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Synthesis of PVA-based
macromolecular photoinitiators
through esterification with
TXOCH₂COOH and cysteine, and
investigation of their
photophysical properties: in situ
fabrication of flexible
nanocomposite films

Melisa Konar1, Kazuki Nakamura2 and Nergis Arsu1*
1Chemistry Department, Yildiz Technical University, Istanbul, Türkiye, 2Graduate School of
Engineering, Chiba University, Chiba, Japan

2-(Carboxymethoxy) thioxanthone (TX-OCH₂COOH), a thioxanthone derivative,
was utilized for the esterification of polyvinyl alcohol (PVA) to synthesize
a macromolecular photoinitiator, both in the absence and presence of
Cysteine (Cys). The covalent attachment of the thioxanthone (TX) group
to PVA through esterification enabled the exploration of the photophysical
properties of the resulting macromolecular photoinitiators (TXOCH₂COO-
PVA and TXOCH₂COO-PVA-Cys) via UV-Vis and fluorescence studies. UV-Vis
absorption spectrum of TXOCH₂COO-PVA confirmed the covalent bonding
of TX, marked by a characteristic absorption peak at 397 nm corresponding
to the thioxanthone chromophore. Fluorescence lifetimes were recorded as
TXOCH₂COO-PVA was cast into a mold and air dried, resulting in a flexible
form of PVA esterified with TXOCH₂COOH. In-situ synthesis of both silver
and selenium nanoparticles was carried out using both TXOCH₂COO-PVA
and TXOCH₂COO-PVA-Cys macromolecular initiators, successfully yielding
nanocomposite flexible polymeric films.

KEYWORDS

photoinitiator, flexible polymeric films, thioxanthones (TX), polyvinyl alcohol (PVA),
esterification reaction, silver nanoparticles (AgNPs)

Highlights

• PVA-based macromolecular photoinitiators were prepared with and without cysteine.
• Photophysical characterizations of macro photoinitiators were performed.
• Nanocomposite thin films consisting of AgNPs and SeNPs were synthesized by situ
photochemical method
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1 Introduction

Polyvinyl alcohol (PVA) is an environmentally friendly polymer
(Maruoka et al., 2006), and its functionalization can enhance its
performance in various applications, including adhesives, coatings
(Nassar et al., 2023; Nishiyabu et al., 2020; Madhusudhana et al.,
2022) and biomedical materials (Rafique et al., 2016; Chong et al.,
2013). This process involves chemical modifications such as
esterification (Ko et al., 2020; Salavagione et al., 2009; Schanuel et al.,
2015), acrylation (Mühlebach et al., 1997; Crispim et al., 2006) and
grafting (Alexandre et al., 2014). By attaching different molecules to
PVA, its properties can be enhanced, improving characteristics
like flexibility (Dicharry et al., 2006), biodegradability (Acik
and Karatavuk, 2020) and thermal stability (Singh et al., 2020;
Chiou et al., 2013). Photoinitiators absorb light and generate

reactive species that initiate the photopolymerization reaction
(Dietliker et al., 2004; Yagci et al., 2010; Keskin Dogruyol et al.,
2023). Radical photoinitiators are classified as Type I and Type
II based on their photoinitiation mechanisms (Aydin et al.,
2003). Type I photoinitiators, such as benzoin and amino
acetophenones, produce radicals through homolytic bond cleavage
(Hammoud et al., 2022). On the other hand, Type II photoinitiators
require co-initiators such as amines or thiols to initiate the
photopolymerization (Balta et al., 2008). One-component type II
photoinitiators feature both light-absorbing and hydrogen-donating
regions within a single structure (Koyuncu et al., 2021; Metin et al.,
2020) (see Scheme 1).

A macromolecular photoinitiator can be synthesized by
reacting a polymer with a photoinitiator containing carboxyl
groups (Kork et al., 2015). These macromolecular photoinitiators

Scheme 1
Photoinitiation mechanism of TXOCH2COOH.

Scheme 2
Synthesis mechanism of TXOCH2COOH.

TABLE 1 The composition of reaction formulations.

Formulation PVA (wt%) TXOCH2COOH (wt%) Cys (wt%) Name

F1 5 0.5 - TXOCH2COO-PVA 0.5%

F2 5 0.5 0.8 TXOCH2COO-PVA-Cys 0.5%

F3 5 1 - TXOCH2COO-PVA 1.0%

F4 5 1 0.8 TXOCH2COO-PVA-Cys 1.0%
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Scheme 3
Schematic representation of the esterification reactions between PVA and TXOCH2COOH, both in the presence and absence of Cysteine.

