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Colloidal materials and interfaces are popular interdisciplinary fields involving the
intersection of physics, chemistry, biology, and other disciplines. The particle size of the
structural units of colloidal materials is at the mesoscale, giving colloidal materials unique
properties betweenmolecular andmacroscopic materials, such as high specific surface area,
quantum size effects, and interfacial interactions (Xia et al., 2000). Among these, interfacial
phenomena are particularly important in colloidal materials, as the properties of interfaces
significantly influence the stability, assembly behavior, and functional performance of
colloidal particles.Therefore, the core of this field lies in studying the preparation, structure,
and properties of colloids, as well as their interactions at various interfaces.

The development of colloidal materials has a long history, spanning from the Lycurgus
Cup made in the fourth century, to the synthesis of colloidal “ruby” gold in 1857, and to
the 2023 Nobel Prize in Chemistry for the discovery and synthesis of nanoparticles called
quantum dots, covering over a thousand years. The foundational work of colloidal science
began in the mid-20th century. In 1950, Victor La Mer and Robert Dinegar developed a
theory and process for producingmonodisperse hydrosols, which allowed for the controlled
production of colloids with uniform particle sizes (LaMer and Dinegar, 1950). This was a
pivotal moment, laying the foundation for the future development of nanotechnology and
materials science.

Over the decades, the synthesis of colloidal materials has made significant progress,
utilizing techniques such as sol-gel processes, hydrothermal synthesis, ultrasonic exfoliation,
and chemical vapor deposition to achieve high-quality nanoparticles with controllable sizes
and morphologies (Yin and Alivisatos, 2005). These advancements have not only greatly
expanded the material database but enhanced the scalability of production for practical
applications.

In recent years, research has shifted focus to the synthesis and applications of colloidal
materials with unique optical, electronic, and catalytic properties. Among them, colloids
with plasmonic effects (Au, Ag, Cu, etc.), which have high extinction coefficients and
significant local field enhancement effects, are essential components of optics-related
materials and devices (Linic et al., 2011). Thanks to breakthroughs in nanomaterial
synthesis, plasmonic nanomaterials of various dimensions,morphologies, and compositions
have been synthesized.Notably, the synthesis of chiral plasmonic colloidalmetallicmaterials
and the proposal of the periodic table of plasmonic colloidal materials are considered
significant milestones in the development of colloidal materials (Lee et al., 2018; Tan et al.,
2011), making colloidal material synthesis techniques and their applications in specialized
optics and synthetic chemistry increasingly important.

Furthermore, semiconductor nanocrystals, quantum dots, and gels are also key research
directions in colloidal materials and interfaces (Reiss et al., 2009). When the size of
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semiconductor colloidal materials approaches or is smaller than
the exciton radius, the separation and migration dynamics of their
excited-state carriers exhibit fundamental differences compared to
bulk materials, leading to a series of novel photophysical and
photochemical properties such as excitation blue shift, quantum
blinking, and directional electron migration (Efros and Nesbitt,
2016; Yoffe, 2002; Zhu et al., 2013). The latest advancements
in colloidal photocatalytic materials have garnered widespread
attention due to their unique properties and potential applications
in environmental remediation, energy conversion, and special
functionalities.

Semiconductor colloidal materials possess high surface area
and tunable optical properties, making them ideal candidates for
photocatalytic materials (Wu and Lian, 2016). Taking chalcogenide
semiconductor quantum dots as an example, thanks to their unique
visible light absorption behaviors and quantum confinement effects,
they have been star materials in photocatalysis since their first
synthesis in 1981 (Kalyanasundaram et al., 1981; Xu et al., 2016).
Their outstanding advantage lies in their tunable band alignments
and charge transfer behaviors for enhanced photocatalytic activity
under visible light, addressing the limitations of traditional wide
bandgap photocatalysts. Furthermore, incorporating plasmonic
nanoparticles with semiconductor colloids has been proven to
enhance light harvesting and charge separation efficiency, thereby
further boosting photocatalytic performance (Wu et al., 2015).
Moreover, sub-nanomaterials, as an emerging class of colloidal
materials, exhibit properties distinct from traditional nanomaterials,
showcasing fascinating prospects in energy conversion, and have
developed into an important branch of colloidal materials (Lu and
Wang, 2022).

Using colloidal materials as structural units, a variety of
self-assembled superstructures (superlattices, superparticles,
monolayers, etc.) can be formed through various self-assembly
driving forces, including electrostatic interactions, hydrophilic-
hydrophobic interactions, external field effects, ligand interactions,
and entropy, opening new avenues for creating advanced materials
with customized functions (Dong et al., 2010). In recent years,
reversible, chiral, low-dimensional, and hierarchical self-assemblies
based on colloidal building blocks have been extensively studied
(Kundu et al., 2015; Lv et al., 2022). The as synthesized colloidal
assemblies exhibit novel properties and functions compared to
colloidal monomers and bulk materials, providing an important
material foundation for the development of advanced functional
materials and high-performance devices in areas such as
bionics, solar energy conversion, drug delivery, heat conduction,
and display (Yuan et al., 2024).

There are still several challenges in the field of colloidal
materials and interfaces that require breakthroughs. First, the
existing synthesis processes for colloidal materials are generally
very complex, with high levels of synthesis difficulty and significant
costs associated with raw materials and processing, which severely
limit the commercialization of colloidal materials. In addition,
colloidal materials chemically synthesized in solutions often exhibit
a wide size and morphology distribution, and the uniformity of the
materials is typically suboptimal, posing challenges for applications
in advanced electronic devices. Furthermore, most colloidal
materials lack stability. Under various optical, electrical, and
thermal conditions, the surface and internal chemical composition

of colloidal materials are prone to changes, and irreversible
agglomeration between colloidal particles can easily occur, leading
to deactivation.

Achieving precise control over the size, morphology, and
structure of colloids, as well as ensuring their stability in complex
and harsh environments, are key focuses of current and future
research. Additionally, the large-scale preparation processes for
colloidal materials still require further optimization. Ensuring that
large-scale synthesis can produce samples consistent with small-
batch synthesis, while reducing costs and increasing yield, is another
challenge that must be addressed for practical applications. At
the same time, the microscopic mechanisms underlying interfacial
phenomena in colloidal systems have not been fully elucidated,
limiting the in-depth understanding and optimization of their
performance.

As an important class of functional materials, colloidal materials
are highly versatile. In the future, with the deepening of fundamental
research and continuous technological breakthroughs, this field is
expected to achievemore innovative results, providingnew solutions
to global challenges such as energy, environment, and health.
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