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Classification, identification, and
quantitative study of defects in
aluminum plates using pulsed
alternating current field
measurement combined with
principal component analysis

Qingxiao Kong*, Shuwei Pan, Lilong Lin and Xinfeng Li

Wenzhou Polytechnic, University Town, Wenzhou, Zhejiang, China

Introduction: This study investigates an approach for defect characterization
in non-ferromagnetic materials by combining Pulsed Alternating Current Field
Measurement (PACFM) with Principal Component Analysis (PCA). The research
demonstrates how this integrated method can effectively classify and quantify
both surface and subsurface defects through signal processing of PACFM data.

Methods: The PACFM technique was utilized to acquire defect response signals
from non-ferromagnetic specimens. Subsequently, PCA was implemented to
decompose the multidimensional PACFM datasets into principal components,
with each component preserving themost diagnostically significant information.
In this analytical framework, the classification of defects was determined by
the sign of the mapped value w2 in the PCA eigenvector direction, while the
magnitude of w2 exhibited a correlation with subsurface defect burial depths.

Results: The integrated PACFM-PCA approach successfully discriminated
between surface and subsurface defects. The polarity of the principal
component w2 served as a reliable feature for defect classification, with
positive values consistently corresponding to subsurface defects and negative
values indicating surface defects. Furthermore, a robust quadratic relationship
correlation was established between the eigenspace coordinates of subsurface
defect signals and their respective burial depths, enabling accurate quantitative
assessment of burial depth.

Discussion: The integration of PACFM with PCA provides a robust framework
for defect analysis in non-ferromagnetic materials. This synergistic approach
demonstrates significant capability in extracting and quantifying defect
signatures from complex response signals, highlighting its considerable
potential for non-destructive testing (NDT) applications. Future work could
explore its adaptability to more intricate defect geometries.
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alternating current field measurement, pulsed alternating current field measurement,
principal component analysis, surface defects, subsurface defects, non-ferromagnetic
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1 Introduction

Alternating Current Field Measurement (ACFM) is a non-
contact crack-testing method for metal surfaces with high detection
sensitivity, low surface quality and low environment requirements
for test pieces (Li et al., 2020; Raine and Lugg, 1999). It is widely used
for surface defect detection in metal structures without polishing
coating and can be used for underwater, low and high temperature
detection (Li et al., 2020). In ACFM, a uniform electric field is
induced in the test piece.Thepresence of defects distorts the uniform
electric field. By detecting the distorted electromagnetic field signal
along the x-axis and z-axis, defects can be identified and located,
and the size of the defect can be obtained (Lewis et al., 1988;
Li et al., 2020; Raine and Lugg, 1999). Compared to the eddy
current testing (ECT) technology, ACFM, which is based on the
mechanism of detecting defect-perturbed uniform electromagnetic
fields (Feng et al., 2018), has advantages in quantitative defect
characterization (Wei et al., 2011).

Traditional ACFM uses sinusoidal AC signals for coil excitation.
Due to the skin effect (Chen et al., 2000; Lewis et al., 1988;
Zhao et al., 2023), the traditional ACFM can only achieve high-
precision detection of surface and near-surface defects. Detecting
subsurface defects of metals and subsurface defects within multi-
layer structures is challenging (Zhao et al., 2023). In recent years,
there has been increasing research on using ACFM to detect
subsurface defects (Gan et al., 2018; Ge et al., 2020a; He et al.,
2010; Zhao et al., 2023; Zhao et al., 2024). Zhao et al. (2024)
used the excitation with a novel transition frequency in ACFM
for detecting subsurface cracks and assessing their burial depth.
Gan et al. (2018) conducted the ACFM experiment using a
multi-frequency excitation to detect subsurface defects. Li et al.
(Zhao et al., 2023) discovered a new phase reversal feature for
classifying and evaluating cracks using multi-frequency ACFM.
To overcome the depth detection limit imposed by the skin
effect, He et al. (2010) replaced the sinusoidal excitation signal in
ACFM with rectangular wave excitation signals. The deeper skin
depth generated by the square wave signal increases the detection
capability for subsurface defects. This detection method is called
Pulsed Alternating Current Field Measurement (PACFM) (He et al.,
2010). Ge et al. used wavelet packet energy (Ge et al., 2020a), time-
domain features (Ge et al., 2017), and post-peak values (Ge et al.,
2020b) to identify the PACFMdefect detection types (Ge et al., 2017;
Ge et al., 2020a; Ge et al., 2020b).

