real part: Re(λ+,λ−) ≤ 0.

Region (a) with two real and distinct eigenvalues λ+ ≠ λ−

(1) λ+ > 0 > λ−: unstable saddle point
(2) λ+ = 0,λ− < 0: stable line of non-isolated fixed points
(4) λ+ > 0,λ− = 0: unstable line of non-isolated fixed points
(5) 0 > λ+ > λ−: stable sink

(13) λ+ > λ− > 0: unstable source

Region (b) with a pair of complex conjugate eigenvalues λ± =
α± βi, β ≠ 0

(8) Re(λ±) < 0: stable spiral sink
(9) Re(λ±) = 0: stable center (not asymptotically stable)

(10) Re(λ±) > 0: unstable spiral source

A center is a non-hyperbolic fixed point since it has a pair
of pure imaginary eigenvalues; therefore, the Hartman–Grobman
theorem is not applicable. It is stable (or Lyapunov stable) but
not asymptotically stable. A solution that starts near a center
remains close to it but never converges over time since non-zero
pure imaginary eigenvalues correspond to periodic solutions that
oscillate without damping.

Region (c) with real and repeated eigenvalues: λ± = λ

(3) λ = 0: parallel lines of non-isolated fixed points or the
entire plane

(6) λ < 0 and is incomplete: stable degenerate sink
(7) λ < 0 and is complete: stable star sink

(11) λ > 0 and is incomplete: unstable degenerate source
(12) λ > 0 and is complete: unstable star source

Here, a nonzero real and repeated eigenvalue is considered
complete if it has two linearly independent eigenvectors, making
the fixed point (star) a proper node. Otherwise, if the eigenvalue is
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incomplete (has only one eigenvector), the fixed point is classified as
a degenerate or improper node.

For a linearized 2D nonlinear system, the tr-det plane
predictions are always accurate for classes 1, 5, 8, 10, and 13. While
predictions for the other eight classes may not be accurate, they
correctly determine the stability of classes 6, 7, 11, and 12. Prediction
for class 9 is accurate if the system is conservative.

Now, we apply the tr–det plane analysis for the 2D nonlinear
system of the VO2Mott memristor PA oscillator. This system has
been analyzed previously using an element combination approach
by considering a Mott memristor Mand a capacitor Cpin parallel
as a composite second-order nonlinear element ZCM, which is
connected to a resistorRsin series.The small-signal transfer function
of this 2D nonlinear system has two poles p±that form a pair
of complex conjugate in part of the circuit parameter space. The
Nyquist plots in Figures 21A, Bshow the evolution of the positions of
p±as Rsis varied while keeping Cp = 1pF and Vdc = 1.2V unchanged.
Increasing Rsfrom 3.3 kΩto 3.4 kΩflips the sign of Re(p±)from
negative to positive and produces a crossover from EOC to LA\EOC
as per Chua’s LA theorem.

Instead of element combination, we now apply the tr–det plane
analysis of the Jacobian linearized 2D PA oscillator system. We
show that the 2D tr–det plane method elucidates the nature of this
crossover in local activity to be a bifurcation, which changes the
stability of an isolated fixed point. Figure 23A plots the (tr, det) plane
that is geometrically divided into different regions by the tr- and
det-axes and the det = tr2/4 parabola. Each of them is labeled by the
class IDs, as listed in Table 3. It shows a locus of (tr, det) calculated
from the Jacobian matrix of the midsize VO2 Mott memristor PA
oscillator around its fixed points by fixing Cp = 1 pF, Vdc = 1.2 V,
and stepping Rs from 100 Ω to 17.2 kΩ at 100 Ω interval. The (tr,
det) points for 100Ω ≤ Rs ≤ 600Ω outside the plotted area are all
located above the det = tr2/4 parabola within the same stable spiral
sink (class 8) region. The trajectory of (tr, det) formed by varying Rs
is nonlinear and convex-shaped. IncreasingRs moves (tr, det) toward
the region of an unstable spiral source (class 10) in the first quadrant
and produces a bifurcation as it crosses the positive det axis. At Rs >
7.5 kΩ, (tr, det) of the fixed point crosses the det = tr2/4 parabola
into the unstable source (class 13) region, but its stability remains
unchanged. Therefore, Rs is clearly a bifurcation parameter for the
2D PA oscillator.

Figure 23B is a zoomed-in view of (a). It shows that increasingRs
from3.3 kΩ to 3.4 kΩproduces a stability-change bifurcation from a
stable spiral sink (class 8) to an unstable spiral source (class 10), both
belonging to Region (b) of tr2 − 4det < 0 that has complex conjugate
Jacobian eigenvalues. At a critical value of R∗s = 3359.5 Ω, (tr, det)
is located exactly on the tr = 0 axis as the borderline between the
unstable first quadrant and stable second quadrant.The tr–det plane
predicts that the fixed point is a stable center (class 9). We have
learned that predictions about a spiral sink (class 8) and a spiral
source (class 10) are always correct for 2D nonlinear systems, but
the prediction about a center (class 9) is unproven since a 2D PA
oscillator is not a conservative system.

In Figure 23C, we plot the (tr, det) locus for the Jacobian of the
same PA oscillator around its fixed points, this time by fixing Rs =
3.4kΩ, Cp = 1 pF, and stepping Vdc from 1 V to 3 V at a 10-mV
interval. It shows a similarly shaped convex trajectory of (tr, det) as
the case for stepping Rs. However, the effect ofVdc is opposite to that

of Rs a larger Vdc moves (tr, det) toward the stable spiral sink (class
8) region in the second quadrant. Figure 23D is a zoomed-in view
of (c), showing that increasing Vdc from 1.21 V to 1.22 V produces
a stability-change bifurcation from an unstable spiral source (class
10) to a stable spiral sink (class 8). At a critical value of V∗dc =
1.21355 V, (tr, det) is located exactly on the tr = 0 axis. Therefore,
Vdc is also a bifurcation parameter for the 2D PA oscillator. The
fact that the critical values of bifurcation parameters Rs and Vdc, as
determined by the tr-det plane analysis, closely match with those
obtained from the small-signal Nyquist plot analysis using the
element combination approach (see Figure 21) corroborates the
validity of both methods.

