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Environmental pollution has become an inexorable problem for the planet Earth.
The precise detection and degradation of heavy metals, pesticides, industrial-
, pharmaceutical- and personal care- products is needed. Nanotechnology
holds great promise in addressing global issues. Over the past decades,
nanozymic nanomaterials have exceptionally overcome the intrinsic limitations
of natural enzymes. Carbon dots (CDs) exhibit unique structures, surface
properties, high catalytic activities, and low toxicity. Different techniques,
such as doping or surface passivation, can enhance these exceptional
properties. Doping modifies CDs’ electronic, magnetic, optical, and catalytic
properties considerably. Metal doping, a more significant strategy, involves
the introduction of metallic impurities, which offer insight into enhancing the
physicochemical properties of CDs. Metal-doped CDs exhibit higher optical
absorbance and catalytic performance than pristine CDs. The literature shows
that researchers have utilized various synthetic approaches to fabricate CDs-
Metal nanozymes. Researchers have reported the metal-doped and hybrid CDs’
peroxidase, catalase, laccase, and superoxide dismutase-like activities. These
metal-doped nanozymes put forward substantial environmental remediations
and applications such as sensing, photocatalytic degradation, adsorption, and
removal of environmental contaminants. This review thoroughly discussed the
metal-based functionalization of CDs, the enzyme-like properties, and the
ecological applications of metal-doped and hybrid enzymes. The review also
presents the current novelties, remaining challenges, and future directions with
key examples.
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1 Introduction

The environment is essential for sustaining life, but
environmental pollution causes alarming obstacles to the viability
of Earth. Several anthropogenic practices, such as industrialization,
agriculture, and transportation, have been the leading cause
of environmental contamination (Awewomom et al., 2024;
Ukaogo et al., 2020). Such contamination eventually leads to
ecological, health, and economic consequences. Regarding health
issues, cancer, respiratory problems, and numerous chronic diseases
are caused by chemical pollutants (Kim et al., 2018). However, global
efforts are steadily being made to alleviate environmental pollution
and protect human health. Nanotechnology is an advanced field
unveiling significant ecological protection (Khin et al., 2012). Owing
to their ultra-compact size, high surface area, non/less toxicity, and
easy biodegradation, carbon nanomaterials are considered valuable
(Liu Y. et al., 2020; Choudhary et al., 2014; Cao et al., 2013). The
advancement of carbon dots has attracted attention in the crossover
field of carbon materials and pristine quantum dots.

Carbon dots (CDs), the quasi-spherical, zero-dimensional
competitive members (less than 10 nm in size), belong to the
family of carbon nanomaterials (Sagbas and Sahiner, 2019;
Zhao Q. et al., 2020; Cui et al., 2021; Langer et al., 2021). In
2004, CDs were accidentally discovered during the purification
of single-walled nanotubes (SWNTs) using an arc discharge
method. Thereafter, the research on CDs rapidly increased. CDs
exhibit small size, larger surface-to-volume area, active edges,
fluorescent properties, strong absorption, resistance to photo-
decomposition, low toxicity, biocompatibility, and enhanced
catalytic activity (Figure 1; Zhang et al., 2021; Innocenzi and Stagi,
2023; Ge et al., 2018; Chen et al., 2021). Carbon, hydrogen, and
oxygen are themain constituents of CDs.The carbon core consisting
of crystalline sp2 carbon comprises amino (-NH2), hydroxyl (-OH)
and carboxyl (-COOH) groups.

CDs are diverse, and are further classified. Each class’s
size, properties, structure, and formation mechanism may vary.
Graphene Quantum Dots (GQDs), Polymer Dots (PDs), and
Carbon Nanodots (CNDs) are the main categories. The CNDs
exhibit amorphous spherical morphology (Pathak et al., 2023).
Their core contains a high degree of carbonization (Langer et al.,
2021). CNDs bifurcates into Carbon Quantum Dots (CQDs) and
Carbon Nanoparticles (CNPs). The amorphous CNPs do not
exhibit Quantum Confinement Effect (QCE), while the CQDs
having surface chemical groups and graphene-layer show QCE
(Ozyurt et al., 2023; Bacon et al., 2014). GQDs have significant
properties and are excellent fluorophores and electro-catalysts
(Mansuriya and Altintas, 2020; Ghaffarkhah et al., 2022). GQDs
may show the QCE. The last type, polymer dots (PDs), comprise
low carbonization; they have either linear polymers or monomers
grouping (Ozyurt et al., 2023; Song et al., 2017). Different
methods have been employed for their synthesis, such as chemical
oxidation, microwave-assisted synthesis, laser ablation, atmospheric
plasma-based synthesis, thermolysis, hydrothermal carbonization,
solvothermal, electrochemical, and ultrasonic methods. Among all
these synthetic techniques, the solvothermal method (particularly
hydrothermal) is commonly used to synthesize doped CDs.

Despite the unique physicochemical properties of CDs, pristine
CDs show some limitations, such as, low quantum yield and ease

of contamination. Hence, extensive research has been conducted
in improving and tailoring their functionality over the years.
Doping has been widely utilized in optimizing CDs’ intrinsic
chemical, electrical and optical properties. Top-down and bottom-
up approaches are the two main synthetic methods for reporting
hetero-atom-doped CDs (Miao et al., 2020). The former approach
majorly involves tailoring pre-existing carbonaceous material. In
contrast, the bottom-up approach involves synthesizing material
from the ground up. Compared to the top-down, the bottom-
up approach allows precise manipulation of synthesis conditions
and, hence, offers more control over CD material structure and
properties (Alafeef et al., 2024).

Researchers have reported peroxidase, oxidase, superoxide
dismutase, and catalase-like activity in functionalized CDs
(Zhu et al., 2014; Wang H. et al., 2021; Wu et al., 2019; Zhang et al.,
2023). These CDs exhibit excellent stability than natural enzymes
and are utilized as enzyme alternatives for environmental
applications (Gao et al., 2007). Like natural enzymes, their catalytic
activity is sensitive to pH, temperature, and concentration. The
peroxidase-like catalytic activity of CDs was first reported by
Shi et al. (2011). Later, many other researchers synthesized doped
and/or hybrid CDs (especially metal-doped CDs) to enhance the
enzyme-mimicking activity of CDs (Lopez-Cantu et al., 2022). A
comparative analysis between different metal-doped (including Ce-
doped, Cr-doped, Cu-doped, Fe-doped, and Mn-doped CDs) and
non-metal-doped CDs as peroxidase-mimics has also been reported
(Yuxin et al., 2022). The results confirmed that both non-metal and
metal-dopedCDs exhibit peroxidase-like catalytic activity; however,
the metal-doped CDs, such as Fe-doped CDs, show the highest
catalytic activity and act as excellent artificial enzymes. In other
words, the metal-doped CDs exhibit more catalytic active sites and
improved binding selectivity (Gallareta-Olivares et al., 2023).

The fluorometric/colorimetric property of metal-doped and
hybrid CDs for detecting chemical pollutants facilitates a sensitive
monitoring system (Nejad et al., 2020). The common insecticide
and high-risk water contaminant, p-nitrophenol (p-NP), has been
detected through fluorometric Cr-doped CDs sensors (Li C. et al.,
2019). Similarly, the hybrid nanozymic-nanoreactors based on Fe-
doped CDs (Fe-CDs) and MOF-808 were reported to detect and
degrade organophosphorus pesticides. The author also noted a
synergistic effect of Fe-CDs on MOF-808-comprised complex to
sense paraoxon and parathion (Ma et al., 2023). Similarly, Cu-doped
Tragacanth/Chitosan CDs and Fe-doped N@CDs detect isoniazid
(INH) and doxycycline (Shekarbeygi et al., 2020; Kaur et al., 2022a).

2 The structural/functional rationale
CDs

Carbon Dots (CDs) are a class of zero-dimensional, quasi-
spherical shaped nanomaterial having a usual size of less than
10 nm (Cui et al., 2021; Kurian and Paul, 2021). Researchers
report that the surface area of CDs varies from 16.4 m2 g−1 to
1,690 m2 g−1 (Wang Q. et al., 2013; Ren et al., 2019). The carbon
present in their structure is sp2 and sp3 hybridized. The sp2/sp3

carbons comprised of CDs attach many functional groups and
polymer chains. Depending on the degree of carbonization, the
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TABLE 1 Environmental Applications of CDs/Functionalized CDs and Metal doped and Hybrid CDs.

