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Editorial on the Research Topic

Biologically inspired Artificial Intelligent systems: state and perspectives
s

We hear about Artificial Intelligence (AI) everywhere, as it is the major technological
breakthrough of our time. Most of us are both drawn to it and fearful of it—attracted by
the potential for everyday benefits, yet primarily concerned about the risk of losing control
over our decisions and actions. We should approach the technological innovations we are
facing with the same attention to technological details as we give to their social and ethical
implications.

Starting from the basics, the term “Artificial Intelligence” can be somewhat misleading.
A marked distinction between “natural” and “artificial” intelligence could be considered
inappropriate: the difference lies rather in the data processing strategies and architectures
implemented by the biological and by non-living systems. To date, we have seen non-living
systems performing computation, but it is rare to witness them exhibiting intelligence in
the way we understand it. Defining intelligence itself is indeed an even greater intellectual
challenge. In 1921 a Symposium has been organized (Colvin and Freeman, 1921) about
“Intelligence and its measurements”. It consists of a group of 14 psychologists who addressed
three questions posed by the editors of the Journal of Educational Psychology: 1) What
is intelligence? 2) How can it best be measured by group tests? 3) What are the most
crucial next steps in research? There was a great disagreement concerning the concept of
intelligence, resulting in 14 different definitions. We suppose that we are not far from that
situation of the last century.

Whatever we define it as, intelligence certainly always needs a support to run. In living
beings, it is evenmore than a support—it is a body (Pfeifer et al., 2007).Theway inwhich the
body shapes our intelligence is deep and complex, and it is often not considered enough in
the designing of data processing devices. It has nothing to do with the interplay between the
software and the hardware with which AI programs currently run on the market. It counts
on a self-organized complex system mutually interacting at different scales, composed of
a redundant, adaptive, and fault-tolerant architecture. The difference between the effective
implementation of these two realms (silicon-based and biological neuronal systems) marks
the gap between data processing concepts and strategies, as well as the difference in their
corresponding energy demands, which evolution has managed to minimize so effectively.

This collection of research articles highlights, on one hand, a detailed overview of
the strategies supporting AI algorithms (Xu et al.); on the other hand, it illustrates the
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opportunities presented by neuromorphic hardware that can at least
partially mimic the behavior of biological units, such as synapses
(Maldonado et al.).

An insight is presented here as a common thread
across different papers, focusing on the role and use of
stochasticity in improving system performance, as well as
the advantages brought by its non-linearity. The latter is
another biologically inspired feature (Borghi et al., 2024) whose
significance in data processing tasks is explored in various ways
(Cipollini et al.).

Non-linearity is involved in biological systems at the level of
dendritic trees (Häusser et al., 2000) as in spatial distribution
of ionic channels and synapses (Mäki-Marttunen and Mäki-
Marttunen, 2022), and it does not find a correspondence in the
perceptron (Rosenblatt, 1958), the reference model of neuron
used in AI algorithms, where the weights associated to the inputs
are input-independent. The model of Receptron (Paroli et al.,
2023) proposed here, accounts for the non-linearity of the
system response to inputs (Martini et al.). It is implemented
in a neuromorphic device used for the specific computational
task of classifying Boolean functions. Furthermore, the
training processes used by AI algorithms on artificial neural
networks, primarily based on back-propagation, are not
comparable to the reprogrammability and adaptability of
these neuromorphic devices, which closely mimic biological
neural networks.

Altogether, this Research Topic provides a general overview
of current AI architectures, especially those used in image
processing, along with examples of neuromorphic hardware
units, both at synaptic and ensemble of neuronal network
levels. It highlights opportunities for the development of
neuromorphic data processing devices and architectures that
leverage the non-linearity, stochasticity, and self-adaptability of
physical systems.
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