The parallel capacitor Cp also functions as a bifurcation
parameter if Rs and Vdc are fixed and Cp is adjusted. Figure 24A
shows the plots of four loci of the Jacobian (tr, det) for the midsize
VO2 Mott memristor PA oscillator, with Vdc = 1.2 V and Rs fixed
at 3 kΩ, 5 kΩ, 7 kΩ, and 9 kΩ, respectively. For each locus, we
step up Cp in the sequence of 10 fF, 20 fF, 50 fF, 0.1 pF, 0.2 pF,
0.5 pF, 1 pF, 2 pF, 5 pF, and 10 pF. Similar to the case of varying Rs,
increasing Cp also moves (tr, det) from the stable second quadrant
into the unstable first quadrant. However, the (tr, det) locus is linear
instead of convex-shaped. Equations 66, 67 together predict a slope
of −ω1 [1+R1/(Rch +Rs)] for the (tr, det) locus ifCp is varied, which
matches exactly with the linear regression slopes of the four loci.
Equation 67 also predicts that (tr, det) asymptotically approaches the
positive tr axis as one continuously increases Cp but never reaches
it. Open symbols highlight the critical C∗p values for the stability-
change bifurcation as the (tr, det) loci intercept the positive det axis.
It can be observed that a larger fixed Rs would shift the (tr, det) locus
upward and decrease its criticalC∗p value. Figure 24B shows the plots
of the dependence of critical C∗p on Rs in a log–log fashion for three
different Vdc settings at 1.0 V, 1.2 V, and 1.4 V. One can infer that
C∗p(Rs) follows a power law with an exponent close to −2.5. For the
trace at Vdc = 1.2 V, we added the point of Rs = 3359.5 Ω. The power
law predicts a C∗p = 1 pF. which is consistent with the critical (R∗s,Cp)
value for the same bifurcation in the case of varyingRs at a fixedCp =
1 pF (see Figure 23B).

6 Global analysis of reactively coupled
Mott memristors: two-dimensional
relaxation oscillator

6.1 Nullclines and direction field

The local analysis techniques we have discussed so far require a
foreknowledge of the fixed points for a 2D nonlinear system. Global
analyses, such as nullclines in the phase space of state variables, can
be used to analyze a nonlinear system of ODEs and locate its fixed
points. For a 2D or planar system, the x- (or y-) nullcline is defined as
the set of points in the phase plane of (x,y), where the time derivative
of x (or y) vanishes. Therefore, the vector field is vertical on the x-
nullcline and horizontal on the y-nullcline. Together, they partition
ℝ2 into different open regions, each characterized by differences
in the signs of their time derivatives. One can then determine the
direction of the vector field in each region.The intersections of the x-
and y-nullclines yield the fixed points. A direction field (also called
a slope field) is the scaled version of a vector field, with all the vector
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FIGURE 23
(A) Trace–determinant plane showing the (tr, det) locus for the Jacobian of the midsize VO2 Mott memristor PA oscillator with Cp = 1 pF, Vdc = 1.2 V, and
bifurcation parameter Rs stepped from 100 Ω to 17.2 kΩ at a 100-Ω interval. (B) Zoomed-in view of (A), showing that increasing Rs from 3.3 kΩ to
3.4 kΩ results in a bifurcation from a stable spiral sink (class 8) to an unstable spiral source (class 10). At R∗s = 3359.5 Ω, the fixed point is a stable center
(class 9) located on the tr = 0 axis. (C) The (tr, det) locus for the Jacobian of the same PA oscillator, with Rs = 3.4kΩ, Cp = 1 pF, and bifurcation parameter
Vdc stepped from 1 V to 3 V at a 10-mV interval. (D) Zoomed-in view of (C), showing that increasing Vdc from 1.21 V to 1.22 V produces a bifurcation
from an unstable spiral source (class 10) to a stable spiral sink (class 8). At V∗dc = 1.21355 V, the fixed point is a stable center (class 9) located on the
positive det axis.

lengths normalized to unity. In the 2D phase plane, superimposing
the x- and y-nullclines onto the direction field reveals fixed points
and provides insights into their dynamical classification and the
orbits of solutions.

For the case of a 2DMottmemristor PAoscillator, the x-nullcline
(x0,v0) is the locus of points, where the time derivative of the state
variable x for the memristor M vanishes

f (x0,v0) = fx(x0,
v0

Rch (x0)
) = 0, (70)

which can be rewritten as

v0 = [−A(1+Bx2
0)

lnx0

C
]
−0.5
. (71)

Since (x0,v0) are steady states of M, the x-nullcline
only depends on the internal characteristics of M and is
independent of the external circuit parameters including Rs,
Cp, and Vdc. It remains the same as that of an isolated M
(see Figure 7C).
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FIGURE 24
(A) Trace–determinant plane showing four (tr, det) loci for the Jacobian of the midsize VO2 Mott memristor PA oscillator with Rs = 3 kΩ, 5 kΩ, 7 kΩ, and
9 kΩ, respectively, all at Vdc = 1.2 V. For each locus, increasing Cp (from 10 fF to 10 pF in the present case) moves the Jacobian (tr, det) along a linear
trajectory from the stable second quadrant into the unstable first quadrant, which then asymptotically approaches the positive tr axis. The open symbol
that intercepts the positive det axis shows the critical C∗p for the source–sink bifurcation. (B) Log–log plot of the critical C∗p vs Rs for three cases of Vdc =
1.0 V, 1.2 V and 1.4 V. Dashed lines are power-law fits C∗p = aR

b
s , with an exponent b ≈ −2.5. The square (red) shows that C∗p = 1 pF if Rs = 3359.5 Ω, which

is consistent that shown in Figure 23B.

FIGURE 25
Nullclines and direction field (arrowheads) in the phase plane of the midsize VO2 Mott memristor PA oscillator with Rs = 3.4 kΩ, Cp = 1.0 pF, and Vdc = 1.2
V. Under these conditions, the 2D nonlinear system has one fixed point (xQ,vQ) = (0.30396,0.12564) at the single intersection of the x- (blue-violet line)
and v- (brown line) nullclines. Based on the signs of dx/dt and dv/dt, the x- and v-nullclines partition the ℝ2 plane into four open regions labeled as
(++), (+−), (−+), and (−−), respectively.

The v-nullcline (x1,v1) is the locus of points where the time
derivative of the state variable v vanishes.

g (x1,v1) =
1
Cp
(
Vdc − v1

Rs
−

v1
Rch (x1)
) = 0, (72)

which can be rewritten as

v1 =
Vdc

1+RsA(1+Bx2
1)
. (73)

Since v is the voltage across the capacitor Cp and M in parallel, the
charge stored on the capacitor does not change over time; thus, there
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FIGURE 26
Nullclines and direction fields (arrowheads) in the phase plane of the midsize VO2 Mott memristor PA oscillator with Rs = 3.4 kΩ, Cp = 1.0 pF, and Vdc at
(A) 1.0379 V, (C) 1.0 V, and (E) 0.519 V. (B), (D, F) Zoomed-in views to reveal semi-stable ( × ), stable (•), and unstable (◦) fixed points at the intersections
of the x- (blue-violet line) and v- (brown line) nullclines.

is no current flowing through it.Therefore,Rs in series withM forms
a voltage divider. The v-nullcline depends on Vdc and Rs, but it is
independent of Cp.