CDs/Metal doped
and hybrid CDs

Analyte Limit of
detection (LOD)

Degradation∗ Environmental
application

Reference

CDs Pretilachlor 2.9 µM — Detection of pretilachlor Deka et al. (2019)

CDs Diazinon
Amicarbazone
Glyphosate

0.25 ng/mL
0.5 ng/mL
2 ng/mL

— Fluorescent sensing of
pesticides

Ashrafi Tafreshi et al.
(2020)

CDs Diazinon 0.038 µM — Detection of diazinon in
tap, distilled, and river
water

Khaledian et al. (2021)

KCDs Picric acid
Cu2+

Fe3+

86 ng/mL
15.3 mg/mL
0.36 µg/mL

— Removal of alkaline and
organic impurities from
wastewater

Venkatesan et al. (2019)

YCDs 2,4,6-trinitrophenol
(TNP)

56 nM — Sensitive detection of
TNP in environmental
samples

Zhang et al. (2020a)

Y-CDs Cr (VI) 4.5 µM — Detection of Cr (VI) in
water samples

Zhang et al. (2020b)

GHS-CDs As3+

ClO−
2.3 nM
0.016 µM

— Sensing of As3+ and ClO−

in drinking water
Radhakrishnan and
Panneerselvam (2018)

PDA@CDs p-Chlorophenol (p-CP)
p- Cyanophenol (p-CNP)

— 153 mg/g
178 mg/g

Absorption of phenolic
compounds in wastewater

Sanni et al. (2022)

PC-CDs Cu2+ 0.05 µg/mL — Detection of Cu2+ in
wastewater samples

FCDs Tetracycline (TC) 0.005 mg/L — Detection of TC in
sewage water

Guo et al. (2020)

NCDs/g-C3N4 Oxytetracycline (OTC) — 91.2% in 24 h Degradation of OC in
aquaculture wastewater

Peng et al. (2024)

CDs/MnO2 assembly Hydrazine 4.8 ppb — Sensitive detection of
hydrazine from water

Hiremath et al. (2020)

Fe2+-CDs Histidine
Zn2+

10 µM
0.1 µM

— Detection of Histidine
and Zinc ions in water
samples

Han et al. (2018)

Fe-N@CDs Doxycycline 66 ngml/L — Detection and
degradation of
doxycycline

Kaur et al. (2022b)

Fe3O4-CDs Doxycycline — 70.26% in 5 min Degradation of
doxycycline

Kaur et al. (2022b)

CCDs (Co (II) doped
CDs)

Cr (VI) 1.17 µM — Sensing of Cr (VI) ions in
tap water

Zhang et al. (2017a)

GT/CS/Cu Isoniazid 0.0011 µg.ml/L — Detection of isoniazid in
wastewater samples

Shekarbeygi et al. (2020)

Ni-CQDs Fe3+

Cu2+
10.17 µM
7.88 µM

— Metals ion detection Sun et al. (2023a)

CDs/Cu Thiophanate methyl (TM) 2.908 × 10−6 mol/L — Fluorescent sensing of
TM pesticide

Han et al. (2019)

(Continued on the following page)
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TABLE 1 (Continued) Environmental Applications of CDs/Functionalized CDs and Metal doped and Hybrid CDs.

CDs/Metal doped
and hybrid CDs

Analyte Limit of
detection (LOD)

Degradation∗ Environmental
application

Reference

Cu,N-CDs/Ag3PO4 Neutral Red (NR) — 69.7% in 60 min Degradation of NR from
wastewater

Mu et al. (2019)

CDs/ZFO Methyl Orange (MO) — — Removal of organic dye
MO from water

Shi et al. (2018)

CDs/ZFO Tetracycline (TC) — (under visible light)
79.5% in 120 min

Photocatalytic
degradation of TC from
wastewater

Shi et al. (2022)

NPCQD/ZnO Methylene Blue (MB) — 90% in 30 min Photodegradation of MB
from wastewater

Song et al. (2019)

(CDs)/g-C3N4/ZnO Tetracycline (TC) — 100% in 30 min Photocatalytic
degradation of TC

Guo et al. (2017)

Mg,N-CDs Paraoxon 0.87 nM 181.2 mg/g Detection of paraoxon in
tap and river water

Peng et al. (2019)

CDs-TGA-CdTe Chlortoluron 7.8 × 10−11 mol/L — Analysis of chlortoluron
in irrigation water
samples

Tao et al. (2015)

CQD-AuNPs Paraoxon
Malathion

Methamidophos
Carbaryl

0.05 nM
0.10 nM
0.12 nM
0.13 nM

— Detection of pesticides in
tap and river water

Korram et al. (2019)

CDs-AgNPs Phoxim 40 nM — Detection of phoxim in
environmental water
samples

Zheng et al. (2018)

AuNPs and CQDs Carbaryl 0.06 µg/L — Detection of carbaryl in
real water samples

Chen et al. (2020)

AuNPs and CDs Acetamiprid 1.5 × 10−9 mol/L — Detection of acetamiprid Qin et al. (2019b)

∗Expressed like (% and time)/Absorbance (mg/g).

sp2/sp3 carbon-skeleton shows an amorphous-form or a graphite-
lattice (Mansuriya and Altintas, 2021). Relative to Quantum Dots
and other nanomaterials, CDs are functionally less toxic, highly
luminescent, biocompatible, inexpensive, and thermally stable.
Regarding Photoluminescence (PL) studies, they show dispersion,
UV-vis absorption, quantum yield, and phosphorescence. They also
exhibit core-state emission, molecular fluorescence, and surface-
state emission (Li Z. et al., 2019). Despite the advanced applications
of CDs, few of the fundamental properties of CDs are still uncertain.
Such uncertainties hinder scientists from enhancing CDs’ properties
and applications for future visions (Mintz et al., 2021). Figure 2
shows the characteristic description of CDs’ morphological and
photoluminescent features.

CDs offer several beneficial properties due to functional groups
on the surface.These functional groups also impart catalytic activity
to CDs. Both reducing and oxidizing species can be used to
synthesize CDs. As a result, CDs can lead the redox transformation
reactions (Mokoloko et al., 2023). These redox reactions give rise
to many applications in pollution control, industrial catalysis, waste
treatment, and degradation of pharmaceuticals (Tarumi et al., 2019;

Toral-Sánchez et al., 2018). Moreover, the functional groups are
highly significant in enhancing the properties of CDs in biosensing
and molecule detection. Yan et al. reported that CDs’ properties
could be improved bymodification procedures inwhich the covalent
or non-covalent bonding is built between the reactants and the
CD surface. Studies show that two different CDs can react to a
new CD, exhibiting the surface properties of both parent CDs.
Similarly, three other types of CDs were produced by Zhou.
et al. The reaction was kept at room-temperature conditions, and
reactant CDs formed a link between their functional groups.
CDs formed in products were utilized as nanocarriers in drug
delivery systems (Mokoloko et al., 2023).

Hydrophilic and hydrophobic groups on CDs enhance their
solubility and stability in water and organic solvents (Li Z. et al.,
2019;Mokoloko et al., 2023).The hydrophobicity and hydrophilicity
of CDs can be altered by using precursors and passivators
(Rui et al., 2023). For Bioimaging and NIR-Anticounterfeiting
the hydrophobic CDs have been utilized (Shi et al., 2023).
Hydrophilic CDs act as metal-ion detectors and fluorescent pH
sensors (Liu X. et al., 2018). The hydrophilic properties of CD
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TABLE 3 Enzyme mimetic metal-doped and hybrid carbon dots.

Metal-doped
CD-based
nanozymes

Synthetic
approach

Metal precursor Carbon
precursor

Enzyme-like
activity

Reference

Cu-CDs Solid-phase Copper (II) nitrate
trihydrate

Citric acid Peroxidase Duan et al. (2019)

Fe-N-CDs Solvothermal Iron (III) chloride
hexahydrate

Tartaric acid Peroxidase Yang et al. (2017)

Fe,N-CDs Hydrothermal Anhydrous ferric
chloride

Histidine Peroxidase Xu et al. (2023)

N, Fe-CDs Hydrothermal Iron (III) chloride
hexahydrate

β-cyclodextrin Peroxidase Li et al. (2020c)

Co, N-CDs Hydrothermal Vitamin B12 Vitamin B12 Oxidase Hu et al. (2024)

Mn-CDs Hydrothermal Manganese (II) chloride
tetrahydrate

Citric acid,
ethylenediamine

Oxidase Zhuo et al. (2019)

N, Cu-CDs Hydrothermal Copper (II) nitrate
trihydrate

EDTA Peroxidase Lin et al. (2019)

Fe/N@C-dots Hydrothermal Iron (III) chloride
hexahydrate

Na2EDTA Peroxidase Alqahtani et al. (2023)

Fe@Fn-CDs Hydrothermal Ferrous cation (Fe2+) Horse spleen apoferritin Peroxidase, Oxidase,
Catalase, Superoxide

Dismutase

Shen et al. (2023)

4-ASA/Gd-CDs Hydrothermal Gadolinium cation
(Gd3+)

Polyethyleneimine (PEI) Superoxide dismutase Zhao et al. (2024)

(Fe,Co) codoped-CDs Hydrothermal Iron (III) chloride
hexahydrate,

Cobalt (III) chloride
hexahydrate

Citric acid Peroxidase Li et al. (2021b)

surface also offer several applications in medicinal chemistry (Jana
and Dev, 2022). Moreover, CDs can also be used to modify several
reactions (Mokoloko et al., 2023).

CDs carry photocatalytic processes in environmental
applications. CDs-based photocatalysis works in the degradation
of pollutants and energy conversion as well. Carbon allotropes
have been used in titania-supported photocatalysis in the past few
years (Nguyen et al., 2015). The researchers have demonstrated
the degradation of Tetracycline through titania nanoparticles-
based photocatalysis (Zhu et al., 2013). Moreover, the metal-
doped nanoparticles (NPs) increase light absorption properties
by interacting incident photons with metal NPs electrons (Yao et al.,
2022; Jana et al., 2016). This interaction is referred to as the
Surface Plasmon Resonance Effect. CDs comprise ease in their
functionalization (Gallareta-Olivares et al., 2023).The chemical and
physical properties of CDs are enhanced and adjusted through
Doping. Moreover, the doped-CDs have different energy gaps
and electron densities than the un-doped ones (Li X. et al.,
2022). The choice of dopant element is significant in obtaining
desired features. Compared to non-metallic ions, metal ions
have large atomic radii, more electrons, and unoccupied orbitals
(Li X. et al., 2022). For these reasons, metal-doped CDs show

excellent performance in bioimaging, biocatalysis, photocatalysis,
and phototherapy (Boakye-Yiadom et al., 2019).

3 The physicochemical properties and
functional elements

CDs show unique physical properties, i.e., high reactivity,
good chemical reactivity, surface functionality, biocompatibility,
hydrophilicity, electroconductivity, and low toxicity (Miao et al.,
2020; Ranjan et al., 2022; Fawaz et al., 2023). The high reactivity
of CDs can be justified by their smaller size, well-defined shapes,
greater surface area, and integrated functional groups. Preference
to reactive precursors and particular synthetic approaches can
also significantly improve the reactivity (Papaioannou et al.,
2019). The existence of different functional groups attached
to the surface of CDs is referred to as surface and structural
functionality (Figure 3). Such functional groups greatly influence
other physicochemical properties. Surface functionality can
originate from surface functionalization or precursors utilized
in the synthesis (Yan et al., 2018). Hydroxy (-OH), amino (-
NH2), and carboxy (-COOH) groups are the most familiar
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TABLE 4 Environmental applications of enzyme mimetic metal doped/hybrid carbon dots.