Information in PACFM defect response signals include defect
type, depth, and size, typically characterized by parameters such
as peak value, peak time, rising time, zero-crossing time, and
the amplitudes and phases of selected frequencies. However, these
parameters are interrelated, leading to information redundancy.

Principal ComponentAnalysis (PCA) is a statisticalmethod that
can be used to extract condensed descriptors, principal components
(PCs), from multivariate data without predetermined functional
forms of the signals (Greenacre et al., 2022; Reddy et al., 1997).
The PCs maximally explain the variance of all the variables and
minimize the reconstruction error (Greenacre et al., 2022; Tian et al.,
2005). Nafiah et al. (2020) conducted parameter analysis of pulsed
eddy current (PEC) sensors using PCA for pipeline inspection and
performance analysis. Nafiah et al. (2021) interpreted PEC signals
corresponding to varied plate and cladding thicknesses with PCA.

FIGURE 1
Homemade pulsed alternating current electromagnetic field
detection system.

PCA has also been reported for defect as well as corrision detection,
classification and quantification for PEC sensing (Cormerais et al.,
2022; Horan et al., 2013; Mustaqeem and Saqib, 2021; Sophian et al.,
2003; Tamhane et al., 2021; Tian et al., 2005) and better performance
in the classification of defects than the conventional technique
was reported (Mustaqeem and Saqib, 2021; Sophian et al., 2003).
PCA were used to independently extract information representing
different defect characteristics in the PEC defect response signals.
The corresponding eigenvalues were selected and used for defect
identification and classification, as well as for quantitative defect
analysis (Qiu et al., 2013; Sophian et al., 2003).

However, to the best of our knowledge, there is no report on
the surface and subsurface defect classification and quantification
using PACFM combining for non-ferromagnetic aluminum
using PACFM.

In this study, defect response signals obtained by a homemade
PACFM system for the surface and subsurface defects on an
aluminum plate were examined using PCA. The results of the
combined PACFM and PCS were successfully used to identify and
classify the surface and subsurface defects in the aluminum plate,
a non-ferromagnetic material. A model regarding the relationship
between the eigenvalues of the principal components in PCA
analysis for the PACFM defect response signals and the depth of the
surface defects and burial depth of subsurface defects was obtained
using a set of training PACFM defect response data obtained from
known surface and subsurface defects prepared on the aluminum
plate. The depth of surface defects and burial depth of subsurface
defects on an aluminum plate were successfully obtained applying
the eigenvalues of the principal components of the defects PACFM
response signals to this model.

2 Materials and methods

2.1 Homemade pulsed alternating current
electromagnetic field detection system

A pulsed AC electromagnetic field detection system was built
to validate the proposed non-destructive defect-detecting method
combining PACFM and PAC. The system includes a probe, a signal
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FIGURE 2
Picture of the probe of the homemade pulsed AC electromagnetic field detection system.

FIGURE 3
Typical transient response signal of the defect using the pulsed AC
electromagnetic field measurement method, induced magnetic field
strength versus time plot.

generator, an A/D acquisition card, a signal processing module, and
the LabVIEW software, as shown in Figure 1. The probe consists
of a magnetic core, excitation coil, detection sensor, connector, and
housing, and is mounted on a x-y scanner, as illustrated in Figure 2.
The excitation coil consists of 500 enamel wire loops f with a
diameter of 0.15 mm wound on a rectangular magnetic core. The
excitation signal is a periodic square wave with a peak value of
5 V, a frequency of 100 Hz, and a duty cycle of 50%. The detection
sensor is a tunneling magnetoresistance (TMR) sensor. A Tektronix
Arbitrary/Function Generator AFG2021 (20 MHz bandwidth, 14-
bit resolution, 150 MS/s sampling rate) was used to generate a square
wave signal with an amplitude of ±5 V, a frequency of 100 Hz, and
a duty cycle of 50%. The data acquisition card used is a NI USB
6351 data acquisition card (National Instruments, Austin, United
States). The sampling frequency is 50,000 Hz and the sampling
rate in one signal cycle is 500. The instrument box contains a
signal conditioningmodule, which is a two-stage amplification filter
circuit designed based on a zero-drift ultra-low noise operational
amplifier ADA4522 (Analog Devices, Inc.). The first stage is a
low-noise, high-gain amplification circuit, and the second stage
is an amplification circuit. The filter circuit is a low-pass filter,
eliminating the interference of high-frequency signals with a cutoff
frequency of 10 kHz.