The intersections of the x- and y-nullclines derived through
Equations 70–73 are the fixed pointsQ of the 2D system, where both
x- and v-derivatives vanish.
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FIGURE 27
Bifurcation diagrams showing Vdc dependences of (A) xQ and (B) vQ of the fixed point (xQ,vQ) for the midsize VO2 Mott memristor PA oscillator, as
determined by the nullclines method. Rs = 3.4 kΩ and Cp is arbitrary. Stable (unstable) fixed points are represented by solid (open) circles. As Vdc is
stepped from 3 V to 0 V at a 0.01 V interval (plotted up to 1.5 V for clarity), initially (region I), the 2D system has only one fixed point Q1, which
undergoes a stability-change bifurcation at Vdc = 1.21355 V (Q∗c). A saddle-node bifurcation at Vdc = 1.0379 V (Q∗a) creates a pair of fixed points Q2 and
Q3 in region II. At Vdc = 0.519 V (Q∗b), another bifurcation occurs as Q1 and Q2 coalesce and annihilate each other. For even lower Vdc (region III), only
one fixed point Q3 exists. (C) (tr, det) loci for the Jacobian of the same fixed points, as shown in (A, B), calculated with Cp = 1.0 pF. (D) Zoomed-in view
of (C), showing that Q∗a is located on the negative tr axis very close to the origin, Q∗b is on the positive tr axis, and Q∗c is on the positive det axis.

f (xQ,vQ) = fx(xQ,
vQ

Rch (xQ)
) = 0, (74)

g(xQ,vQ) =
1
Cp
(
Vdc − vQ

Rs
−

vQ
Rch (xQ)

) = 0. (75)

Figure 25 shows the plots of the x- and v-nullclines and direction
field in the phase plane of the midsize VO2 Mott memristor PA
oscillator with Rs = 3.4 kΩ and Vdc = 1.2 V. Note that the direction
field depends on Cp and is plotted for the case of Cp = 1.0 pF.
Under these conditions, the 2D nonlinear system has just one fixed
point (xQ,vQ) = (0.30396,0.12564) at the single intersection of the
x-nullcline (blue-violet line) and v-nullcline (brown line) satisfying
Equations 74, 75. The x- and v-nullclines partition the phase plane
into four open regions, depending on the signs of time derivatives
for x and v, labeled as (++), (+−), (−+), and (−−), respectively. The
direction field (arrowheads) shows a distinct clockwise rotational

pattern around Q, suggesting that the orbit of a solution (x(t),v(t))
with an initial condition close to Q would rotate around it in
a clockwise manner. Intuitively, if Q were a stable spiral sink,
(x(t),v(t))would spiral inward toward it. IfQwere an unstable spiral
source, (x(t),v(t)) would spiral outward. However, it is also possible
that (x(t),v(t)) forms an isolated periodic orbit, continuously
rotating around Q. Additional analyses are required in addition to
the studies on the nullclines anddirection field to determinewhether
such a case exists.

Since the location of the v-nullcline varies with Vdc and Rs,
decreasingVdc will shift it downward with respect to the x-nullcline,
which may change the number of intersections between them.
To investigate this, Figure 26 presents the three sets of x- and v-
nullclines along the direction field for the same model PA oscillator
atVdc values of 1.0379 V, 1.0 V and 0.519 V, respectively. Figure 26A
and its zoomed-in view (Figure 26B) show the case of Vdc = 1.0379
V. At this critical value of Vdc, the v-nullcline becomes tangent
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FIGURE 28
Examination of the non-hyperbolicity and transversality conditions for the Hopf bifurcation theorem. (A) Loci of the conjugate pair of eigenvalues
λ±(Rs) in the complex plane for the Jacobian of the midsize VO2 Mott memristor PA oscillator with Cp = 1 pF, Vdc = 1.2 V, and bifurcation parameter Rs

stepped at a 100 Ω interval (labeled as kΩ for several λ− points). The Jacobian matrix has a stable spiral for Re(λ±) < 0 and an unstable spiral for Re(λ±) >
0. At R∗s = 3359.5 Ω, λ± are pure imaginary, and the fixed point is a non-hyperbolic center located on the tr = 0 axis. (B) Calculated dRe(λ±)/dRs vs Rs,
showing that its value is finite and positive for Rs, which ranges from 3.0 kΩ to 4.0 kΩ.

with the x-nullcline near its peak at the PDR-to-NDR crossover
Q∗a = (0.00589,1.00681), increasing the number of fixed points from
one to two.

Further reducing Vdc will split Q∗a into a pair of unstable (Q2)
and stable (Q3) fixed points, which move apart from each other
as Vdc further decreases. This is a characteristic of a 2D saddle-
node bifurcation. We are already familiar with the 1D case for an
isolatedMottmemristor (seeFigure 6).To illustrate,Figure 26Cand its
zoomed-in view (Figure 26D) show the case ofVdc = 1.0V.Now, there
are three intersections between the v- and x-nullclines. In addition to
the original fixed point Q1 = (0.25937,0.13823) located in the NDR
region of M, two new fixed points Q2 = (0.01064,0.96326) and Q3 =
(0.00243,0.97254) emerge at very small x values. As a result, the ℝ2

plane is now partitioned into six open regions instead of four.The two
additional regions are (++)within the PDR region ofM and (−−) near
the PDR-to-NDR transition of M. The direction field reveals that Q2
is an unstable node, while Q3 is a stable node at an intersection in the
PDR region (insulating state) of M.

Q1 and Q2 approach each other as Vdc further decreases.
Figure 26E and its zoomed-in view (Figure 26F) show that at another
critical value ofVdc = 0.519V, the v-nullcline becomes tangent to the
x-nullcline in itsNDR region asQ1 andQ2 merge into one fixedpoint
Q∗b.This fixed point disappears ifVdc continues to decrease. AtVdc <
0.519 V, only one stable fixed point Q3 exists in the insulating state
of M.

6.2 2D saddle-node bifurcations by varying
Vdc

Plotting nullclines and direction fields at different values of
Vdc allowed us to identify two bifurcations, both appear to be 2D
saddle-node bifurcations. Next, we apply the bifurcation diagram
and tr–det plane methods to clarify their nature. We step the

bifurcation parameter Vdc from 3.0 V to 0 V at an interval of
0.01 V while keeping the other parameters unchanged and solve the
fixed points (xQ,vQ) by finding all the intersections of x- and v-
nullclines. Figures 27A, B show the bifurcation diagrams for xQ and
vQ, respectively. Solid (open) circles are used for stable (unstable)
fixed points. There exist three distinctive regions (I, II, and III)
according to the number of fixed points at a specific Vdc. In
region I (Vdc > 1.0379 V), there is only one fixed point Q1. The
tr–det plane analysis (Figure 23D) reveals that Q1 has a stability-
change bifurcation at Vdc = 1.21355 V (labeled as Q∗c) and switches
from a stable spiral sink to an unstable spiral source asVdc decreases
below 1.21355 V.

