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In this study, we prepared MASnI3 lead (Pb)-free halide perovskite metal-
semiconductor-metal-type photodetectors through the inversion crystallization
method under an atmospheric environment and the spin-coating method in
a glove box, respectively. The scanning electron microscopy (SEM) images
revealed the different surface morphology. They show two types of growth
models: the inverse temperature crystallization (ITC) method uses solvent
volatilization, and the spin-coating method is a reaction between precursors.
For the MASnI3 perovskite film obtained through the inversion crystallization
method, a broad band of photoluminescence (PL) spectrum at approximately
470 nm, corresponding to the level transition of 2.638 eV, was observed. On the
other hand, for the MASnI3 perovskite film obtained through the spin-coating
method, a narrow band of the photoluminescence spectrum at approximately
773 nm, corresponding to the level transition of 1.604 eV, was observed. This
is the Burstein–Moss shift environment due to the introduction of oxygen. In
addition, the photocurrent of a device prepared in a glove box is two orders of
magnitude higher than that of the device prepared by the ITC method.
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1 Introduction

In the early part of this decade, the halide perovskite materials, like MAPbBr3, were
mostly lead (Pb)-containing halide perovskites. Except for the outstanding optoelectronic
properties, including high charge carrier mobility, defect tolerance, and high absorption,
the characteristics regarding pinhole formation and crystallinity of perovskite materials are
suitable for the application of gas sensors (Kassa et al., 2025; Lee et al., 2025; Zhai et al.,
2024). However, lead-containing materials in many other related products have been
proven to gradually decompose over time, making it easy to be exposed to excessive lead
during use. In subsequent research on halide perovskites, it was confirmed that the lead
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FIGURE 1
Process of lead-free MASnI3 perovskite metal-semiconductor-metal type photodetector: (a) precursor preparation, (b) precursor coating and (c)
baking, and (d) precursor spin coating.

FIGURE 2
Cross-sectional SEM image of MASnI3 perovskite films prepared by (a) ITC and (b) spin coating, respectively.

in halide perovskites is easily soluble in water after oxidation
over time, thereby polluting the environment (Wan et al., 2021).
This has played an important role in promoting the research and
development of lead-free halide perovskites. Among them, both
tin (Sn) and lead belong to the same group of elements and have
similar chemical properties, and their close covalent radii have

a greater impact on the structural stability of halide perovskites.
MASnI3 is an interesting material due to its very easy oxidation
and degradation in ambient air. Therefore, only a few studies have
compared Pb-based perovskitematerials andMASnI3.Thepollution
caused by oxides is much less harmful than lead, making tin
a popular choice to replace lead as lead-free halide perovskites,
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FIGURE 3
(a,b) Photo and (c,d) top-view SEM image of MASnI3 perovskite metal-semiconductor-metal-type photodetectors prepared in air and in a glove box,
respectively.

and has generated a large amount of related research (Hao et al.,
2015; Noel et al., 2014; Hao et al., 2014; Stoumpos et al., 2013;
Chen et al., 2016). However, tin in ABX3 halide perovskite easily
transforms from Sn2+ to Sn4+, thereby destroying the stability
of the structure of perovskite materials (Mitzi and Liang, 1997;
Sabba et al., 2015; Yuan et al., 2022; Peng andXie, 2020; Bouich et al.,
2022; Aldamasy et al., 2021; Saha et al., 2024). Therefore, a key
problem that must be solved is that these devices must overcome
the degradation in the ambient environment to be profitable.
This study used the halide perovskite MASnI3 as a photodetector
material. In this work, we carried out the device process by the
inverse temperature crystallization (ITC) method under a normal
atmospheric environment tomake anMASnI3 halide perovskite film
on the glass substrates with an ITO electrode pattern and observed
their surface images with SEM.The image of the film growth crystal
and the I-V characteristics were investigated using a photocurrent
induced by different wavelengths of visible light and infrared. In
addition, we prepared the MASnI3 perovskite film deposited by the
spin-coatingmethod to compare the different characteristics of films
obtained by the ITC and spin coating methods.