Along with the square wave excitation signal, the typical
transient response signal, the inducedmagnetic field strength versus
time curve, of the defects under the pulsed AC electromagnetic field
is shown in Figure 3.

2.2 Customized defect test specimen

The defect test specimen used in this study is an artificially
created defect specimen prepared by ShandongRuixiangMouldCo.,
Ltd., a professional electrical discharge machining manufacturer,
following the customized design shown in Figure 4a. The specimen
is made of aluminum panel and has a length of 640 mm, a width of
350 mm, and a thickness of 10 mm.The aluminumpanels (electrical
conductivity: 35.5 MS/m) were purchased from Shandong Ruixiang
Mould Co., Ltd. There are 5 artificial defects distributed on the
aluminum specimen, each with a length of 50.0 mm and a width
of 0.5 mm. The depths of the five defects, namely, defects 1, 2,
3, 4, and 5 from left to right as shown in Figure 4a, are 9.0 mm,
8.0 mm, 7.0 mm, 6.0 mm, and 5.0 mm, respectively, consistent with
the dimensions of the simulationmodel. Figure 4b shows the picture
of the artificial defect specimen. The surface with the defects visible
is defined as the front side of the defect specimen, and the other
side with a flat aluminum surface is defined as the back side of the
defect specimen. From the back side, the defects 1, 2, 3, 4, and 5 are
not visible and are the subsurface defects with the buried depths of
1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm, and 5.0 mm, respectively.

2.3 Feature extraction from defect signals
obtained by pulsed AC electromagnetic
fields using principal component analysis

The PCA model was trained by a training sample set to identify
and classify various defects. The training data set contains different
types of PACFM defect signals, including signals of surface defects
with different depths and subsurface defects at different burial
depths. The eigensignals of the training samples were obtained by
arranging the signals obtained at each given time into a column
vector, denoted as Γn, with a length N, determined by the number
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FIGURE 4
(a) Schematic diagrams of the design of the specimen with artificial defects; (b) Picture of the artificial defect specimen showing five defects, each with
a length of 50.0 mm and a width of 0.5 mm. The depths of the five surface defects 1, 2, 3, 4, and 5 are 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, and 9.0 mm,
respectively.

of sampling points. For M measurements, a matrix Γ of dimension
M × N was obtained as showned in Equation 1 (Reddy et al., 1997):

Γ = [Γ1,Γ2,Γ3,⋯,ΓM] (1)

The key to PCA is to calculate the covariance matrix of the
matrix Γ. Directly calculating the covariance matrix of the matrix
Γ can be time-consuming and memory-intensive due to its large
size. To facilitate the calculation of the covariance matrix, we first
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centered the data, that is, the mean signal was subtracted from the
original signal. The mean signal is defined as shown in Equation 2.

Γ = 1
M

M

∑
n=1

Γn (2)

Then, the centered signal is defined as shown in Equation 3.

Φn = Γn − Γ (3)

The covariance of the centered signal Φn is represented by the
inner product of vectors, as shown in Equation 4.

C = 1
M

M

∑
n=1

Φn ·Φn
T = 1

M
A ·AT (4)

where C is the covariance matrix of dimension N × N, A = [Φ1,
Φ2, Φ3,⋯, ΦM], and φT and AT are the respective matrix transpose.
The direct determination of the eigenvalues and eigenvectors of
the covariance matrix C requires a large number of calculations
due to its high dimensionality. We calculated the eigenvalues and
eigenvectors of the covariance matrix C from another perspective.
AT × A is an M ×Mmatrix, whose dimension is much smaller than
that of the covariance matrix C. If vi and μi are the eigenvectors
and eigenvalues of the matrix AT × A, respectively, as shown in
Equation 5, then the eigenvectors of the covariance matrix are
obtained through Equation 6.

ATAνi = μiνi (5)

μi = Aνi (6)

Any original signal can be obtained by a linear combination of
the eigenvectors μi. The eigenvectors are arranged in order of the
eigenvalue size, where larger eigenvalues in the original data contain
more information.Therefore, the first K largest eigenvalues and their
corresponding eigenvectorswere taken to form the eigenspace.Thus,
for any signal Γ, its representation in the eigenspace is:

wk = μ
T
kΓ (7)

where wk represents the signal’s mapped value into the
corresponding eigenvector direction, the coordinates in the
eigenspace. These mapped values are the signal features used for
defect identification and classification.

The PCA-based defect feature extraction, the calculation and
data analysis as well as analysis of the defect response signal were
all carried out using the MATLAB software.