At Vdc = 1.0379 V, a new fixed point Q∗a emerges at (0.00589,
1.00681). It then splits into two fixed points Q2 (unstable) and Q3
(stable), which move away from each other asVdc further decreases.
These characteristics resemble a 2D saddle-node bifurcation. In
region II (0.519V < Vch < 1.0379V), the 2D system has three fixed
points (stableQ3, unstableQ1, andQ2). AsVdc continues to decrease,
another bifurcation occurs at Vdc = 0.519 V, where Q1 and Q2
coalesce intoQ∗b at (0.08240, 0.31379) and annihilate each other.This
corresponds to the v-nullcline becoming tangent to the x-nullcline
in its NDR region before separating. The system only has one stable
fixed point Q3 in region III (0V < Vch < 0.519V) as the v-nullcline
only intersects with the x-nullcline in the insulating region of the
Mott memristor.

To further understand the bifurcations at Q∗a and Q∗b, in
Figure 27C, we plot the (tr, det) loci for the Jacobian of all the
fixed points shown in (a) and (b). Since two of the Jacobian
elements are functions of Cp, the calculations are performed at
Cp = 1.0 pF to match Figure 26. The (tr, det) locus of Q1 was
already shown in Figures 23C, D and is re-plotted here with a much
wider range of Vdc. At Vdc > 1.21355 V, it is in the second quadrant
above the det = tr2/4 parabola as a stable spiral. At Vdc = 1.21355 V,
it crosses the positive det axis atQ∗c as a center into the first quadrant
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FIGURE 29
Phase portraits (x(t),v(t)) (top row) and the corresponding time series x(t) and v(t) (middle and bottom rows) numerically solved using a MATLAB ode45
solver for the midsize VO2 Mott memristor PA oscillator with Cp = 1.0 pF, Vdc = 1.2 V, and the initial condition (x0,v0) = (0.1,0.39). Left column (A–C)
shows the case for Rs = 3.2 kΩ with a stable fixed point (xQ,vQ) = (0.3178,0.1225) at the intersection of the nullclines. The phase portrait and time series
corroborate the linear analysis prediction that it is a spiral sink. Right column (D–F) shows the case for Rs = 3.4 kΩ with an unstable fixed point (xQ,vQ) =
(0.3040,0.1256) (open circle). The phase portrait and time series reveal the birth of a limit cycle encircling Q as it switches stability, characteristic of a
Hopf bifurcation. Colored diamonds are solutions equally spaced in time from 25.5 ns to 28 ns at a 0.5 ns interval, showing alternative slow–fast
motion along the closed limit cycle trajectory.

and switches stability. For 0.519V < Vdc < 1.21355 V, Q1 remains
unstable, first as an unstable spiral, and then as an unstable node after
crossing the det = tr2/4 parabola, before vanishing at Vdc = 0.519 V.

At Vdc = 1.0379 V, a saddle-node bifurcation creates a new fixed
point Q∗a. Figure 27D as a zoomed-in view of Figure 27C shows that
Q∗a is located on the negative tr axis very close to the origin (at tr =
− 2.23772× 108). It then splits into a pair of fixed points,Q2 andQ3.
The (tr, det) locus of Q2 follows a V-shaped trajectory and resides
entirely within the fourth quadrant, indicating thatQ2 is an unstable
saddle point (class 1). The (tr, det) locus of Q3 is entirely within
the second quadrant below the det = tr2/4 parabola, indicating that
Q3 is a stable sink (class 5). As Vdc decreases from 1.0379 V, Q1
and Q2 approach each other until they coalesce into Q∗b as Vdc
reaches 0.519 V, indicating that another saddle-node bifurcation
occurs. Q∗b is located on the positive tr axis. It vanishes at even
lower Vdc values, and the only fixed point left is Q3 in the second
quadrant. Interestingly, the saddle-node bifurcation at Q∗b involves

two unstable fixed pointsQ1 andQ2, rather than a pair of stable and
unstable fixed points as in typical cases.

It is worth mentioning that the linearized tr–det plane
predictions on the borderline classes (class 2 and 4 on the tr axis)
are incorrect since Q∗a and Q∗b are non-hyperbolic semi-stable fixed
points rather than a stable or unstable line of fixed points. It also
cannot determine the occurrence of a possible Hopf bifurcation
associated with the non-hyperbolic fixed pointQ∗c (class 9 on the det
axis). Therefore, we will revisit this topic in Subsection 6.7.

6.3 2D supercritical Hopf-like bifurcation
by varying Rs

The tr–det plane analysis of a linearized VO2 Mott memristor
PA oscillator showed that its fixed point can be a non-hyperbolic
center as the Rs or Cp parameter passes through a critical value.
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FIGURE 30
(A) Phase portrait and (B, C) the corresponding time series x(t) and v(t) numerically solved using a MATLAB ode45 solver for the midsize VO2 Mott
memristor PA oscillator with Cp = 1.0 pF, Vdc = 1.2 V, and Rs = 3.4 kΩ. The system has an unstable fixed point (xQ,vQ) = (0.3040,0.1256) (open circle) at
the intersection of the nullclines. A total of 324 orbits are solved with their initial conditions (solid dots) located on a regular grid of (x0,v0), with 18 x0
levels evenly spaced from 0.05 to 0.95 and 18 v0 levels ranging from 0.06 V to 1.14 V. Orbits that start from within and outside the limit cycle are shown
in light and dark gray colors, respectively. Every (x(t),v(t)) trajectory converges onto the same limit cycle (blue orbit) encircling Q, regardless of the
initial condition location. The x(t) and v(t) time series show different oscillation phases depending on the initial condition, but all share the same period.
The mean (standard deviation) of the oscillation period is 8.621 ns (5 ps).

Stability and qualitative behavior of nonlinear systems near a non-
hyperbolic fixed point are complex and require further theoretical
treatment. Here, using Rs as the bifurcation parameter, we illustrate
an example of a 2D local Hopf-like bifurcation. For nonlinear
systems of dimension two or higher, a local Hopf bifurcation, also
called Poincaré–Andronov–Hopf bifurcation, is the local creation or
annihilation of a periodic solution around a fixed point as it switches
stability. The bifurcating periodic solution is called a limit cycle,
which is an isolated periodic orbit (closed trajectory) with no nearby
periodic orbits, such that at least a nearby trajectory spirals into it
either as time approaches infinity or as time approaches negative
infinity. The orbital stability of a limit cycle is opposite to that of
the fixed point it encircles. If a stable limit cycle appears around an
unstable fixed point, it is a supercritical Hopf bifurcation.Otherwise,
if an unstable limit cycle appears around a stable fixed point, then it
is a subcritical Hopf bifurcation. The example we will discuss has
supercritical orbital stability.