Metal doped/hybrid CDs Enzyme-like activity Environmental application Reference

Cu-CDs Laccase Removal of phenylenediamine
contaminant in environmental water
samples

Ren et al. (2015)

Cu,Cl-CDs Peroxidase,
Oxidase

Detection of Hydroquinone in
environmental water samples

Zhao et al. (2022)

Zn/Cl-CQDs Peroxidase Cu2+ detection in drinking water
samples

Dadkhah et al. (2022)

NA-CDs/AuNPs Peroxidase Detection of methylmercury in
environmental water samples

Li et al. (2023b)

CDs@Cu4O3 Peroxidase,
Oxidase

Organic pollutants degradation Li et al. (2020b)

CeO2/N-CQDs@CuO NPs Oxidase Cr (VI) detection in real water samples Qiu et al. (2024)

Co@CDs hybrid material Peroxidase Water treatment against methylene blue
contaminant

Guo et al. (2015)

N/Cl-CDs and N/Cu-CDs system Peroxidase Determination of Hydroquinone in
environmental water samples

Wang et al. (2020)

FIGURE 1
Physiochemical characteristics and optical attributes of Carbon dots (CDs).

functional groups found on CDs. The oxygenated functional
groups, more specifically, affect the photoluminescence properties.
Characteristic CDs, designed through surface modification, can
further aid in developing multifunctional fluorescent probes for
different purposes (Liu et al., 2016).

CDs’ tailorable hydrophilic and hydrophobic properties are
also promising in developing more advanced biological and
environmental applications (Ozyurt et al., 2023; Zhang et al., 2024;
Zhao and Zhu, 2018; Liu J. et al., 2020). Hydrophilicity provides
stability to CDs in aqueousmedia, enhancing dispersion. Utilization
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FIGURE 2
Characteristic attributes and photoluminescent features of carbon dots (CDs).

of ionic liquids (ILs), surface functionalization, and control of
terminal alkyl chain length are a few of the significant methods
involved in tuning the hydrophilicity of CDs (Ozyurt et al., 2023;
Guo et al., 2019; Varisco et al., 2017; Guo et al., 2021; Zheng et al.,
2019). In surface functionalization, hydrophilic functional groups
such as -OH, -COOH, and -HN3 are introduced on the CDs surface
(Zhang et al., 2024; Zhao and Zhu, 2018). ILs (such as 1-alkyl-3-
methylimidazolium dicyanamide) have been reported to synthesize
both hydrophilic and hydrophobic CDs (Guo et al., 2019).Moreover,
the amphiphilic carbon dots (ACDs) exhibit hydrophilic and
lipophilic properties (Nandi et al., 2014; Pandit et al., 2021). They
show interaction with both polar and non-polar media. Compared
to standard CDs, ACDs offer a broader range of environmental
applications. For instance, the amphiphilic fluorescent carbon
nanodots detect tetracycline and nitrite in both aqueous and
organic media (Omer et al., 2020). Despite the difference in
structures, synthetic approaches, precursors, dopants, and chemical
functionalities, CDs show similar optical properties (Ozyurt et al.,
2023; Das et al., 2021a). They exhibit UV-visible absorbance, which
is a convincing parameter in examining the chemical structure of
CDs (Das et al., 2021a). CDs show single or more distinguished
absorption peaks in the UV region and an extended tail in the
visible region (Baker and Baker, 2010; Li D. et al., 2018; Liu,
2020). The 200–280 nm peak is attributed to the π-π∗ transition of
doubly-bonded carbon atoms, i.e., C=C. The 280–400 nm
absorption peak corresponds to the n-π∗ transition of C=O.
Moreover, the overlapped bands above 400 nm regions correspond
to the n-π∗ transition, originating from the absorption of surface-
states with electron lone-pairs (Liu, 2020; Wang Y. et al., 2014).

However, CDs’ photoluminescence (PL) properties are not fully
understood (Langer et al., 2021; Zhang et al., 2021; Barman and
Patra, 2018; Sk et al., 2014). The two major causes for the uncertain
PLmechanism are the (i) complex structure of CDs and (ii) variation
in the PL centers (Langer et al., 2021). PL of GQDs and CQDs
depends on surface states (such as heteroatom dopants, surface
functionalities, surface configurations, surface defects, etc.) and
quantum confinement effects (QCE) (Cui et al., 2021; Sk et al., 2014;
Ai et al., 2021; Zhu Z. et al., 2019). The QCE can be governed by
various factors such as particle size, shape, and solvent involved
in the synthesis (Sk et al., 2014; Kim et al., 2012; Qu et al., 2015).
All these factors affect the sp2 conjugation length. More significant
conjugation length of sp2 carbon domains results in a reduced band
gap, leading to red emission shift (Pedrueza et al., 2013). Likewise,
the large, aromatic ring containing GQDs structures shows redshifts
(Sk et al., 2014; Kim et al., 2012; Eda et al., 2010). The utilization

of certain solvents (for example, DFM) in the synthesis process of
CDs also affects the band gap and PL properties (Qu et al., 2016;
Tian et al., 2017; Zhu et al., 2011; Bai et al., 2019). On the other
hand, the surface states arise synergistic hybridization between the
attached functional groups and carbon backbone (Ding H. et al.,
2020). Hence, the hetero-atom doping and surface modifications
tune the PL properties of CDs (Yuan et al., 2018; Fan et al.,
2014). Integrating functionalities (hydroxyl, carbonyl, carboxylic
acid, epoxy and epoxy ether, alcohol, amine, and thiol) forms
surface states and defects. These surface states shift emission to
longer wavelengths. For instance, using tartaric acid in the reaction
mixture of CDs synthesis enhances the degree of oxidation and
creates redshift. Figure 4 represents the factors affecting the optical
properties of CDs.

Heteroatom dopants (B, F, N, and S) also tune the electronic
structure and enhance fluorescence quantum yield (Qu et al., 2015;
Yang et al., 2018; Peng et al., 2016; Zuo et al., 2017; Hao et al.,
2015; Qin Z. et al., 2019; Feng et al., 2021; Gao D. et al., 2020). This
property has notably acquired great attention in monitoring and
sensing applications of CDs. Furthermore, the pH (Feng T. et al.,
2018; Lei et al., 2019; Chao et al., 2020), reaction temperature
(Sun et al., 2020; Chen et al., 2017; Miao et al., 2018), concentration
(Chen et al., 2018; Meng et al., 2017; Wang et al., 2018a; Ba et al.,
2020; Zhang et al., 2019; Su et al., 2020), and aggregations
(Wang et al., 2017; Lv et al., 2019; Chen et al., 2012; Yang et al., 2019)
dependent PL properties of CDs have also been reported. Moreover,
CDs exhibit good chemical stability. Chiral CDs showmore excellent
chemical stability than the simple CDs (Li S. et al., 2021; Ru et al.,
2020). Compared to metal complexes, metal-doped CDs exhibit a
low degree of cytotoxicity. It is because of the presence of carbon,
which hinders the free release of metal ions (Li X. et al., 2022).

Furthermore, the study of chemical properties involves the
consideration of CDs structure. Several characterization techniques
are employed (Ozyurt et al., 2023; Song et al., 2015; Bhaisare et al.,
2015; Singh et al., 2018; Siddique et al., 2018). These techniques
include scrutinizing size, shape, crystal structure, chemical
functionality, and particle-size distribution (Ozyurt et al., 2023).
Regarding the size, shape, and average-size investigation, TEM
(Transmission Electron Microscopy) is preferably a significant
analytical technique (Song et al., 2015; Bhaisare et al., 2015;
Singh et al., 2018). TEM images also reveal the functional groups
present onGQDs.Whereas, determining particle-thickness involves
using AFM (Atomic Force Microscopy). It also gives information
about topological profile and graphene-layer count in GQDs
(Ozyurt et al., 2023). However, the crystal structure can be
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FIGURE 3
Illustration of Structural Functionalities Present on Carbon Dots developed via Amide Coupling Reaction in (a–d, h); Esterification Reaction in (e);
Sulfonylation Reaction in (f) and Complexation in (g).

investigated by HRTEM (High-Resolution Transmission Electron
Microscopy and XRD (X-ray Diffraction) (Mintz et al., 2021;
Nie et al., 2014). HRTEM images represent the crystallographic

planes, i.e., lattice fringes in CD-aggregates (Nie et al., 2014;
Kurdekar et al., 2016). Raman Spectroscopy is used to investigate
CDs’ crystallinity and functional groups (Dager et al., 2019).
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FIGURE 4
Factors affecting optical properties of carbon dots (CDs).

In Raman spectra, CDs show two bands, i.e., G and D bands
(Ozyurt et al., 2023). The D and G band correspond to the vibration
originating from graphitic sp3-carbon and graphitic sp2-carbon
defects (edges) (Shi et al., 2015). The surface functional group on
CDs can be recognized through Elementary Analysis and Infrared
Spectroscopy (El-Shafey, 2021). The chemical functionalities can be
identified by X-ray Photoelectron Spectroscopy, Nuclear Resonance
Spectroscopy (NMR), and Fourier transform infrared (FTIR)
technique (Ozyurt et al., 2023).