FIGURE 1
Flexible TXOCH₂COO-PVA photoactive film.

offer many advantages, such as high molar absorption, low
migration, and good dissolution in polymerizable formulations
due to their unique structures (Deng et al., 2020). Therefore,
they are strong candidates for photopolymerization processes.
Photopolymerization is an environmentally friendly process
(Tehfe et al., 2013) that consumes less energy, minimizes waste
(Pierau et al., 2022), and operates at low reaction temperatures.
These processes, which have long been integral to chemical
applications, are currently being explored in areas such as coatings
(He et al., 2023), adhesives, 3D printing (Bagheri and Jin, 2019;
Voet et al., 2021), self-healing materials (Guo, 2022), and metal
nanocomposites (Riad et al., 2020; Ozcelik Kazancioglu et al., 2021).
In this study, we present the synthesis of an environmentally friendly
PVA-based macromolecular photoinitiator, incorporating TX alone
as well as both TX and cysteine derivatives via an esterification
reaction. Characterization and photophysical properties are also

presented to highlight the impact of cysteine on themacromolecular
chain of PVA. Furthermore, nanocomposites containing Ag and Se
nanoparticles were fabricated.

2 Experimental section

2.1 Materials

Silver nitrate (AgNO3, Sigma-Aldrich, 99%), Polyvinyl
alcohol (PVA, Alfa Aesar, Mn: 12,500 g/mol, 80% hydrolyzed),
Acrylamide (AA, Fluka, ≥98%), L-cysteine (Sigma-Aldrich, C-7755)
Thiosalicylic acid (Merck, 97%), Phenoxyacetic acid (Merck, 98%),
dimethyl sulfoxide (DMSO, ISOLAB, 99.9%), hydrochloric acid
(HCl, Merck, 37%), sulfuric acid (H2SO4, Merck, 98%), ethanol
(Merck, 99%), Hexane (Merck, 99%), and distilled water were used
without further purification.

2.2 Instrumentation

1H NMR spectra were measured with the JEOL ECS 400 MHz
NMR spectrometer usingDMSO-D6 as solvents. FT-IR spectra were
measuredwith aNicolet 6700 FT-IR spectrometer. HellmaAnalytics
quartz cuvettes were used for spectroscopic measurements. UV-
Vis absorption studies were performed with a Varian Cary
50 Conc Spectrophotometer. Fluorescence emission-excitation
spectra were analyzed with a Horiba Fluoromax-3P fluorescence
spectrophotometer. Fluorescence emission decay measurements
were performed at room temperature using a Hamamatsu
Quantaurus-Tau C11367 spectrometer. Transmission electron
microscopy (TEM) images were recorded using a Hitachi H-7650
TEM electron microscope.
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FIGURE 2
1H NMR spectra of the films in [D6] DMSO at 400 MHz, and PVA in D2O at 500 MHz.

FIGURE 3
FTIR spectra of PVA-TX and PVA-TX-Cys films were analyzed for two
different TX ratios.

2.3 Synthesis of TXOCH2COOH

Thepreviously reportedmethod in the literaturewas used for the
synthesis of the photoinitiator (Aydin et al., 2003) TXOCH2COOH
as given in Scheme 2.

FIGURE 4
UV-Vis absorbance spectra of synthesized films (TXOCH2COO-PVA
[1 mg mL−1] and TXOCH2COO-PVA-Cys [1 mg mL−1]) and
TXOCH2COOH [1 × 10−4 M] show a maximum absorbance at
400 nm in DMSO.

2.4 Esterification reaction of PVA with
TXOCH2COOH in the presence and
absence of cysteine

A 10% wt. PVA solution was prepared in 0.1 M hydrochloric
acid (HCl). In a separate beaker, TXOCH₂COOH and cysteine
were dissolved in 0.1 M HCl at the ratios specified in Table 1, with
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FIGURE 5
Change in UV-Vis spectrum during the photolysis of TXOCH₂COO-PVA and TXOCH₂COO-PVA-Cys at different concentrations.

FIGURE 6
Fluorescence emission-excitation spectra TXOCH2COOH in DMSO.
Excitation wavelength for emission spectra was 402 nm, and
monitoring wavelength for excitation spectra was 438 nm.

a volume equal to that of the PVA solution. The two solutions
were mixed until a homogeneous mixture was obtained, resulting
in a PVA concentration of 5% wt., which was then transferred to
a reaction flask. The reaction was carried out under a nitrogen
atmosphere for 3 h at 100°C. After the reaction, excess water was

removed using a rotary evaporator. The resulting formulations were
poured into a mold, wrapped in foil, and left to dry in a dark cabinet
at room temperature.

1H NMR (400 MHz, DMSO-D6, 25°C): d = 8.47–7.30 (m,
aromatic), 4.82 (s, O-CH-O), 2.47 (s, CH3-C=O), 1.60–1.28 (m,
aliphatic backbone).