2.4 Defect classification and quantification
method

Defect classification was performed using the proposed
classification algorithm once a defect was identified by PACFM.
If the defect was classified as a surface defect, its parameters, such
as length, width, and depth, could be quantified using traditional
ACFM characteristic features (Gan et al., 2018). If the defect
was identified as a subsurface defect, the proposed quantification
method was employed to estimate the burial depth. Figure 5 shows

FIGURE 5
Block diagram of defect classification and quantification using PACFM
Combined with PCA.

the block diagram of defect classification and quantification. The
training data set was obtained from artificial defect samples, and
principal component analysis was applied to this data set to extract
the eigen vectors. The mapped values of the defect signal in the
direction of the corresponding eigenvector were calculated and
utilized to classify the type of defect and quantify the burial depth
of subsurface defects.

3 Results and discussion

Thefront andback sides of the defect specimen shown inFigure 4
were inspected using PACFM for the detection of surface and
subsurface defects, respectively. Samples with surface defects with
depths of 5.0 mm, 6.0 mm, 8.0 mm, and 9.0 mm on the front side
of the defect specimen, and subsurface defects with burial depths
of 5.0 mm, 4.0 mm, 2.0 mm, and 1.0 mm on the back side, were
selected as defect trial samples for PCA model training. Each defect
was detected 8 times using PACFM, with slight variations in the
defect’s positioning during eachmeasurement to obtain a sufficiently
large amount of defect sample data. A total of 64 defect data sets
were obtained.

During each defect measurement, the data from one excitation
cycle was collected and arranged into a column vector. With a
pulse excitation frequency of 100 Hz and a sampling frequency of
50,000 Hz, the data collected for one excitation cycle included 500
points, allowing for a matrix representation of the sample set used
for PCA training.

PCA was used for the time-domain signal data analysis. The
eigenvectors of the two largest eigenvalues corresponding to the
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FIGURE 6
Time domain eigensignals in PCA analysis. Coefficient versus sample points curves for (a) Eigensignal 1 and (b) Eigensignal 2, respectively.

TABLE 1 Principal component analysis main componentsw2 andw1 of
the PACFM signals of the defect with a depth of 7.0 mm.

Depth of the defect (mm) w1 w2

7

376.49 −0.34

380.50 −0.36

385.88 −0.36

386.97 −0.37

388.36 −0.36

TABLE 2 Principal component analysis main componentsw2 andw1 of
the PACFM signals of the subsurface defect with a burial
depth of 3.0 mm.

Burial depth of the subsurface defect
(mm)

w1 w2

3

374.54 0.45

375.65 0.42

372.64 0.45

368.78 0.45

374.09 0.42

two principal components were selected as the eigensignals. Figure 6
shows the two eigensignals extracted from the time-domain signals.
These two eigensignals contain most of the information contained
in the original data.

3.1 Defect classification

After the eigensignals were obtained, the defect sample, which
was not used as part of the PCA training set, with a depth of 7.0 mm
on the defect specimen (as shown in Figure 4b), was inspected on
both the front and back sides for the detection of surface defectswith a

FIGURE 7
Main component w2 versus w1 plot of the principal component
analysis of the subsurface defect PACFM signals with the subsurface
defect of a burial depth of 3.0 mm.

depth of 7.0 mmand subsurface defectswith a burial depth of 3.0 mm,
respectively. Five different points were inspected at each defect, and
the main components of the time-domain signals, w1 and w2, were
obtained using Equation 7. The results are presented in Table 1, 2.
The w2 versus w1 plot is shown in Figure 7. The graph shows that
subsurface defects are distributed in the first quadrant of thew2 versus
w1 coordinate system,wherew2 is greater than 0,while surface defects
are distributed in the fourth quadrant, where w2 is less than 0. The
results show that defect classification and identification for aluminum
samples could be achieved based on the sign of w2.

3.2 Quantitative deduction of the
relationship of w2 and burial depth of
defects

The PACFM response signals of subsurface defects with burial
depths of 1.0 mm, 2.0 mm, 4.0 mm, and 5.0 mmwere quantitatively
analyzed using PCA. The corresponding principal component, w2,
for each defect was calculated and is presented in Table 3. A
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TABLE 3 Principal components (w2) of subsurface defect points
examined for defects with burial depths of 1.0 mm, 2.0 mm, 4.0 mm, and
5.0 mm; four testing points were examined for each defect using PACFM
and PCA analysis.