2 Materials and methods

First, the MAI (0.11 g) and SnI2 (0.27 g), respectively, were put
in a glass beaker, and then a pipette was used to add 0.5 mL of

FIGURE 4
Absorption spectra of the MASnI3 perovskite prepared by ITC and
spin coating.

γ-butyrolactone (GBL) solution into the glass beaker, which was
stirred with a magnet that was cleaned using ethanol and blown dry
with nitrogen. The beaker was sealed with tape and placed on an
electromagnetic heating stirrer to stir at 500 rpm for 24 h to form a
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FIGURE 5
Photoluminescence (PL) spectra of the MASnI3 perovskite prepared by (a) ITC and (b) spin coating. XRD patterns of the MASnI3 perovskite prepared by
(c) ITC and (d) spin coating, respectively.

FIGURE 6
(a) Current–voltage (I–V) characteristics and (b) responsivity of MASnI3 perovskite metal-semiconductor-metal-type photodetectors.

1.5 MMASnI3 precursor solution, as shown in Figure 1a (Yuan et al.,
2022; Peng and Xie, 2020). Next, the ITO glass was cleaned with an
ultrasonic oscillator using organic acetone or IPA solution for 5 min.
It was placed in an ultraviolet lighting machine for 10 min to form
a hydrophilic surface. Then, the MASnI3 precursor solution was
dropped onto the surface of the ITO glass substrate and moved into
an oven for baking at 100°C for approximately 5–7 days to form the
MASnI3 film, as shown in Figures 1b,c. For the second sample, we

prepared the MASnI3 perovskite film metal-semiconductor-metal-
type photodetector on the glass substrate with an ITO pattern
deposited by the spin-coating method (3,000 rpm) using the same
precursor solution, as shown in Figure 1d.

The crystallinities of MASnI3 perovskite on glass substrates
with ITO electrodes were examined by an X-ray diffractometer
(Almelo, Netherlands) with a Cu-target (λ = 1.5418 Å) source. The
photoluminescence (PL) spectra and electronic properties of the
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FIGURE 7
Photocurrent of MASnI3 perovskite metal-semiconductor-metal-type
photodetectors prepared by ITC and spin coating, respectively, at a
bias of 15 V.

FIGURE 8
Photoresponsivity of MASnI3 perovskite
metal-semiconductor-metal-type photodetectors prepared by ITC
and spin coating, respectively, at a bias of 15 V.

photodetectors were obtained using a current source meter and
spectrophotometer.The photocurrents of devices are obtained by an
F-7000 fluorescence spectrophotometer with a 150-W xenon lamp.

3 Results and discussion

Figures 2a,b show the cross-sectional SEM image of MASnI3
perovskite films prepared by the ITC and spin-coating methods to
check their thicknesses, respectively. The thicknesses of MASnI3
perovskite films prepared by the ITC and spin-coating methods are
20 μm and 2 μm, respectively. Figures 3a,b show the picture and
top-view SEM images of MASnI3 perovskite metal-semiconductor-
metal type photodetectors. A 20-μm-thick MASnI3 perovskite film

with yellow color was formed on the glass substrate with an ITO
electrode pattern by the inverse temperature crystallization (ITC)
method. Under the observation of the top-view SEM image, as
shown in Figure 3b, the morphology of the MASnI3 thin film at
×50,000 magnification shows a relatively flat pattern, but there are
some flow lines and particles on the surface.The flow lines may have
contributed to the MASnI3 perovskite precursor solution drying
in the oven when the MASnI3 perovskite film was growing. The
particles are the substances produced by the oxidation of MASnI3
perovskite material. In contrast, the MASnI3 perovskite film grown
in a glove box shows a gray color, as shown in Figure 3c. It is a
typical color for the MASnI3 perovskite film. The morphology of
the MASnI3 perovskite film grown in a glove box is quite smooth
with several small hills on the surface, as shown in Figure 3d.
There are two types of growth models: the former is solvent
volatilization, and the latter is a reaction between precursors. The
solvent volatilization naturally results in precursor oversaturation
and nucleation deposition.The surface with a small hill prepared by
the spin-coating method is Stransky–Krastanov (SK) growth caused
by the deposition of MASnI3 perovskite thin film, owing to the
solvent volatilizing quickly.