2.5 In-situ photochemical preparation of
silver nanoparticles (AgNPs) and selenium
nanoparticles (SeNPs)

Each film consisting of TXOCH₂COO-PVA and
TXOCH₂COO-PVA-Cys was dissolved in pure water, and the
corresponding metal salts, such as AgNO₃ and Na₂SeO₃·5H₂O,
were added to the formulation at 4% wt. The formulations were
irradiated using amedium-pressuremercury lamp for 5–400 s. After
irradiation, the formulations were placed in molds and allowed
to dry at room temperature. Additionally, a separate formulation
containing both metal salts (AgNO₃ and Na₂SeO₃·5H₂O) was
also prepared.

3 Results and discussion

The esterification reactions are illustrated in Scheme 3.
The covalent attachment of the TX group to PVA through
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FIGURE 7
Florescence emission-excitation spectrums of TXOCH₂COO-PVA and TXOCH₂COO-PVA-Cys at different concentrations. Excitation wavelength (λex)
and monitoring wavelength (λem) were noted in the spectra.

FIGURE 8
Fluorescence lifetime decay curve of synthesized films and
TXOCH2COOH in DMSO.

TABLE 2 Fluorescence lifetimes (τ1 and τ2) of TXOCH2COOH,
TXOCH2COO-PVA, and TXOCH2COO-PVA-Cys systems measured at
room temperature.

τ1 τ2

TXOCH2COOH 3.3065 ns 5.5987 ns

TXOCH2COO-PVA 3.3288 ns 5.7485 ns

TXOCH2COO-PVA-cys 3.2014 ns 6.4083 ns

an esterification reaction produced a flexible polymeric film,
as shown in Figure 1. Interestingly, the covalent linkage of
the photoinitiator TXOCH2COOH increased the solubility of
PVA in water.

The characterization was performed using 1H-NMR and FT-
IR spectroscopy. The 1H-NMR spectra confirmed the successful
esterification reaction between TXOCH2COOH and PVA. The
spectra of the esterification products, recorded in DMSO-D6,
displayed characteristic signals for TXOCH2COOH and PVA,
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FIGURE 9
In-situ synthesized nanocomposites consisting of Ag NPs and SeNPs were incorporated into PVA-TX and PVA-TX-Cys polymeric matrices, resulting in
noticeable color changes in the flexible films.

as shown in Figure 2. Aromatic proton signals appeared between
8.47 and 7.30 ppm, with additional signals at 4.82 ppm for the
CH₂ group. Aliphatic protons and CH₃ signals from polyvinyl
acetate were observed at 2.47 ppm and in the range of 1.60 to
1.28. The H proton of the SH group in cysteine incorporated into
PVA was observed at 2.9, and the NH2 peaks around 2.08 in the
NMR spectrum. For the comparison PVA 1H-NMR spectrum was
recorded in deuterium oxide (D2O).

The FTIR spectra indicates that all samples obtained from
esterification reaction display similar characteristic peaks,
as shown in Figure 3. The broad band around 3,400 cm⁻1 indicates
the presence of hydroxyl (-OH) groups in polyvinyl alcohol (PVA).
Peaks around 2,900 cm⁻1 correspond to aliphatic C-H stretching
vibrations. The strong band near 1700 cm⁻1 represents the carbonyl
(C=O) stretching vibration resulting from the esterification reaction
between thioxanthone (TX) and PVA.

In the spectra of cysteine-containing samples (PVA-
TXOCH₂COO-Cys), a weak band around 2,500 cm⁻1 is observed,
indicating the presence of the thiol (-SH) group in the cysteine
molecule.This observation confirms the successful incorporation of
cysteine into the polymer structure.

The films were analyzed for their steady-state and excited-state
properties.The steady-state properties of PVA-TX and PVA-TX-Cys
were examined using UV-Vis spectroscopy, as shown in Figure 4.

It was observed that the absorption band broadened upon cysteine
binding to the PVA-TX.

Photolysis studies of PVA films were carried out to investigate
the effect of the covalently bound photoinitiator amount in
esterification reactions, using two different initiator concentrations
and incorporating the cysteine molecule (see Figure 5).

It was observed that the photolysis of PVA-TX films with
higher photoinitiator concentrations required longer time.However,
when cysteine molecules were incorporated into the PVA-TX
films, the bleaching occurred more rapidly. This finding suggests
that reactive thiyl radicals may be generated through hydrogen
abstraction from the -SH group of cysteine by TX. These results
indicate that both photoinitiator concentration and the covalent
attachment of cysteine play a significant role in influencing the
photolysis kinetics.