6.4 Hopf bifurcation theorem

For a nonlinear system near a non-hyperbolic fixed point in its
linear part, the center manifold theorem states that its qualitative
behavior can be determined by the behavior on the center manifold.
The Jacobian matrix of the linearized system defines three main
subspaces according to the real part of its eigenvalues. The center
subspace is spanned by eigenvectors corresponding to eigenvalues
with zero real parts. A center manifold is an invariant manifold that
has the same dimension as the center subspace and is tangent to
it. The stability problem is, therefore, reduced to lower dimensions.
A direct application of the center manifold theorem is the Hopf
bifurcation theorem, which allows analytical prediction on the
existence of limit cycles. A version of the Hopf bifurcation theorem
that is generalized to ℝn is briefly introduced here (Marsden and
McCracken, 1976; Guckenheimer and Holmes, 1983). Consider a
nonlinear system ẋ = f(x;μ), x ∈ ℝn, μ ∈ ℝ, where μ is a bifurcation

parameter. Assume that it has a fixed point (x0;μ) so that f(x0;μ) =
0. The eigenvalues of the linearized system ẋ = Df(x;μ) at this fixed
point are λ±(μ) = α(μ) ± β(μ)i. If both the following conditions are
satisfied at μ = μ0:

a) α(μ0) = 0 and β(μ0) ≠ 0 (non-hyperbolicity condition), i.e.,
there is a pair of simple, conjugate pure imaginary eigenvalues
and other pure imaginary eigenvalues are not present and

b) dα(μ)
dμ
|
μ=μ0

= d ≠ 0 (transversality condition), i.e., the

eigenvalues cross the imaginary axis with finite speed,

Then there is a unique center manifold passing through (x0;μ0)
in ℝn ×ℝ.

The third condition (genericity condition) is about the first
Poincaré–Lyapunov constant L1(μ0), which is the coefficient of cubic
terms if the system is transferred to the normal form. If L1(μ0) ≠ 0,
then a surface of periodic solutions exists in the center manifold.
Approximated to the second order, this surface is a paraboloid
tangent to the eigenspace associated with λ±(μ0). The region for
periodic solutions to appear (either as μ moves into μ < μ0 or into
μ > μ0) and the stability of periodic solutions are determined by the
signs of L1(μ0) and d (Marsden and McCracken, 1976). For the case
of d > 0 that is relevant to our example, if L1(μ0) < 0, then Hopf
bifurcation is supercritical, i.e., a stable limit cycle bifurcates from an
unstable fixed point into the region μ > μ0. If L1(μ0) > 0, then Hopf
bifurcation is subcritical, i.e., an unstable limit cycle bifurcates from
a stable fixed point into the region μ < μ0.

The calculation of L1(μ0) can be a substantial effort as it
involves the second- and third-order derivatives of the system at
the bifurcation point. For the sake of brevity, we do not derive
the first Poincaré–Lyapunov constant L1(μ0) for a Mott memristor
PA oscillator and only examine whether it satisfies the non-
hyperbolicity and transversality conditions. Figure 28A shows the
complex-plane loci of the pair of simple, conjugate eigenvalues
λ±(Rs), calculated using Equation 68 for the Jacobian of the midsize
VO2 Mott memristor PA oscillator that has been analyzed by
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FIGURE 31
(A, B) Numerically solved bifurcation diagrams of the 2D Hopf-like bifurcation with Rs as the bifurcation parameter for the midsize VO2 Mott memristor
PA oscillator with Cp = 1.0 pF and Vdc = 1.2 V. The maximum and minimum of ̃x(t) and ̃v(t) limit cycle oscillations are plotted as their bifurcation
branches. Dashed lines show the coordinate (xQ,vQ) for an unstable spiral at Rs ≥ R∗s. (C) Rs dependence of the limit cycle oscillation period Tlc (black)
plotted together with RsCp (gray) and 2π/|Im(λ±)| (green). (D) Rs dependence of the ratio between Tlc and RsCp.

the tr-det plane method (see Figure 23). Fixing Cp and Vdc and
increasing the bifurcation parameter Rs, the fixed point of the
linearized system evolves from a stable spiral (Re(λ±) < 0) to a
non-hyperbolic center (Re(λ±) = 0) at R∗s = 3359.5 Ω and then to
an unstable spiral (Re(λ±) > 0). At Rs = R∗s, the system satisfies
the non-hyperbolicity condition for a Hopf bifurcation. Figure 28B
shows the plots of dRe(λ±)/dRs vs Rs calculated from λ±(Rs),
which shows that the derivative of the real part of eigenvalues
with respect to the bifurcation parameter Rs is finite and positive
at the non-hyperbolic center (Rs = R∗s) and its nearby region.
Thus, the transversality condition for a Hopf bifurcation is
also satisfied.

6.5 Phase portrait analysis of limit cycles

In this section, we check the abovementioned analytical
prediction against numerical calculations. A local Hopf bifurcation

can be revealed by numerically solving the coupled ODEs with an
arbitrary initial condition (x0,v0) and then inspecting the orbit of
the solution (x(t),v(t)) in the phase plane, which is pre-loaded with
nullclines and direction field. Such a plot is called a phase portrait.
Plotting the time series x(t) and v(t) of the numerical solution
helps reveal whether there are damped oscillations toward a stable
fixed point or persistent self-excited oscillations characteristic of a
limit cycle.