Figure 4 shows the absorption spectra of MASnI3 perovskite on
glass substrate prepared by the ITCmethod in air and spin coating in
a glove box, respectively. Their optical absorption edges are 490 nm
and 770 nm, respectively. Figure 5a shows the photoluminescence
(PL) spectra of the MASnI3 perovskite on a glass substrate prepared
by the ITC method in air. The peak position of the PL spectrum
is approximately 470 nm, corresponding to the level transition
of 2.638 eV. The band gap of MASnI3 perovskite is 1.604 eV,
theoretically (Bouich et al., 2022). As shown in Figure 5b, the
location of the PL peak of theMASnI3 perovskite film grown by spin
coating in a glove box is 773 nm. It corresponds to the theoretical
position. The broad PL spectrum of MASnI3 may contribute to the
effect of the Burstein–Moss shift caused by the oxidation of MASnI3
because the material was prepared under an ambient atmosphere
(Chen et al., 2006; Walukiewicz et al., 2004). Figure 5c plots the X-
ray diffraction (XRD) pattern of the MASnI3 perovskite on glass
substrate and shows a P-3m1 phase and a narrow full width at
half maximum (FWHM) of the diffraction peak. Four main peaks
appear at the diffracted peak positions 2θ = 10.2°, 19.7°, 30.0°, and
50.9°, corresponding to the crystal planes (001), (002), (003), and
(005), respectively. It confirmed the formation of a single crystal
of MASnI3 with trigonal P-3m1 symmetry, and the corresponding
lattice parameters a = b = 9.002 Å. They are consistent with the
reported values (Peng and Xie, 2020; Morimoto et al., 2022). In
contrast, the structure is different from that of the sample prepared
by spin coating in a glove box. It is a tetragonal crystal structure with
the space group I4/mcm, as shown in Figure 5d (Walukiewicz et al.,
2004). The XRD pattern shown in Figure 5d is a typical pattern of
MASnI3 perovskite. However, the diffraction pattern observed in the
XRD analysis does not match the reported positions of the crystal
phases in the literature due to oxidation of the perovskite material
(Yuan et al., 2022; Whitfield et al., 2016; Yao et al., 2017). Hence, the
material prepared by the ITC method in air in this work may be an
oxygen-rich MASnI3 perovskite crystal.

Figure 6a plots the current–voltage (I-V) characteristics
of MASnI3 perovskite metal-semiconductor-metal-type
photodetectors prepared by the ITC method in air and biased
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TABLE 1 Optoelectronic properties of ITC and spin-coated MASnI3 photodetectors in this work.

Method
Photocurrent (A) @15 V Selectivity

(photocurrent/dark
current) @15 V

Detectivity (Jones) Photoresponsivity (A/W)

ITC 4.83 × 10−6 15.6 2.82 × 1013 49.56

spin-coating 2.25 × 10−4 608.1 3.28 × 1014 1926.24

TABLE 2 Comparison of the detectivity of the photodetectors as reported in the literature with our work.

Device Type
This Work Nanosheets

(Lan et al., 2017)
Crystal

(Zhang et al.,
2018)

Diode (Li et al.,
2022)

Nanorods
(Yao et al., 2024)