4 Metal-based functionalization of
CDs

Due to the easy preparation and potent applications,
CDs’ functionalization has attracted researchers’ attention
(Ðorđević et al., 2019; Stepanidenko et al., 2021; Park et al.,
2016). Functionalization controls and enhances CDs’ optical,
electrical, chemical, and biological properties (Li X. et al., 2022;
Park et al., 2016; Chen et al., 2019; Dhenadhayalan et al.,
2020). Surface modification and doping are the two major
approaches for CDs functionalization. In surface modification,
functional ligands such as ions, polymers, proteins, DNA, or other
molecules modify CDs. The CD-surface and functional ligand
interact through electrostatic interaction, covalent bond, non-
covalent bond, or coordination (Chen et al., 2019). Along with
the improvement in properties, surface modification provides
new reaction sites for more surface reactions to occur as well
(Wang et al., 2023). Fe3+, Mn2+, Cu2+, Tb3+, and Eu3+ have been
utilized in the surface modification of CDs (Bourlinos et al., 2017;
Wang Y. et al., 2015).

Doping also optimizes the physicochemical properties of CDs.
It causes variation in the intrinsic structure of CDs, and eventually,
the electronic distribution changes through the generation of n-
type or p-type carriers (Li X. et al., 2022; Chen et al., 2019).
The introduction of copper-metal causes an enhancement in the

electronic properties, which improves the catalytic properties of CDs
(Duan et al., 2019). Doping can be further classified into metal
doping or non-metal doping. Boron, nitrogen, phosphorus, sulfur,
and fluorine (either solely or in combination) are non-metallic
dopants. Calcium, magnesium, scandium, manganese, iron, copper,
nickel, cobalt, zinc, gallium, bismuth, molybdenum, silver, gold,
gadolinium, etc., act as metallic dopants. Both metallic and non-
metallic dopants design HOMO-LUMO energy band gaps. This
energy band gap decides doped CDs’ (photo-optical) properties
(Kumar et al., 2022; Feng J. et al., 2018).

Due to more electrons, unoccupied orbitals, and large atomic
radii of metal ions, metal-based CDs offer a broad range of
intrinsic properties. Research shows that Cu-based doping can
increase the electron-donating and accepting abilities, resulting in
copper-to-graphite charge transfer, and eventually, the electrical
conductivity is enhanced (Wu et al., 2015). Another research shows
that the Cu-doped CQDs can form Cu-N bonding, which produces
the copper-to-graphite charge transfer. Ultimately, the absorption
intensity increases (Eda et al., 2010; Wu et al., 2015). Owing
to the low energy level, when UV light of 365 nm strikes the
Cu-doped CQDs, the photo-excited holes intensely compete with
Cu ions, which results in the production of Cu ions, enabling
their utilization for Husigen 1,3 dipolar cyclo-addition reaction
(Li et al., 2015). Figure 5b represents the Cu2+-based synthesis of
CDs (Jin et al., 2017). These functionalized CDs are synthesized
by using carrots as a carbon source. The CDs were modified using
positively charged polyethylene (PEI) andNile Blue.The significance
of these functionalized CDs lies in their action as a two-photon
fluorescence probe. Mn-based functionalization of CDs can adjust
the fluorescent emission, resulting in emission at longer wavelength
(Chen et al., 2019). In addition, zinc doping has been proposed
to give higher photocatalytic activity and QY (Chen et al., 2019;
Li et al., 2013; Xu et al., 2016). Moreover, Zn-doped CDs pose
stabilized excited states, increasing the fluorescence lifetime. The
defects present in Zn-CDs enhance solubility and are helpful for the
photodegradation of Cr(VI) (Chen et al., 2019). It has been reported
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FIGURE 5
Surface functionalization of carbon dots (CDs), (a) Terbium-based CDs, and (b) Copper-based CDs.

that CDs with transition metal ions exhibit higher efficiency than
non-transition ones (Bandi et al., 2022).

Lanthanides-based functionalized CDs have gained much
importance due to their unique fluorescent properties (Chen et al.,
2019). Gd, Y, Nd, Tb, Tm, and Eu have been utilized to functionalize
metal-doped CDs (Chen B. B. et al., 2016; Chen Y. et al., 2016).
However, Y and Nd are highly significant for their long fluorescence
lifetime NIR emission. Nd 3+ and Yb3+ have been utilized as
dopants to synthesize Ln-based CQDs exhibiting characteristic
NIR emission (Wu et al., 2016). In addition, Eu-based CDs
have also been prepared via a microwave-assisted method. Eu
functionalized CDs offer exceptionally enhanced quantum yield
(QY) (Chen Y. et al., 2016). Figure 5a represents the Tb3+-based
functionalization of CDs (Chen et al., 2015). The Tb3+-based CDs
were synthesized by complexing Terbium with amino and carboxyl
groups on the CD surface. These functionalized CDs can detect
dipicolinic acid. Regarding their application, they can rapidly detect
biomolecules and bacterial spores.

Another common approach for the metal-based
functionalization of CDs involves using noble metals (Ru, Rh, Os, Ir,
Pt, Au, and Ag) as dopants (Zaheer et al., 2023). Noble metal-based
CDs contain a synergistic effect of both components, i.e., noblemetal
and CDs (Fu et al., 2020). Functionalization usually occurs through
ion exchange, hydrothermal, or galvanic replacement reactions
(GRR).These functionalized CDs pose advanced properties, such as
a specific large surface area, extensive catalytic activity, and sufficient
electron transfer pathways (Zaheer et al., 2023).

Metal-based functionalization of CDs pursues vast applications
in the degradation and adsorption of pollutants from the
environment (Gallareta-Olivares et al., 2023). Cu, Fe, Ga, Zn, Au,
and Ag are excellent metal dopants in catalysis. Due to copper
atoms (which act as both electron donor and acceptor), Co-
based CDs are considered a strong catalyst (Ma et al., 2017). Fe,
Zn, and Cr can be doped into CDs for metal detection in water
(Han et al., 2018; Xu et al., 2018; Zhang H.-Y. et al., 2017). Fe2+ doped
CDs were synthesized for enhanced fluorescence and detection
specificity (Han et al., 2018). Cu-CDs catalyze the ozonation reaction

of textile dyes, i.e., Methyl Orange (MO), Reactive Black 5 (RB-5),
Orange II sodium salt (Orange (II)), and Remazol Brilliant Blue
R (RBB-R). In the absence of Cu-CDs, the rate of discoloration
is low. The presence of Cu-CDs results in increases in the rate of
reaction (%Inc = 24%) with 90% efficiency in 60 min for azo dyes
(i.e., MO, O (II) and RB-R) and 30 min for anthraquinone dye (i.e.,
RBB-5). However, the presence of carbonate in water inhibits the
ozone decomposition. Hence, the high concentration of carbonates
in textile sewers limits the application of Cu-CDs for wastewater
treatment.

Moreover, studies show that Zn2+ improves the fluorescence
of silver nanoclusters (Xu et al., 2018). Zn-CDs and Co-CDs
can be utilized to detect Hg2+ and Cr (IV) ions in water,
respectively (Xu et al., 2018; Zhang H.-Y. et al., 2017). Cu and
Ni can be used for CDs’ doping in NIR-mediated phototherapy.
Thiophanate-methyl (TM) is a potent fungicide that can be detected
and treated in Cu-based CDs (Han et al., 2019). This sensor
overcomes the single response drawback of ratiometric fluorescent
sensors. Cr (III)-based CDs were effectively demonstrated to
detect p-nitrophenol, which acts as a pesticide (Li C. et al., 2019).
Moreover, Mg-based N-CDs (formed via co-doping) act as a
paraoxon-insecticide detector (Peng et al., 2019). Zn/ZnO-based
nanocomposites, BiOCl hybrid nanocomposites, and Cu, N co-
doped CDs were also reported to perform photodegradation of
pollutants (Guo et al., 2017; Phophayu et al., 2020; Mou et al.,
2019; Mu et al., 2019). Subsequently, Bi-based CDs can remove dyes
and metal contaminants from water. Several other environmentally
related applications of CDs/functionalized CDs and metal doped
and Hybrid CDs are summarized in Table 1.

5 Solvothermal vs. hydrothermal
synthesis route

The development of solvothermal and hydrothermal synthesis
routes has more than 100 years of history. Both methods
are inexpensive, rapid, effective, and environmentally friendly
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(Li X. et al., 2022; Feng and Li, 2017; Tejwan et al., 2021;
Ndlwana et al., 2021). These routes are significant for the current
and future fabrication and tuning of CDs for several applications in
catalysis, water treatment, pollutant degradation, metal detection,
and the biomedical field (Wang et al., 2018b; Manohara et al.,
2019; Zhou et al., 2021; Ge et al., 2021). The synthesis involves
heating precursor solutions at a high temperature for many hours
(Li X. et al., 2022). Usually, metallic salts and organic molecules are
utilized as precursors. The prepared particles exhibit a diameter
of less than 10 nm. Solvothermal and hydrothermal methods
are similar to each other. However, in the solvothermal method,
the organic solvent is used instead of water (Li X. et al., 2022;
Tejwan et al., 2021). Research reports that Mn, Cu, Zn, Mg, Gd,
Co, Ag, and Cr ions have been doped on CDs through solvothermal
synthesis (Li X. et al., 2022).

Wang et al. prepared porous carbon-protected magnetite
(Fe3O4@C) nanoparticles from ferrocene (Fe(C5H5)2) and
hydrogen peroxide (H2O2) using acetone (Wang H. et al., 2013).
This solvothermal synthesis was accomplished at 200°C in 24 h.
Later, Fe3O4@C nanoparticles were loaded with silver ions (Ag+),
followed by the in situ Ag+ reduction in the carbon shell at room
temperature. Dumbbell-shaped Fe3O4@C-Ag hybrid nanoparticles
were synthesized, having 110 nm size. These catalytic hybrid
nanoparticles enhanced the reduction reaction of organic dyes in
water. Due to the carbon shell protection, these nanoparticles also
resisted photo-bleaching.