Figure 29 shows the comparison of two sets of phase portraits
and the corresponding time series for the midsize VO2 Mott
memristor PA oscillator with Cp = 1.0 pF, Vdc = 1.2 V, and initial
condition (x0,v0) = (0.1,0.39), numerically solved using a MATLAB
ode45 solver (Hong, 2022). Figures 29A–C (left column) show
the case for Rs = 3.2 kΩ. At this value of Rs, there is a single
fixed point (xQ,vQ) = (0.3178,0.1225) at the intersection of the
nullclines. The linear tr–det plane analysis predicts that it is a stable
spiral sink (see Figure 23B and text).The phase portrait corroborates
this prediction, showing that the orbit of the solution (purple trace)
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FIGURE 32
(A, B) Numerically solved bifurcation diagrams of the 2D Hopf-like bifurcation with Cp as the bifurcation parameter for the midsize VO2 Mott memristor
PA oscillator with Rs = 5.0 kΩ and Vdc = 1.2 V. The maximum and minimum of ̃x(t) and ̃v(t) limit cycle oscillations are plotted as their bifurcation
branches. Dashed lines show the coordinate (xQ,vQ) for an unstable spiral for Cp larger than C

∗
p = 0.380448 pF. From I to IV, Cp is 0.380449 pF,

0.382 pF, 0.3832 pF, and 0.38325 pF, respectively. (C) Cp dependence of the limit cycle oscillation period Tlc (black) plotted together with RsCp (gray)
and 2π/|Im(λ±)| (green). (D) Cp = 1 pF” should be “Rs = 5.0 kΩ.

converges to Q along a clockwise spiral trajectory. The clockwise
rotation of the system state over time is determined by the direction
field. The time series x(t) and v(t) shown in the bottom rows
exhibit fast damped oscillations that come to rest at (xQ,vQ) within
approximately 20 ns.

Figures 29D–F (right column) show the case for Rs = 3.4 kΩ.
Such a small increase in Rs (by 200 Ω) results in a tiny shift in the
location ofQ to (xQ,vQ) = (0.3040,0.1256).The linear tr–det analysis
predicts that Q switches its stability and becomes an unstable spiral
source. The orbit initially resembles the case of Figure 29A, but
it does not finish even one loop around Q before morphing into
a periodic orbit that rotates clockwise about Q with a distorted
rectangular shape.The corresponding time series x(t) and v(t) shown
in the bottom rows exhibit periodic oscillations—a pulse train
̃x(t+Tlc) = ̃x(t) and a sawtooth wave ̃v(t+Tlc) = ̃v(t), both launched

after a very short transient period. Here, Tlc is the period of the limit
cycle.The appearance of a stable limit cycle around a fixed point as it

switches from a stable sink to an unstable source is the hallmark of a
supercritical Hopf bifurcation. We added several colored diamonds
to represent solutions x(t) and v(t) equally spaced in time from
25.5 ns to 28 ns at a 0.5-ns interval. Their locations on the closed
trajectory of the limit cycle are clearly unevenly spaced, revealing
the alternative slow-fast motion along it as a hallmark for relaxation
oscillations.

To convince ourselves that the periodic orbit revealed by
Figures 29D–F is both isolated and stable, i.e., a stable limit cycle,
we numerically calculated 324 solutions of the same system with
the initial condition (x0,v0), distributed on a regularly spaced (18
× 18) grid that spans across almost the entire allowable (x,v) phase
space. x0 is evenly spaced from 0.05 to 0.95, and v0 ranges from
0.06 V to 1.14 V. Orbits that start from within and outside the limit
cycle are in light and dark gray colors, respectively. The results
are shown in Figure 30. The phase portrait in Figure 30A shows a
sampled view of the flow of this 2D nonlinear system. It shows that,
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FIGURE 33
Growth of the 2D Hopf-like bifurcation limit cycle revealed by phase portraits (x(t),v(t)) numerically solved for the midsize VO2 Mott memristor PA
oscillator with Rs = 5.0 kΩ and Vdc = 1.2 V. (A–D) Bifurcation parameter Cp is 0.380449 pF, 0.382 pF, 0.3832 pF, and 0.38325 pF, respectively,
corresponding to points I, II, III, and IV shown in Figure 32. All the solutions start from the same initial condition (x0,v0) = (0.1,0.39).

regardless of its initial condition location, the (x(t),v(t)) orbit always
settles on the same limit cycle ( ̃x(t), ̃v(t)) (the blue orbit) after a
transient movement. If (x0,v0) is very close to Q, the transient part
of the orbit can form many turns of a clockwise spiral following the
direction field, but the orbit always manages to “escape” from Q and
becomes a limit cycle encircling it. The time series in Figure 30B
reveals that the time elapsed in the transient stage until x(t) (or v(t))
becomes periodic varies across individual solutions, depending on
the initial condition (x0,v0).The distinctive transient time causes the
oscillation waveforms to be asynchronous across individual orbits,
which is equivalent to having different oscillation phases. However,
all the time series settle as oscillations sharing the same period. To
be precise, the mean (standard deviation) of the oscillation period
is 8.621 ns (5 ps), with a coefficient of variation as small as 0.06%.
The minimum and maximum oscillation periods are 8.6 ns and
8.626 ns, respectively. The robustness of a limit cycle against the
initial transient may explain why life is full of relaxation oscillators,
including the heartbeat (van der Pol and van der Mark, 1928).

Figures 31A, B show the plot of the numerically solved
bifurcation diagrams of the 2D Hopf-like bifurcation, with Rs as

the bifurcation parameter. We noticed that the critical value R∗s =
3258.00799 Ω found by numerical calculations is approximately
3% different from the analytical value of 3359.5 Ω (see Figure 28),
possibly due to rounding or truncation errors. Both xQ(Rs) and
vQ(Rs) are smooth functions of Rs. For Rs < R∗s (with a difference as
small as 10 μΩ), there is a single fixed point (xQ,vQ), which is a stable
spiral according to the linearization analysis. At Rs ≥ R∗s, instead of
just switching its stability to an unstable spiral (dashed lines), the
fixed point bifurcates to a limit cycle. Since a limit cycle is a collection
of periodic points ( ̃x(t), ̃v(t)), we use the maximum and minimum
of ̃x(t) and ̃v(t) oscillations to represent their bifurcation branches,
with the ranges between maximum and minimum serving as a
measure of the bifurcation amplitude. This definition is not unique.
One can borrow the concepts from celestial mechanics and define
the unstable spiral as a focus; then, the periapsis (minimum) and
apoapsis (maximum) distances between a point in the limit cycle
orbit and the focus can also be used to represent the bifurcation
amplitude.