Detectivity (Jones) 3.28 × 1014 3.1 × 1011 2.62 × 1013 5 × 1012 7.3 × 1010

from 0 V to 15 V. The MASnI3 perovskite photodetector exhibited
smaller operating resistance under the light-off condition than in
other situations without incident light. However, when the MASnI3
perovskite photodetector was operated in light-on conditions, the
conductivity of the MASnI3 perovskite photodetector decreased.
That means the defects in the MASnI3 perovskite film were
filled by photo-induced electrons, such that the migration ability
of electrons decreases. For the device, the largest photocurrent
(4.83 × 10−6 A at 15 V) was observed when the wavelength of
incident light was 700 nm. This is consistent with the band gap
of the MASnI3 material. Figure 6b plots the current–voltage (I-
V) characteristics of MASnI3 perovskite metal-semiconductor-
metal type photodetectors prepared by the spin-coating method
in a glove box and biased from 0 V to 15 V. For the device, the
largest photocurrent (2.25 × 10−4 A at 15 V) was observed when
the wavelength of incident light was 700 nm. The photocurrent
of a device prepared in a glove box is two orders of magnitude
higher than that of the device prepared by the ITC method. It
may contribute to the conductivity of the MASnI3 perovskite film
prepared by the spin-coating method in a glove box, which is better
than that of theMASnI3 perovskite filmprepared by the ITCmethod
in a glove box due to the almost moisture-free environment and
ambient oxygen.

Figure 7 shows the photocurrent of MASnI3 perovskite
photodetectors prepared by the ITC and spin-coating methods
at a bias of 15 V. Figure 8 plots the photoresponsivity of MASnI3
perovskite metal-semiconductor-metal type photodetectors
prepared by the ITC and spin-coating methods, respectively, at a
bias of 15 V. The photoresponsivity and detectivity of the MASnI3
perovskite photodetectors prepared by the ITC and spin-coating
methods are 49.56 A/W and 1926.24 A/W under incident light
of 650 nm, respectively, corresponding to 2.82 × 1013 and 3.28 ×
1014 Jones. As shown in Figures 7, 8, the photocurrent obviously
increases as the wavelength of incident light is in the range of
550–700 nm, then cuts off over 700 nm due to the absorption edge
of the material. Therefore, the MASnI3 perovskite can be used to
apply the photodetector with a very narrow wavelength ranging
from 550 to 700 nm. Table 1 lists the optoelectronic properties of
ITC and spin-coatedMASnI3 photodetectors in this work. Although

the ITC-prepared film exhibits better crystallinity, it results in lower
device performance than the spin-coated film. It may contribute to
the defect states or charge transport limitations in perovskite oxide
with high resistance, according to the I-V characteristics, as shown
in Figure 6. In addition, Table 2 summarizes the comparison of the
detectivity of the photodetector as reported in the literature with
our work. This work demonstrates the best performance.

4 Conclusion

In summary, the characteristics of two kinds of MASnI3
perovskite metal-semiconductor-metal-type photodetectors
prepared by the ITC and spin-coating methods, respectively,
have been demonstrated. The peaks of the photoluminescence
(PL) spectrum of MASnI3 perovskite films obtained by the
inversion crystallization and the spin-coating methods are 470 nm,
corresponding to 2.638 eV, and 750 nm, corresponding to 1.647 eV,
respectively. A Burstein–Moss shift is observed due to the
introduction of oxygen. In addition, the photocurrent of a device
prepared in a glove box is two orders of magnitude higher than that
of the device prepared by the ITC method. The MASnI3 perovskite
photodetector prepared by the ITC method in air exhibited higher
operating resistance under the condition of illumination than that of
the MASnI3 perovskite photodetector prepared by the spin-coating
method in a glove box. That means the MASnI3 perovskite film has
more defects induced by oxygen, such that the migration ability of
the electrons decreases. The largest photocurrents of the MASnI3
perovskite photodetector prepared by the ITC and spin-coating
methods are 4.83 × 10−6 A and 2.25 × 10−4 A at 15 V, respectively.
The photocurrent increases as the wavelength of incident light is
in the range of 550–700 nm, then cuts off over 700 nm due to the
absorption edge of the material. Therefore, the MASnI3 perovskite
can be used in the application of a photodetector with a very narrow
wavelength, ranging from 600 to 700 nm. Finally, in this work,
we found that the crystallinity of the sample prepared by the ITC
method is better than that of the sample prepared by the spin-
coating method. However, the performance of the sample prepared
by the ITC method is inferior to that of the sample prepared by the
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spin-coating method. In addition, we found that the sample is very
easy to oxidize, but it will recover after being put back into the glove
box. Hence, it can be used in an oxygen-free environment.
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