Using solvothermal treatment, Zhang et al. synthesized Co-
doped CDs (CCDs) from 1-(2-Pyridylazo)-2-naphthol, CoCl2,
and ethanol as solvent. Based on photoluminescence quenching,
these CCDs were successfully utilized to sense Cr(VI) in water.
The author proposed that the fluorescence of CCDs could be
quenched in the presence of Cr(VI) ions. The detection limit
calculated was 0.12 ppm for Cr(VI). These CCDs help control
chromium contaminant intake from water and reservoirs. Wang
et al. synthesized spherical, 100 nm-sized hybrid-nanoparticles of
iron oxide-fluorescent CDs from a solvothermal route in which
acetone solvent was used (Wang H. et al., 2014). The reaction was
held in an autoclave for 48 h at 200°C, followed by 15 min of
sonication at room temperature. These hybrid nanoparticles
exhibited NIR light-absorbing properties, upconversion fluorescent
activity, and high magnetic response.

Zhou et al. used citric acid, urea, Mn(OAc)2, and
toluene as solvents to synthesize Mn-based CDs (2.95 nm
diameter) (Liu Y. et al., 2018). In these CDs, the release of Mn2+

enhanced the degree of conjugated sp2 domain, surface states, and
FLQY up to 68.6%. A synergistic strategy was observed to develop
these efficient CDs, in which solvent worked as a tuning agent
and Mn2+ as an enhancing agent. The author demonstrated that
the solvent is a primary factor in tailoring the absorption band.
These Mn-based CDs exhibit versatile properties to peruse several
applications.

Wang et al. fabricated magnetite-porous carbon-protected Au-
based nanoparticles (AuNPs) through a solvothermal technique
(Wang H. et al., 2015). They utilized Fe3O4@PC-CDs and
Fe3O4@PC-CDs-Ag and then proceeded with a galvanic cell
reaction to replace Ag with Au3+ in the presence of HAuCl4.
The product achieved was Fe3O4@PC-CDs-Au nanoparticles.
These Au-doped hybrid nanoparticles show high photothermal

conversion and enhance photo-stability. Liu et al. preparedNiFe2O4
integrated EDTA-derived CDs from a solvothermal route, in which
NiCl2, FeCl3.6H2O, and NaAc were dissolved in ethylene glycol
(Liu et al., 2017). After the sonication, the reaction mixture was
autoclaved for 10 h at 200°C. These Ni/Fe-based CDs exhibit
high water dispersibility and excellent adsorption of tetracycline
from water. Using a hydrothermal approach, Sachdev et al.
prepared multifunctional CeO2-based spherical CDs (Sachdev and
Gopinath, 2016). The reaction of ammonium cerium branched
poly (ethyleneimine), and aqueous solution form of chitosan
proceeded at 220°C for 12 h. The author demonstrated that, due
to the catalytic effect of CeO2, these nanocomposites can interact
andneutralize hydrogen peroxide.Thus, they prevent the fluorescent
activity of CDs.

Yang et al. fabricated Mg/N co-doped CDs by hydrothermal
method at 200°C and 5 h (Yang et al., 2016). They utilized acrylic
acid, magnesium hydroxide, and ethylenediamine, followed by the
conjugation of CDswith Cholrin e6.These CDs show aQY of 84.6%,
along with high fluorescence resonance energy transfer (FRET).The
CDs-Ce6 system offers high hydrophobicity and changeable FRET
efficiency as well. Zhang et al. synthesized La-doped CQDs (La-
CQDs) from hydrothermal treatment at 160°C for 8 h (Zhang et al.,
2017b). They used ATP and LaCl3.2H2O to form La-CQDs (4.3
± 0.3 nm diameter). These CQDs show high thermal stability and
intense fluorescence. Due to numerous -COOH, -NH2, PO4

3−

and -OH groups, La-LQDs have excellent photoluminescence and
high-water solubility. These CQDs have significantly detected Hg2+

(detection limit observed = 0.1 μM).
Zhang et al. synthesized intrinsic photoluminescent and

magneto-fluorescent Fe/N co-doped spherical CDs (FeN@CDs)
by facile hydrothermal method at 200°C for 10 h (Zhang et al.,
2017c). Initially, they utilized FeCl3.6H2O and chitosan to
prepare FeN@CDs. These FeN@CDs were further conjugated
with riboflavin and folic acid. The T2 relaxation time increased
with the increase in iron concentration. Later, their cross-linked
polymer nanostructures were utilized to achieve NIR-triggered
photothermal and photodynamic therapy. Das et al. (2018)
synthesized spherical N/Zn co-doped CDs (4.5 nm diameter) via
hydrothermal treatment at 200°C for 4 h using citric acid, zinc
acetate, and tris(hydroxymethyl)aminomethane (Das et al., 2018).
These CDs exhibited high fluorescence, QY, monodispersity, and
thermal stability. Due to their excellent luminescence, N/Zn co-
doped CDs also act as an intriguing FL-probe for detecting H2O2 in
the Fenton reaction mechanism.

Moradlou et al. synthesized CQDs of hematite nanostructure
deposited on titanium (CQDs@α -Fe2O3) via hydrothermal
treatment of Fe3+, CQDs, NaNO3 and Ti sheet for 6 h at 100°C
temperature (Moradlou et al., 2019). Qing et al. fabricated low-
cost Cu2+−based CDs using a one-step hydrothermal carbonization
treatment of waste tea extract, copper acetate, and ethylenediamine
at 150°C temperature for 6 h (Qing et al., 2020). Malmir et al.
opted for a hydrothermal technique to synthesize TiO2-based CQs
nanocomposites (Malmir et al., 2020). They used chitosan, ascorbic
acid, and TiO2 at 140 oC for 24 h.

Water is safe, non-toxic, cheap, green, and readily available
solvent. In contrast, most organic solvents are expensive, toxic, and
hazardous to living and non-living systems. Organic solvents can
also change the concentration of reactive species in the reaction
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mixture, which ultimately changes the product composition (Feng
and Li, 2017). Thus, hydrothermal is a more significant and popular
technique for preparing metal-based CDs. Table 2 summarizes
various hydrothermally synthesized metal doped and hybrid CDs
involved in environmental remediation.

6 CDs as promising enzyme mimics

It is practically significant to synthesize enzyme-mimicking
nanomaterial to tackle the intrinsic limitations of natural enzymes
(Dhiman et al., 2022; Jin et al., 2021). Nanozymes effectively
mimic the catalytic sites of natural enzymes (Li Y. et al., 2020).
Representative examples of enzyme mimetic metal-doped and
hybrid CDs are summarized in Table 3. They show numerous
properties, such as facile synthesis, high catalytic stability, easy
modification, and long storage time (Jin et al., 2021; Sun et al.,
2018; Huang et al., 2019). They can be remotely controlled with
stimuli such as heat, light, ultrasound, andmagnetic field (Jiang et al.,
2019).The three different possibilities inwhichCDs exhibit enzyme-
like properties are heteroatom-doped CDs, CD-based nanozyme
hybrids, and pristine CDs with innate enzyme-mimic properties
(Lopez-Cantu et al., 2022). Researchers have studied the enzyme-
mimicking properties in pristine CDs (Zhu et al., 2014; Das et al.,
2021b). In pristine CDs, oxidase-like activity is based on the
adsorption of dissolved oxygen. This adsorption is followed by
the transfer of delocalized electrons (of CDs (Li S. et al., 2020))
to oxygen. Ultimately, the oxygen reduces into O2− (Li S. et al.,
2020; Li F. et al., 2020). However, nanozymes based on pristine
CDs give decreased catalytic activity in neutral pH conditions.
Hence, the researchers proposed the CD-based hybrid nanozymes.
CuZn-based CDs show catalase-like activity (Xue et al., 2021).
The CDs were covalently doped with copper and zinc. These CDs
exhibit high stability and excellent electron transfer capability.
Zhuo et al. synthesized oxidase-like Mn-doped CDs (Mn-CDs) via
facile hydrothermal method. These CDs catalyzed the oxidation of
3,3′,5,5,-tetramethylbenzidine. Su et al. fabricatedCo/N-dopedCDs
using Co(NH3)2.6H2O and Nitrogen-CDs. These CDs exhibited
peroxidase-lie catalytic activity to o-phenyldiamine (Su et al., 2022).
Yang et al. synthesized Iron and nitrogen co-doped CDs via a
facile solvothermal method (Figure 6a; Yang et al., 2017). These
CDs exhibit high water solubility and dimensional homogeneity.
The intrinsic peroxidase-like (POD-like) activity of N, Fe-CDs is
attributed to iron-doping. In the presence of H2O2 N, Fe-CDs
catalyze the oxidation of TMB and form blue-colored TMBox as
an oxidation product. Hence, they act as highly efficient peroxidase
mimetic and promising probes in chemical and biological reactions.
Likewise, the Copper andChlorine (Cu, Cl-CDs co-dopedCDswere
synthesized via a hydrothermal method (Zhao et al., 2022). N, Cu-
CDs exhibit both oxidase- and peroxidase-like activity. Figure 6b
represents the synthesis, oxidase-like (OD-like), and peroxidase-like
(POD-like) activity of N, Cu-CDs. The limit of detection for TMB
and hydroquinone (HQ) is 0.35 µM and 0.08 µM, respectively.

Duan et al. synthesized Cu-doped CDs using a solid-phase
synthesis technique using Cu(NO3)2.3H2O dopant (Duan et al.,
2019). These CDs exhibited catalytic properties and specifically
showed peroxidase-like activity. Moreover, Cu-CDs show good
stability and enzyme-like activity in a broad range of temperature

and pH values. Several oxidase-like enzymes have been synthesized
with a relevant interest. These metal-doped CDs can catalyze
oxidation reactions in the presence of dioxygen (Lopez-Cantu et al.,
2022). Dioxygen accepts electrons and gives the formation of
water and hydrogen peroxide. Li et al. synthesized cerium-mediated
CD-based nanozyme, exhibiting oxidase-like activity (Li S. et al.,
2020). Its catalytic activity could be tailored by changing the
concentration ratio of CDs and Cerium ions. Researchers have also
synthesized CD-based nanozyme hybrids with other materials. This
approach develops a synergistic effect to increase the enzymatic
properties of CDs (Ngo et al., 2021). Metal-doped carbon-based
nanozymes work as electron transport mediators; thus, the reaction
rate increases (Feng et al., 2022). The synergism between metal and
carbon structures increases the electron flow in enzymatic processes.
Subsequently, these nanozymes provide a large surface area and
hinder metal agglomeration (Sun Y. et al., 2023).