A prominent feature of the Mott memristor PA oscillator
model is the abrupt appearance or “hard transition” of a stable
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FIGURE 34
(A, B) Numerically solved bifurcation diagrams of the 2D Hopf-like bifurcations with Vdc as the bifurcation parameter for the midsize VO2 Mott
memristor PA oscillator with Rs = 3.4 kΩ and Cp = 1.0 pF. The maximum and minimum of ̃x(t) and ̃v(t) limit cycle oscillations are plotted as their

bifurcation branches. Numerical solutions show that a stable limit cycle exists between the non-hyperbolic fixed points Q
∗
a and Q

∗
c identified in the

analytical nullclines and tr-det plane analyses (see Figure 27). At Vdc ≤ 1.037 V, the system settles on the stable fixed point Q3 instead of the unstable Q1

or Q2 found by nullclines (short dashed lines). (C) Vdc dependence of the limit cycle oscillation period Tlc (black) plotted together with RsCp (gray) and
2π/|Im(λ±)| (green). Maximum Tlc is 42.728 ns at Vdc = 1.038 V (above the plot area). (D) Vdc dependence of the ratio between Tlc and RsCp.

limit cycle that is completely unfolded over an extremely thin
bifurcation parameter interval. The amplitude of a classical Hopf
bifurcation for smooth systems increases like √|μ− μ0|, i.e., the
oscillation amplitude is infinitesimal as μ→ μ0. However, in the
present case, the oscillations in ̃x(t) and ̃v(t) almost immediately
switch to full swing as long as Rs surpasses R∗s, and then, their
amplitudes remain essentially unchanged as Rs further increases.
The abrupt appearance of a stable limit cycle was observed in
piecewise-linear systems that have a cut-off or saturation region,
e.g., a Wien bridge oscillator (Kriegsmann, 1987; Freire et al.,
1999). For the present Mott memristor model, the fact that the
kinetic function diverges toward negative infinity as x approaches
1.0 (see Figure 3 inset) reveals that there is an implicit saturation
in the model. A sudden formation of relaxation oscillations,
termed a “canard explosion,” has been observed in chemical and
biological systems and analyzed thoroughly in the context of Liénard
systems, e.g., a van der Pol oscillator (Krupa and Szmolyan, 2001;

Rotstein et al., 2012). The hard transition in relaxation oscillations
forms the basis for understanding the all-or-nothing spike firings in
biological neurons that can be considered reaction-diffusion systems
of coupled relaxation oscillators, which has been experimentally
demonstrated inMott memristor-based neuromorphic neurons [for
examples, see Figure 3 in Pickett et al. (2013) and Figure 5 in
Yi et al. (2018)].

Figure 31C shows the dependence of the limit cycle oscillation
period Tlc on Rs. For Rs < R∗s, Tlc is 0 since there is no oscillation.
At Rs ≥ R∗s, Tlc emerges like a step function and then increases
almost linearly with Rs. For comparison, the RsCp time constant
as a function of Rs is also plotted (gray line). Figure 31D shows
the ratio between Tlc and RsCp, which remains almost flat in the
bifurcation region, with an initial overshoot to 2.6, followed by
a gradual descent toward 2.4. Generally, the oscillation period of
a Hopf bifurcation approaches 2π/|Im(λ±)| as μ→ μ0. However,
in the present case, the calculated 2π/|Im(λ±)| curve (green)
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FIGURE 35
Time series x(t) (blue) and v(t) (brown) numerically solved at Vdc close to critical levels for the 2D Hopf-like bifurcations of the midsize VO2 Mott
memristor PA oscillator with Rs = 3.4 kΩ and Cp = 1.0 pF, showing (A) critical damping at Vdc = 1.037 V, (B) slow limit cycle oscillations at Vdc = 1.038 V,
(C) fast limit cycle oscillations at Vdc = 1.248 V, and (D) underdamping at Vdc = 1.249 V. All the solutions start from the same initial condition (x0,v0) =
(0.1,0.39).

is approximately 1.5 ns at Rs ≈ R∗s, which is much smaller than
Tlc ≈ 8.5 ns.

6.6 2D supercritical Hopf-like bifurcation
by varying Cp

From the tr–det plane analysis of a linearized VO2 Mott
memristor PA oscillator (see Figure 24 and text), we know that
Cp is also possibly a bifurcation parameter as the system’s fixed
point becomes a non-hyperbolic center as Cp passes through a
critical value. Now, we apply the numerical phase portrait method
to examine whether Cp is a bifurcation parameter that triggers a 2D
local Hopf-like bifurcation.

We numerically solved phase portraits and the corresponding
time series for the midsize VO2 Mott memristor PA oscillator with
Rs = 5.0 kΩ, Vdc = 1.2 V, and initial condition (x0,v0) = (0.1,0.39).
Cp is varied from 0.1 pF to 1 pF. Figures 32A, B show the plots

of the numerically solved bifurcation diagrams of the 2D Hopf-
like bifurcation, with Cp as the bifurcation parameter, which reveal
a critical value C∗p = 0.380448 pF to trigger the bifurcation. This
value is approximately 0.3% different than the analytical value of
0.381469 pF (see Figure 24), possibly due to rounding or truncation
errors. For Cp < C∗p (with a difference as small as 1 attofarad), there
is a single fixed point (xQ,vQ), which is a stable spiral according to
the linearization analysis. Both xQ(Rs) and vQ(Rs) are independent
of Cp, as described by the nullcline analysis. At Cp ≥ C∗p, instead
of just switching its stability to an unstable spiral (dashed lines),
the fixed point bifurcates to a limit cycle. Compared with the case
of Rs-induced Hopf-like bifurcation with abrupt unfolding, there
is a striking difference in the Cp-induced Hopf-like bifurcation.
Within a narrow range of Cp (between C∗p and ∼ 0.3832 pF), the
bifurcation amplitude increases more gradually and resembles the
general prediction of √|μ− μ0|, albeit it still has an abrupt switch
on; thus, the oscillation amplitude is not infinitesimal as μ→ μ0.
To illustrate the gradual increase in the 2D Hopf-like bifurcation
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FIGURE 36
Experimental characteristics of a VO2 PA oscillator compared with SPICE simulations. (A) Measured (red) and simulated (blue) waveforms of the output
voltage (Vout). (B) Measured (red) and simulated (blue) waveforms of the current through the memristor (X1). (C) Measured (red) and simulated
oscillation period Tn (n = 1–24). Inset: recurrence plot (Tn and Tn+1) of the same data. (D) Circuit schematic representation labeled with the
experimental values.

limit cycle, in Figure 33, we plot the numerically solved phase
portraits (x(t),v(t)) at points I, II, III, and IV, corresponding to Cp at
0.380,449 pF, 0.382 pF, 0.3832 pF, and 0.38325 pF, respectively. One
can observe that the gradual increase in the Hopf-like bifurcation
gives way to abrupt unfolding upon a further increase in Cp
beyond 0.3832 pF.

Figure 32C shows the dependence of the limit cycle oscillation
period Tlc on Cp. At Cp ≈ C∗p, the calculated 2π/|Im(λ±)| curve
(green) is approximately 1.18 ns, which is very close to Tlc ≈ 1.28
ns (point I). This confirms that the oscillation period of Cp-
induced Hopf-like bifurcation approaches the general prediction of
2π/|Im(λ±)| as μ→ μ0. At the upper limit of the gradual growth stage
(point III), the oscillation periodTlc ≈ 2.0 ns is close to theRsCp time
constant. Then, it abruptly increases to 6 s at point IV as the limit
cycle expands to full swing. Figure 32D shows the ratio between Tlc
andRsCp. In the initial gradual growth stage, this ratio hovers around
unity (increases from 0.68 at point I to 1.07 at point III). In the full-
swing bifurcation stage, the trend of this ratio versus the bifurcation
parameter is similar to the case of Rs, with a larger initial overshoot
to 3.1, followed by a gradual descent toward 2.4.