Burial depth (mm) w2

1

0.18

0.16

0.15

0.14

2

0.36

0.36

0.35

0.36

4

0.49

0.51

0.50

0.50

5

0.56

0.56

0.56

0.56

FIGURE 8
Original data and a polynomial fit of the principal component analysis
main component w2 versus burial depth plot of the subsurface defects
with varying burial depths.

polynomial fit was performed to analyze the relationship between
burial depth and w2 and the 2nd order polynomial equation,
shown in Equation 8 was obtained.The coefficient of determination
R-squared of the fitting was 0.9729 and the root mean square
error was 0.03122, indicating a good fit. The fitting result is

illustrated in Figure 8.

dms = −0.02351ω
2
2 + 0.2361ω2 − 0.04419 (8)

where dms is the burial depth of the defect.

3.3 Validation of the defect burial depth
quantification algorithm

The principal component w2 of the subsurface defect with a
burial depth of 3.0 mm obtained in Section 3.1 is substituted into
the quantification expression of Equation 8 to validate the accuracy
of the burial depth quantification algorithm. The results of the
calculated burial depth (Table 4) show that the burial depth of
subsurface detects can be obtained with high accuracy using the
principal component w2 of the time-domain signal and Equation 8.

To further investigate the accuracy of the subsurface defect
burial depth quantification algorithm using different defect
parameters, we conducted defect detections on a different aluminum
specimen with subsurface defects. The length of the defect is
50.0 mm, the width is 2.0 mm, and the depth is 7.0 mm, while
the specimen thickness is 10 mm. The defect detection on the
specimen from the backside of the specimen was equivalent to
detecting subsurface defects with a burial depth of 3.0 mm, and
was repeated 5 times with varying defect detecting locations, and
the principal component w2 was calculated for each detection.
The results showed that the values of w2 were all greater than 0,
indicating subsurface defects. Substitutingw2 into Equation 8 yields
the calculated values of burial depth, as shown in Table 5. The table
shows that the calculated burial depth of the subsurface defects has
an error averaging around 10% compared to the actual values.

4 Conclusion

In this study, we applied principal component analysis to
extract specific features from pulsed Alternating Current Field
Measurement defect signals for surface and subsurface defect
detecting, classification, and quantification for nonferromagnetic
materials. The conclusion can be included as follows:

(1) We constructed an artificial defects sample set, including
surface defects with depths of 1 mm, 2 mm, 4 mm, and
5 mm, as well as subsurface defects with buried depths of
1 mm, 2 mm, 4 mm, and 5 mm. Eigensignals was obtained by
performing principal component analysis on PACFM signals
from artificial defects sample set.

(2) The sign of the mapped value w2 of the defect signal in the
corresponding eigenvector direction in the PCA analysis could
be used to classify the type of defect. If w2 is greater than 0, the
defect could be identified as subsurface defect, whereas if w2 is
less than 0, the defect could be identified as surface defect.

(3) The magnitude of w2 could also be used to quantify the
burial depth of subsurface defects. We successfully established
a quantitative relationship between burial depth and w2 using
a second-order polynomial equation based on the artificial
defect sample set. The proposed quantitative algorithm was
validated using subsurface defects with different burial depths
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TABLE 4 Calculated burial depth of the subsurface defect with a burial depth of 3.0 mm using Equation 8 that shows the relationship between the burial
depth and the principal componentw2 of the time domain signal.

Test point Burial Depth (mm) Calculated burial depth (mm) Error (%)

1

3

2.96 1.33

2 2.95 1.67

3 2.97 1.00

4 2.94 2.00

5 2.97 1.00

TABLE 5 Burial depth calculated using the principal componentw2 for subsurface defect detection with a burial depth of 3.0 mm on a different
aluminum defect specimen.

Test points Burial depth (mm) Calculated burial depth (mm) Error (%)

1

3

2.68 10.67

2 2.68 10.67

3 2.69 10.33

4 2.67 11.00

5 2.77 7.67

but the same length and width. The results demonstrated
that the proposed algorithm could predict the burial depth of
subsurface defects with an error of less than 2%.

(4) The width of subsurface defects might influence the
quantification of burial depth. A response signal from defects of
different widths in the sample set was used to predict the burial
depthusing theproposedalgorithm, resulting inanaverageerror
of approximately 10% compared to the actual values.

In future studies, we will expand the dataset of defect samples to
encompass a broader range of defect parameters. This will enable us
to better understand and account for the potential impact of these
parameters on the quantitative determination of subsurface defect
burial depths.
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