Zhuo et al. synthesized dSCSAu-NCDs hybrid nanostructures
(Zhao L. et al., 2020) (Figure 6c). The CDs were immobilized
into amino-based dendritic silica spheres (dSs) with linked gold
nanoclusters (Au-NCs). This hybrid nanostructure based on dual-
nanozymes shows superoxide dismutase-like activity. The single-
atom strategy is another significant approach to tuning the
electronic and catalytic properties (Wu et al., 2020). This strategy
overcomes the conventional doping limitations and provides
excellent dispersibility and utilization of functionalized CDs
(Sun Y. et al., 2023). Researchers have reported several single-atom
nanozymes. For instance, Qin et al. synthesized PEGylated silica-
based Fe single-atom CDs (Fe/CDs@PPSNs). These nanostructures
exhibited higher catalytic activity than simple iron oxide-based CDs
(Qin et al., 2022). Single-atom Ru-based CDs have been synthesized
to achieve catalytic activities (Wang W. et al., 2021). These CDs
exhibit peroxidase, oxidase, and glutathione oxidase-like activity.
Theoretical results show that these CDs more specifically mimic
peroxidase-like activity. The Ru-4d orbital electrons are transferred
to the oxygen atomof hydrogen peroxide. It results in the production
of hydro-oxide radicals.

7 CDs as nanozymes with
peroxidase-like catalytic activities

Natural peroxidases belong to a large group of oxidoreductases,
which functionally catalyze the reduction of peroxides and
oxidation of inorganic and organic compounds (Hamid and Khalil-
ur-Rehman, 2009; de Oliveira et al., 2021). Chemically, these
comprise heam proteins containing Fe (III) with protoporphyrin
IX as a prosthetic group. NADH, glutathione, and iodine
peroxidase are specific enzymes belonging to the peroxidase group
(Li M. et al., 2023; Shigeto and Tsutsumi, 2016; Riyazuddin et al.,
2023). However, the non-specific enzymes are referred to as
peroxidases. Peroxidase catalytic activity is essential in the chemical,
environmental, biomedical, and industrial fields (Jiang et al.,
2019; Passardi et al., 2005; Neill et al., 2002). The immobilized
oxidative enzymes are widely significant and suitable to tackle the
current challenges of environmental pollution (Wei et al., 2020;
Aitken et al., 1994; Dasappa and Loehr, 1991).

Regarding the peroxidase-like catalytic phenomenon of CDs,
many authors reported the occurrence of a “Ping-Pong catalytic

Frontiers in Materials 13 frontiersin.org

https://doi.org/10.3389/fmats.2025.1553214
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Yousaf et al. 10.3389/fmats.2025.1553214

FIGURE 6
Functionalized CDs illustrating enzyme-like capacities, (a) peroxidase-like (POD-like) activity, (b) oxidase-like (OD-like) activity and peroxidase-like
(POD-like) activity, and (c) superoxide dismutase (SOD-like) activity and horseradish peroxidase-like (HRP-like) activity.

mechanism” (Shi et al., 2011; Wang B. et al., 2016; Shamsipur et al.,
2014; Mohammadpour et al., 2014; Long et al., 2016; Zhu et al.,
2015). However, depending on the nanozyme composition, the
action mechanismmay vary. On the other hand, two substrates, i.e.,
a hydrogen acceptor and a hydrogen donor, are generally involved in
the catalytic reaction.The nanozymes reduce the H2O2 and generate
reactive intermediates such as ·OH. ·OH further reacts with the
second substrate to proceedwith the reaction (Gao L. et al., 2020). In
another research, a systematic study reports that the catalytic activity
can be induced by the presence of hydrophilic groups (such as -
COOH, -C=O, and -NH2) on the CD surface (Das et al., 2021b).
These groups generate an affinity with peroxides, ultimately acting as
a catalytic site for catalyzed reactions. The author reported that the
carboxylic group inducesmaximumperoxidase-like activity in CDs.
Nitrogen and copper co-doped CDs (N, Cu-CDs) were synthesized
via a facile hydrothermal method (Lin et al., 2019). These CDs
exhibit peroxidase-like (POD) catalytic activity even at a broader
range of pH and temperature. The POD-like activity of N, Cu-CDs
catalyzes the oxidation of para-, ortho-, and m-phenylenediamine
by peroxide. The oxidation products of o-phenylenediamine (OPD)
and p-phenylenediamine are yellow and brown, respectively. Hence,
the POD-like N, Cu-CDs result in the colorimetric discrimination
of OPD and PPD.

The extent of peroxidase-like activity of metal-doped CDs
depends on different factors, such as the electron transferring
capacity and variable valance states of dopant-metal (Li S. et al.,
2018; Berglund et al., 2002).The significance of the electron transfer
process in enhancing the peroxidase-like activity of CDs has been
reported (Shamsipur et al., 2014). For instance, CDs with greater
charge density show enhanced electron transfer from substrate to

CDs.The substrate oxidation reaction rate increases due to enhanced
electron transfer and radical formation.Moreover, CDs with smaller
sizes and larger specific surfaces exhibit more excellent peroxidase-
like catalytic activity (Zhou et al., 2019; Tang et al., 2019). Figure 7a
represents the hydrothermal synthesis of peroxidase-like Fe-CDs
(Zhu D. et al., 2019). Methylthymol blue sodium and ferric chloride
hexahydrate were used as carbon and metal precursor/sources,
respectively. The catalytic activity of Fe-CDs corresponds to the
oxidation of the colorless o-phenylenediamine (OPD) solution.
Under the peroxidase-like activity of Fe-CDs, the oxidation product
OPD forms 2,3-diaminophenazine (DAP). The sensing of H2O2
(detection limit 0.47 µM) is based on the visible yellow color formed
in Fe-CDs/H2O2/OPD (Figure 7b).

Pristine, doped, and/or hybrid CD nanozymes have been
reported to exhibit peroxidase-like activity (Figure 8; Zhu et al.,
2014; Duan et al., 2019; Li Y. et al., 2020; Shamsipur et al., 2014;
Tang et al., 2019; Zhang L. et al., 2017; Wu et al., 2014; Zheng et al.,
2016; Dong et al., 2015; Gan et al., 2021; Yang et al., 2021; Habibi
and Heidari, 2016; Roushani et al., 2018). In this manner, Figure 8
represents the CDs, Co@CDs, Gd-CDs, and N, Cu-CDs as pristine,
hybrid, doped, and co-doped CDs with peroxidase-like activities.

Alongwith catalytic activity, few nanozymes showhighly unique
properties. Wang et al. synthesized multicolor photoluminescent
CNPs (C1H0.677O0.586N0.015Na0.069) with high catalytic activity
(Wang et al., 2011).The EDX spectrum of these CNPs demonstrated
that no metal catalyst was involved in the system. Na+ only acts as
a counter ion and exhibits no catalytic activity. Similarly, CNPs
and peroxide could not oxidize the substrate. However, there
existed an interaction between CNPs, peroxide and substrate.
This interaction induces catalytic activity in CNPs. Several Hybrid
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FIGURE 7
(a) Synthesis of peroxidase-like Fe-CDs (b) Fluorescent sensing of H2O2 in the presence of Fe-CDs.

FIGURE 8
(a) Catalytic Oxidation of 3,3′5,5′-Tetramethylbenzidine (TMB) in the presence of CDs and Co@CDs, and (b) o-Phenylenediamine in the presence of
Gd-CDs and N,Cu-CDs.

nanozymes with excellent temperature and pH tolerability (such
as thermally stable Fe3O4/GQD-based nanozymes, thermally
stable and reusable NCDs/Fe3O4-based nanozymes and acid pH-
independent Co, N-doped CD-based hybrid nanozymes) have also
been reported (Su et al., 2022; Huang et al., 2023; Shen et al.,
2019). Likewise, the Cu-doped CDs were synthesized through a
facile solid phase treatment of citric acid as a carbon source and
Cu(NO3)2.3H2O as a metal source (Duan et al., 2019). These
CDs show high stability and excellent peroxidase-like activity

within a broad range of pH and temperature. In another research,
N, Fe-codoped CDs were synthesized using FeCl3.6H2O, B-
cyclodextrin, and ethylenediamine via hydrothermal treatment
at 180°C for half an hour (Li Y. et al., 2020). In the presence
of peroxide, these CDs were reported to exhibit color-changing
properties along with more excellent catalytic activity than that of
horseradish peroxidase (HRP). However, synthesizing peroxidase-
like complexCD-based hybrid nanozymes is a relatively complicated
but potent approach (Shi et al., 2019). For example, Li et al.
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synthesized Au@HgNPs nanozymes using gold nanoparticles (Au-
NPs), nor-adrenaline-based CDs (NA-CDs), and methyl mercury
ions (MeHg+) (Li Q. et al., 2023). The synthesis phenomenon was
observed to be quite complex. However, the radical formation and
enhanced electron transfer frommetals (Au and Hg) to CDs induce
high peroxidase-like catalytic activity in the nanozymes.