6.7 2D supercritical Hopf-like bifurcation
by varying Vdc

In this section, we revisit the case of varying Vdc as the
bifurcation parameter using the numerical phase portraitmethod. In
Subsection 6.2, we identified two saddle-node bifurcations using the
analytical nullclines and linearized tr–det plane analyses. However,
these techniques cannot determine whether there exists a Hopf
bifurcation or limit cycle around a non-hyperbolic fixed point,
such as Q∗c shown in Figure 27. To clarify, numerical phase portrait
calculations are needed.

We numerically solved the phase portraits and the
corresponding time series for the midsize VO2 Mott memristor
PA oscillator with Rs = 3.4 kΩ, Cp = 1.0 pF, and initial condition
(x0,v0) = (0.1,0.39). Figures 34A, B show the plot of the numerically
solved bifurcation diagrams (solid dots). The calculations reveal
a stable limit cycle associated with a supercritical Hopf-like
bifurcation if Vdc is within a range bounded by the two non-
hyperbolic fixed points Q∗a and Q∗c, both identified by the analytical
methods (see Figure 27). The numerically determined critical Vdc
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at Q∗a falls between 1.037 V and 1.038 V, which matches with the
analytical result of 1.0379 V. For Q∗c, it is between 1.248 V and
1.249 V, which is approximately 2.9% higher than the analytical
result of 1.21355 V. At Vdc ≤ 1.037 V, the system is critically
damped. After a fast transient response, x(t) and v(t) return to
the stable steady state Q3 without oscillation. See Figure 35A for
the case of Vdc = 1.037 V. The system never settles on either one
of the unstable Q1 or Q2 fixed points (short dashed lines), which
are identified by the nullclines. At Vdc ≥ 1.249 V, the system is
underdamped, with x(t) and v(t) oscillatingwith decaying amplitude
to the stable steady state Q1. See Figure 35D for the case of Vdc =
1.249 V. The system has persistent limit cycle oscillations for
1.038 V≤Vdc ≤ 1.248 V (see Figures 35B, C for the cases of 1.038 V
and 1.248 V, respectively). Similar to the case of varying Rs, there is
an abrupt unfolding in the bifurcation amplitude at bothQ∗a andQ∗c.

Figure 34C shows the Vdc dependence of the limit cycle
oscillation period Tlc. As Vdc increases through the lower bound
Q∗a of the limit cycle region, the persistent oscillation is initially
extremely slow, i.e., Tlc significantly overshoots. Tlc is 12.6
times the RsCp time constant (42.7 ns vs. 3.4 ns) or 25 times
2π/|Im(λ±)| (42.7 ns vs. 1.7 ns). As Vdc increases, Tlc decreases
super-exponentially. Figure 34D shows that near the upper bound
Q∗c of the limit cycle region, the ratio between Tlc and RsCp decreases
to 2.34 (7.95 ns vs. 3.4 ns), which is at the same level as the cases of
varying Rs (Figure 31D) or Cp (Figure 32D).

We conclude this section with a comparison between
experimental characteristics of a VO2 PA oscillator circuit and
SPICEmodel simulations built upon themodel Equations 1, 2, using
parameters listed in Tables 1, 2. Details on the implementation of the
Mott memristor model in SPICE can be found in the supplementary
materials of Pickett and Williams (2012). Figure 36D shows the
circuit schematic labeled with the experimental values. The VO2
nano-crossbar memristor (X1) has a square junction area of 100×
100 nm2 and oxide film thickness of 100 nm, equivalent to a
circular channel radius rch = 56 nm and length Lch = 100 nm in
the model. Re = 370Ω is the measured series resistance of metal
electrodes. A parallel shunt resistance of 20 kΩ (not shown) is
included in simulations to account for the parasitic insulating-
phase conductance present in the VO2 device. The oscillator output
voltage Vout is probed by an input channel of an oscilloscope with
high input impedance. The current flowing throughX1 is monitored
by a second input channel with 50 Ω input impedance. Figure 36A
shows the comparison of the measured (red) and simulated (blue)
Vout waveforms, both showing the hallmark sawtooth relaxation
oscillations. Figure 36B shows the comparison of the measured
and simulated current waveforms. In both (a) and (b), we found
excellent agreements between the measured and simulated results.
Figure 36C shows the period Tn of 24 consecutive oscillation peaks.
Themeasured oscillation period irregularly fluctuates within a range
from 72.4 μs to 83.9 μs, while the simulated period is nearly a
constant at 76.3 μs. Inset of (c) is the recurrence plot (Poincaré
plot or return map) of adjacent oscillation periods (Tn and Tn+1),
showing the irregularities of experimental relaxation oscillations.
The randomness in measured oscillation periods manifests that
these nanoscaledMottmemristors are intrinsically stochastic, which
has been demonstrated in stochastic phase-locked firing (skipping)
of neuromorphic neurons built with higher-dimensional VO2 Mott
memristor circuits (Yi et al., 2018).

7 Concluding remarks

In our view, the implications of locally active memristors
extend far beyond signal amplification or biological nerve impulse
emulation. These scalable nonlinear dynamical elements enable
a high degree of complexity at the network-building-block level.
From the perspective of neuronal dynamics, one can borrow the
concept of logical depth and measure the degree of complexity
of a neuron model by approximating the number of floating
point operations needed to simulate its dynamics for 1-millisecond
duration on a digital computer (Bennett, 1988). The biologically
plausible HH model requires 1200 FLOP/ms and has the highest
degree of complexity among 11 neuron models (Izhikevich, 2004).
The degree of complexity of a Mott memristor neuron is at least
as high as that of the HH model, given that both exhibit similar
range of neurocomputational properties. Architecturally simple yet
dynamically rich neuron nodes may allow computationally efficient,
small adaptive neural networks suited for edge computing scenarios,
which require real-time causal reasoning based on the time-series
data from unlabeled samples. These use cases remain particularly
challenging for today’s artificial intelligence systems, which rely on
machine learning and computationally expensive offline training in
the cloud. As the network scales up, more interesting complexity
phenomena may emerge at the mesoscopic level of neuron
populations due to the collective interactions of constituent
nodes, such as chaotic attractor itinerancy, self-organization, and
synchronization. Understanding these phenomena is crucial for
replicating the perception and cognition capabilities of the brain.
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