The fluorescence emission spectra of TXOCH₂COOH,
TXOCH₂COO-PVA and TXOCH₂COO-PVA-Cys films were
recorded after dissolving the films in DMSO and exciting them
at 390 nm. The excitation and emission spectra are shown in
Figures 6, 7. All emissions from the films closely resembled those of
the TX photoinitiator.

Figure 7 displays the fluorescence spectra of TXOCH₂COOH
in DMSO, showing an excitation band at 400 nm and an emission
band at 438 nm.
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FIGURE 10
TEM images of Ag and Se nanoparticles.

The presence of cysteine did not notably alter the spectral
properties. These results suggest that the fluorescence properties of
PVA films are primarily governed by the TX-based photoinitiators,
with cysteine molecules having aminimal effect on these properties.

Fluorescence lifetime refers to the duration of a molecule
spends transitioning from the excited state to the ground state. The
fluorescence lifetimes of TXOCH2COOH, TXOCH₂COO-PVA and
TXOCH₂COO-PVA-Cys were compared and analyzed, as shown in
(Figure 8).Thepolymers and photoinitiatorswere dissolved inDMSO
and placed in a quartz cell with a 1 mmoptical path length for lifetime
measurements. The excitation wavelength was set to 402 nm, and the
monitored wavelength for luminescence was 440 nm. τ1, the shorter
lifetime about 3.3 ns observed for nearly all molecules, including
the bare compound TXOCH2COOH, likely represents the molecule’s
primary excited state. τ2, the longer duration, may suggest presence
of different luminescence conditions of photoinitiators by interacting
with surrounding molecules such as DMSO molecule or polymer.
Indeed,PVA-TXOCH2COOH-Cysexhibitedaslightly longer lifetime
thanothersamples.Theprolongedexcitedlifetimeofthephotoinitiator
may enable promotion of intersystem crossing to a triplet state and
interactions with nearby molecules (see Table 2).

3.1 The in-situ photochemical synthesis of
silver nanoparticles (AgNPs) and selenium
nanoparticles (SeNPs)

Nanocomposite thin films containing either silver nanoparticles
(AgNPs), selenium nanoparticles (SeNPs), or both were synthesized
using an in-situ photochemical method, as illustrated in Figure 9.

TXOCH₂COO-PVA and TXOCH₂COO-PVA-Cys were
utilized as one-component macromolecular photoinitiators.
They were dissolved in water, and ionic salts were added
to the formulations before being irradiated by a medium-
pressure mercury lamp for 200–300 s. As described in the
experimental section, the color change of the cured formulations
was observed, offering a visual method to confirm the formation
of nanoparticles within the PVA polymer, as shown in Figure 9.
The mechanism behind the in-situ formed nanocomposites
likely involves intramolecular hydrogen abstraction, resulting
in the formation of ketyl radicals that act as photoreducing
agents for ionic species such as silver and selenium salts.
In the case of TXOCH₂COO-PVA-Cys, the excited state of
TX abstracts hydrogen from the thiol group of cysteine,
resulting in the formation of thiyl radicals. Both thiyl and
ketyl radicals are essential in reducing ionic species, facilitating
the nucleation and growth of nanoparticles. Transmission
electron microscopy (TEM) was employed to analyze the
morphology and size distribution of silver (Ag) and selenium (Se)
nanoparticles within PVA-based polymeric films. The polymeric
films were dissolved in ethanol, and the nanoparticles were
isolated from the polymer matrix through centrifugation. After
drying, the separated nanoparticles were placed on a TEM
grid for imaging.

TEM images of the synthesized Ag and Se nanoparticles
are shown in Figure 10.The images indicate that silver nanoparticles
have a spherical morphology, whereas selenium nanoparticles
display a needle-like shape.The average size of the Ag nanoparticles
is approximately 10–15 nm, while the Se nanoparticles measure
around 20–25 nm.
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4 Conclusion

In this study, polyvinyl alcohol (PVA), an environmentally
friendly polymer, was esterified using 2-(Carboxymethoxy)
thioxanthone and cysteine as a single-component secondary
photoinitiator. The photophysical properties of the PVA-TX and
PVA-TX-Cys films were investigated after their preparation,
focusing on UV-Vis absorption, fluorescence emission spectra,
and fluorescence lifetimes. Furthermore, PVA nanocomposites
embedded with silver and selenium nanoparticles were synthesized
via the in-situ photoreduction of silver and selenium salts in an
aqueous medium, followed by their nucleation and growth. The
findings indicate that the synthesized polymeric films hold potential
as promising materials for optical, electronic, and biomedical
applications. Future studies could aim to further optimize their
properties and evaluate their performance in specific applications.
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