8 Environmental application

CD-based nanozymes can be noticeably used to monitor,
degrade and adsorb the environmental pollutants (Gallareta-
Olivares et al., 2023; Jelinek, 2017; Lin et al., 2018; Liang et al., 2020).
Environmental applications of enzymemimeticmetal doped/hybrid
CDs are summarized in Table 4. CD-based sensors either directly
interact with the analyte and show a change in fluorescence or
are functionalized with recognition molecule(s), which detect(s)
the target species (Long et al., 2021). In these sensing systems,
primarily nanozymes oxidize the peroxide and form OH•. This OH•

proceeds the conversion of substrate into product. These products
exhibit different fluorescence, absorbance, and electric properties
from those of the substrate. CD-based nanozymes exhibit higher
colorimetric and fluorescent detection properties (Long et al., 2021).

Relative to all other analytical methods for sensing
environmental pollutants, CD-based fluorescence detection is more
efficient, rapid, and straightforward (Sun et al., 2017; Molaei, 2020;
Devi et al., 2019). The colorimetric CD-based nanozymes are
even more practical, cost-effective, and simpler than fluorescent
sensors (Song et al., 2011). Several metal-doped CDs-based
nanoparticles, such as CDs@polymoxometallate have been utilized
in photocatalytic degradation of organic pollutants (Di et al., 2015).
Hydrothermally synthesized, CD-stabilized Cu4O3 nanozymes
have also been reported to be used in environmental treatments
(Li F. et al., 2020).These hybrid nanozymes show a synergistic effect
between peroxidase and oxidase-like catalytic activity, leading to the
vigorous oxidation of organic dyes. Moreover, CD-stabilized Cu4O3
nanocomposites are highly stable, cost-effective, and versatile in
photocatalytic applications. Sari et al. also fabricated Fe3O4/CDs
photocatalysts via hydrothermal technique. These photocatalysts
have been demonstrated for dye degradation. Moreover, Fe-N-
CDs have been shown to exhibit peroxidase-like activity. Research
reveals that the nitrogen doping in CDs (N-CDs) offers pollutant
degradation activity. Similarly, Au-nanoparticle loaded graphitic
carbon nanosheets offer degradation of organic pollutants. Li et al.
synthesized CDs-stabilized Cu4O3 (CDs@Cu4O3) multi-enzyme
mimetics by a hydrothermal method (Li F. et al., 2020). These
nanozymes exhibit peroxidase (PD) and oxidase-like (OD) catalytic
behavior. Interestingly, the synergistic enhancement effect of PD and
OD results in fast oxidation of organic substrates such as methylene
blue. Hence, CDs@Cu4O3 nanozymes offer wide-ranging uses in
environmental treatments.

8.1 Degradation of antibiotics using
peroxidase-like CDs

Antibiotics enter the environment in several ways, i.e., synthesis
of therapeutic agents, excretion, and discharging of vacant

medicines (Larsson, 2014). However, the released concentration
of antibiotics through direct disposal from manufacturing sites is
higher than that of industrial and excretion effluents. Compared
to tetracyclines and fluoroquinolones, penicillin degrades quickly
from the environment. The former groups of antibiotics amplify
in the surroundings too. Antibiotic residues in water reservoirs
eventually cause environmental and organismic health issues.
Consequently, deleting antibiotic residues from the environment
is necessary (Liu et al., 2024). The competence of CDs to induce
peroxidase-like activity significantly enhances the degradation of
antibiotics, leading to effective and advanced removal of such
polluting agents from various environmental matrices. However,
assessing the environmental and safety impacts of metal-doped
CDs-based nanozymes is also significant. The presence of heme-
consisting peroxidase in organisms utilizes hydrogen peroxide
to catalyze the oxidation of various antibiotics. Likewise, the
metalloenzymes play a significant role in the degradation of
antibiotics. Hence, it is evident that peroxidase-like metal-doped
CDs exhibit a promising role in the degradation of antibiotics from
the environment. Similarly, CDs/g-C3N4/ZnO nanocomposites
exhibit highly enhanced photocatalytic activities for the degradation
of tetracycline (Guo et al., 2017). The presence of CDs in
these nanocomposites significantly proceeds with the catalytic
degradation mechanism of tetracycline.

Liu et al. fabricated magnetic NiFe2O4-carbon dots (NiFeC)
with excellent renderability and enhanced TC-removing ability
(Liu et al., 2017). The one-pot solvothermal method synthesized
these nanocomposites using FeCl3 and EDTA-2Na as precursors.
The high surface functionalities and saturation magnetization make
NiFeC a promising candidate for TC adsorption from wastewater.
Correspondingly, CDs-MgAl-LDHs@MnO2/Fe3O4 micromotors
exhibited dual functionality, i.e., the detection and degradation
of an oxytetracycline antibiotic from water (Liu et al., 2024).
This dual functionality is due to enzymic activity and a self-
propelled motion for diffusion in an aqueous solution. In the
presence of hydrogen peroxide, these metal-containing CDs-
based micromotors promote the degradation of oxytetracycline
from water.

8.2 Degradation of pesticides using
peroxidase-like CDs

Pesticides have many benefits, yet they give rise to
severe environmental issues (Mahmood et al., 2016). They
contaminate the environment differently, including excessive
use, unchecked disposal, and run-off from crops and storage
containers, etc., (Zacharia, 2011). However, their fate in
environmental compartments may vary. Organophosphorus
pesticides, triazine herbicides, and chlorinated insecticides are
extensively utilized and seriously threaten the environment and
biodiversity (Ma et al., 2023; Zacharia, 2011). In this regard,
CDs’ peroxidase-like activity facilitates pesticide degradation
through oxidative processes (Almaqdi et al., 2019). Utilizing
metal-organic frameworks (MOFs) and CDs enhances the
degradation potential, biocompatibility, specificity, and selectivity
of nanozymes (Guan et al., 2012; Li P. et al., 2021). Fe-
CDs@MOF-808 and Fe-CDs/MOF-808 nanoreactors were

Frontiers in Materials 16 frontiersin.org

https://doi.org/10.3389/fmats.2025.1553214
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Yousaf et al. 10.3389/fmats.2025.1553214

FIGURE 9
Schematic illustration of the synthesis of Fe-CDs@MOF-808 and Fe-CDs/MOF-808 nanoreactors and their deployment for the degradation of
pesticides.

synthesized to detect and degrade parathion and paraoxon,
respectively (Ma et al., 2023). Fe-CDs detect organophosphorus
pesticides and cause the photocatalytic degradation of
parathion (Figure 9).

Peroxidase-like nanozymes based onmetal-organic frameworks
(MOFs) and CDs degrade atrazine (Zhang et al., 2022). Integrating
MOFs and CDs results in a highly synergistic system for
detecting and degrading atrazine. Depending on the composition
of MOF-CD hybrid materials, the peroxidase-like activity
could be controllable. Additionally, these nanozymes proceeded
with the visual detection and photocatalytic degradation of
atrazine in a single process. Furthermore, the heterometallic
nanocomposites exhibit higher peroxidase-like activity than
single metal or metal oxide-based nanocomposites. For instance,
Fe3O4-TiO2/rGO nanocomposites exhibit excellent peroxidase-like
activity toward the atrazine degradation (Duarah et al., 2022). In
the future, this approach could be suitable for treating triazine
herbicides.

8.3 Degradation of phenolics using
peroxidase-like CDs

Phenolic compounds are diverse, ranging from simpler phenolic
to polymerized compounds (Al Mamari, 2021). Agricultural,
industrial, domestic, and natural discharge of these compounds
majorly cause environmental pollution (Anku et al., 2017;
Fernández et al., 2010). Due to their toxic, carcinogenic, and
harmful effects on human health, it is essential to remove phenolic
compounds from water (Anku et al., 2017; Rahman et al., 2021;

Mu’azu et al., 2017). Carbon-based nanomaterial’s significant use
and potential as peroxidase-mimetics has been demonstrated
for the degradation (removal) of phenolic compounds from
water (Zeng et al., 2017). Likewise, metal doping enhances
the photocatalytic degradation of phenolic pollutants, too.
For example, TiO2-P25 impregnated with Cr, Cu, and V
metals enhances the Vis-light harvesting (Belekbir et al., 2020).
Compared to TiO2-P25, the metal-impregnation in photocatalysts
offers more effective removal. However, the mechanisms
for enhanced photoactivation may vary for different metals.
Correspondingly, the peroxidase-like conjugated system of
deuterohemin-peptide and metal-organic framework (DhHP-6-
c-ZrMOF) can also degrade phenol. DhHP-6-c-ZrMOF, which
acts as a Fenton catalyst, can effectively degrade phenolic
pollutants (Ding Y. et al., 2020).

Graphitic carbon nitride/copper-doped CDs nanocomposites
(g-C3N4/Cu-CDs) offer the potential for the degradation of
phenolics from water (Li Q. et al., 2022). They exhibit both
oxidase and peroxidase-like catalytic activity. And the graphitic
carbon nitride (g-C3N4) synergies the nanozymic-activity of Cu-
CDs. These nanocomposites also detect phenolic compounds.
Introducing H2O2 in the g-C3N4/Cu-CDs system enhances
the oxidation of o-phenylenediamine (OPD) into a fluorescent
compound 2,3-diaminophenazine (DAP). This oxidation process
gives yellow fluorescence. However, phenolic substances with OPD
+ H2O2+g-C3N4/Cu-CDs (combined system) diminish the yellow
fluorescence.This phenomenonhelps to detect phenolic compounds
in water. Moreover, the oxidase-like activity of g-C3N4/Cu-CDs
converts the phenol and 4-aminoantipyrin into quinoeimine
chromogen.
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9 Novelties and challenges

Metal-doped and hybrid CDs as enzyme mimics are cutting-
edge innovations, offering novelties in environmental remediations
and research techniques. For instance, the nucleation of silver-
doped and palladium-dopedCDs (Ag@CDs andPd@CDs) is a novel
approach to discoloringmethylene blue (MB) in daylight.Moreover,
the incorporation of metals in CQDs corresponds to synergistic
effects in the sensing and catalytic performance.Metal-doped CQDs
have also shown the property of boosting electron transfer and
photooxidation reactions. Owing to such properties, metal-doped
CDs emerge as novel candidates in biomedical and environmental
applications.

However, the research is still in its early stages. CDs
lack systematic and ascendable synthesis methodology for
developing cost-effective and reproducible applications compared
to carbon nanomaterials. The effect of CD structures (such
as size, morphology, presence of functional groups, and
surface states), precursors, impurities, and reaction conditions
(such as pH, time, and temperature) on the final product’s
performance must be examined systematically. Owing to the
non-standard synthetic routes, the exact formation process
and nucleation mechanisms are also undefined. Moreover,
the intrinsic mechanism of PL emission in CDs is unclear
(Ai et al., 2021). It is also unclear how metal dopants enhance
the fluorescence properties of carbon dots. To determine the
PL mechanism to a greater extent, more research work (based
on advanced structural characterization techniques such as
spherical-aberration correction electron microscopy, synchronous
X-ray radiation, and matrix-assisted laser desorption ionization
time-of-flight mass spectroscopy, and theoretical examination)
is required (Liu J. et al., 2020).

Similarly, metal doping on the CD’s center or edge remains
challenging. Metal-doped CDs also lack proper characterization
techniques to identify whether the dopants are integrated into
the carbonaceous core’s lattice or CD’s surface. Metal ions exhibit
redox properties, adversely affecting metal-doped CDs’ synthesis
process. These ions may form metal oxides required to isolate
from M-CDs. Incorporating metal ions in the carbon dots also
introduces negative concerns, such as metal toxicity, synthesis
complexity, limited stability, and increased cost considerations.
Each system of nanozyme possesses a different performance, which
can only be explained by a specific mechanism. Hence, further
research is needed to understand the structure-activity relation
thoroughly. Moreover, the environmental applications involve the
direct contact of nanozymes with natural systems. Some CD-
based nanozymes do not exhibit biosafety when exposed to
the environment. This is because the degree of carbonization
affects cytotoxicity. Therefore, it is necessary to have an in-depth
understanding of safety protocols for using metal-doped CD-
based nanozymes for practical use. Furthermore, metal-doped
CD-based nanozymes are less diverse. It is also challenging
to achieve high selectivity and specificity like natural enzymes.
Multifunctional hybrid nanozymes are complex, too. They require
intricate optimization strategies to reach multiple functionalities
while maintaining stability and efficiency.

10 Authors’ viewpoint about notable
drawbacks and suggestions to
mitigate them

10.1 Toxicity and environmental impact
due to metal leaching, biodegradability,
and cytotoxicity concerns

Over time, the leaching of metal ions from metal-doped/metal-
hybrid CDs is a must, considering that this limitation can
cause significant environmental contamination and toxicity
to aquatic organisms. For example, cadmium-doped CDs can
potentially release toxic cadmium ions into water bodies to
a certain extent. Over time, those leached cadmium ions can
significantly bioaccumulate and transport through the food chain
and pose serious health concerns to living beings. Likewise, the
biodegradability of these metal-based CDs is a crucial concern that
leads to long-term persistence in the environment. Such long-term
persistence can lead to chronic exposure and adverse effects on the
living environment. Moreover, some other metals used in doping,
e.g., lead and mercury, are considered cytotoxic and can potentially
cause cellular damage and/or DNA mutations.

10.2 Complex synthesis and scalability
concerns

Multiple intricate steps, such as high-temperature treatments
and the use of chemicals, complicate the production process.
For example, fabricating gold-doped CDs requires specific control
over reaction conditions, including reaction temperature, pH
environment, and concentration of reactants to accomplish the
anticipated size and functional attributes. Such complexity confines
the scalability of production, as maintaining consistent quality
within large batches can be challenging. Furthermore, reaction
solvents and reagents can sometimes be toxic, pose safety risks, and
require stringent handling and disposal protocols. This additionally
poses another scalability concern to be considered effectively.
Moreover, the need for specialized equipment and expertise further
adds to large-scale production’s overall cost-effective ratio and
complexity.

10.3 Catalytic efficiency limitations

Compared to natural enzymes, metal-doped or metal-based
hybrid CDs, as enzyme mimics, may demonstrate lower catalytic
efficiency, which can restrain their effectiveness and deployment
in specific applications. For example, CDs are doped with iron
to mimic CDs with peroxidase-like activity. However, iron-doped
CDs often display decreased peroxidase-like activity owing to
the lower density of active sites on their surface as compared
to natural horseradish peroxidase. Such catalytic limitations
hold back their implementation in pollutant degradation and/or
biosensing applications. Though the addition of functional groups
or co-doping with multiple metals can help improve catalytic

Frontiers in Materials 18 frontiersin.org

https://doi.org/10.3389/fmats.2025.1553214
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Yousaf et al. 10.3389/fmats.2025.1553214

performance. However, they cause other notable limitations,
such as complex synthesis and scalability concerns. To avoid
such limitations, understanding the reaction mechanisms at the
molecular level can provide deeper insights into designing highly
efficient catalysts.

10.4 Stability issues

Metal-doped ormetal-based hybridCDs can experience stability
challenges over time due to metal agglomeration and surface
deactivation, which may lessen their catalytic efficiency. A notable
example is silver-doped CDs that may aggregate owing to the
presence of strong van der Waals forces between silver, reducing
surface area and loss of catalytic activity. Moreover, impurities
or oxidation products cause reactive site hindrance that leads
to the surface deactivation phenomenon, further diminishing
both catalytic performance and stability. Therefore, ensuring long-
term stability needs strategies, e.g., encapsulation techniques, to
counteract agglomeration and maintain active surface availability.

10.5 Environmental and regulatory hurdles

Deploying metal-doped CDs in real-time environmental
applications encounters substantial regulatory challenges due to
potential environmental hazards.Therefore, strict safety assessments
are needed to guarantee that these materials do not harm human
health or ecosystems. For example, using copper-doped CDs in
wastewater treatment must comply with environmental regulations
that limit copper concentration to prevent toxicity. Regulatory
agencies have beenprovidedwith comprehensive toxicity guidelines,
environmental impact assessments, and monitoring plans that
must be followed to maintain adequate and sustainable processing
materials. In this context, collaborative efforts are equally needed by
researchers, industry stakeholders, and regulatory bodies to develop
standardized protocols and guidelines to limit such environmental
and regulatory hurdles.

10.6 Suggestions to mitigate the
drawbacks

Several strategies can be adopted to mitigate the drawbacks
of metal-doped and hybrid carbon dots (CDs) as enzyme mimics
in environmental applications. Firstly, researchers should explore
safer doping elements and develop biodegradable CDs to address
toxicity and environmental impact to reduce long-term persistence
and ecological contamination. For complex synthesis and scalability
issues, adopting green chemistry approaches and innovative
synthesis methods, such as microwave-assisted synthesis, can
simplify production and enhance eco-friendliness. Enhancing
catalytic efficiency can be achieved through surface modification
techniques, co-doping with multiple metals, and optimizing the
doping process to increase the number of active sites. Stability
issues can be mitigated by employing encapsulation techniques,
such as coating them with protective polymers or silica shells
and using metals that form stable complexes. Finally, addressing

environmental and regulatory hurdles requires close alliance
amongst researchers, industry stakeholders, and regulatory bodies
to develop standardized testing protocols and ensure comprehensive
safety assessments, enabling smoother regulatory approval and safer
deployment of metal-doped CDs in environmental applications.

11 Conclusion and future directions

Carbon dots reveal distinctive properties such as strong
fluorescence, high photostability, good biocompatibility, low
toxicity, chemical stability, environment friendliness, derivatization
ability, easy surface functionalization and enzyme-like activities.
Owing to all these properties, the worth of CDs cannot be
denied. The physicochemical properties of CDs can be tailored
by hetero-atom doping. In this manner, metal doping has been
demonstrated to enhance the chemical, electrical, optical, magnetic,
and catalytic properties. Its significance involves high quantum
yield, sensitive and precise analyte detection, and enhanced catalysis.
Among numerous synthetic approaches, the hydrothermal synthesis
of metal-doped CDs is more facile. Subsequently, the enzyme
mimicking properties of metal-doped and hybrid carbon dots
has increased the emphasis on environmental applications. The
metal-doped and hybrid CDs nanozymes are stable, reusable,
inexpensive, and potent substitutes for natural enzymes even under
a wide range of pH, temperature, and concentrations. Among
the oxidoreductase enzymes, the peroxidase and oxidase (laccase)
mimetic metal-doped and hybrid carbon dots offer more excellent
environmental applications such as fluorescent/colorimetric
detection and degradation/photodegradation of heavy metals,
pesticides, phenolic compounds, organic dyes, and pharmaceuticals
(antibiotic-residues). However, the applications for the ‘degradation’
of pesticides using peroxidase-like metal-doped and hybrid CDs
are limited.

Based on the recent reports’ studies, the following future
directions are suggested: (1) In-depth research is required to
enhance the emission wavelength of metal-doped CDs. (2) the
construction of fluorescent ratio and signal response is needed for
colorimetric andmore sensitive analyte detection. (3) precise control
over the synthetic process is required to ensure the synergistic
interaction of different components within hybrid nanozymes.
(4) Research should focus on optimizing the synthesis of metal-
doped CDs to further control and improve catalytic activity and
stability. (5) Research should underscore the detailed mechanisms
of peroxidase-like activity of CDs, identifying the active sites and
substrate binding sites. (6) It is essential to explore the diversity,
cost-effectiveness, and scalability of producingmetal-dopedCDs for
large-scale environmental remediations. (7) Bioinspiration will be
helpful to explore more potentials of metal-doped CDs as enzyme
mimics for the degradation of pollutants. In future studies, we expect
metal-doped and hybrid carbon dots to be more extensively utilized
in environmental applications.
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