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Introduction: During the commissioning and operation of shale gas pipelines,
multiple perforation accidents caused by internal corrosion have occurred.
Research on internal corrosion probability prediction remains limited due to the
complexity of its causes.

Methods: This paper establishes an internal corrosion probability prediction
model for shale gas pipelines using a Bayesian network model combined with
common cause failure analysis.

Results and Discussion: The model was applied to predict internal corrosion
in pipelines within a shale gas field in Sichuan Province, China. The prediction
results showed a 20% error margin compared to field inspection results.
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1 Introduction

Shale gas, extracted from shale formations, is a significant unconventional natural
gas resource typically transported via pipelines. As the scale of shale gas extraction and
transportation expands, the safety and reliability of pipeline systems have become a critical
issue. Statistics show that internal pipeline wall corrosion is one of the primary factors
affecting pipeline safety, potentially leading to pipeline failure, leaks, or ruptures, and in
severe cases, fires or explosions.Therefore, it is essential to study the corrosion issues within
shale gas pipelines.

Compared to research on corrosion in conventional natural gas pipelines, studies on
shale gas pipeline corrosion are relatively limited. Current research primarily focuses on
CO2 corrosion and sulfate-reducing bacteria (SRB) corrosion. For instance, Li et al. (2020)
used optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy,
and X-ray diffraction to analyze the causes of corrosion failure in pipelines from
six typical shale gas blocks in an oilfield, discussing the corrosion mechanisms. They
found CO2 corrosion in pipelines from four typical blocks. Palumbo et al. (2020)
employed weight loss and electrochemical methods to study the effect of different CO2
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partial pressures on the corrosion inhibition performance of N80
carbon steel pipelines, noting that the protective layer on the
metal surface became denser with increasing CO2 partial pressure.
Mohammed Nor (2013) focused on parameters affecting CO2
corrosion flow sensitivity, including CO2 partial pressure, pH, and
temperature, and developed a corrosion model suitable for high
CO2 partial pressure environments, demonstrating that CO2 partial
pressure has the strongest effect on corrosion flow sensitivity. Yue
and Wang (2018) analyzed the corrosion mechanisms in a shale gas
pipeline block in Sichuan Province, China, identifying SRB as the
main cause of pipeline perforation corrosion, with CO2 and Cl−

accelerating the corrosion, exacerbated by erosion. Xie and Zhang
(2018) studied corrosion issues in a shale gas pipeline in Sichuan
Province, China, finding that the pipeline faced erosion corrosion
and electrochemical corrosion, with sand content being a major
controlling factor for erosion corrosion.The study also analyzed the
impact of ambient and high-pressure conditions on the corrosion
rates of various metals, showing that corrosion rates were higher
in bacterial environments than in sterile ones, and that pressure
changes also affected corrosion rates.

Once themain corrosion factors are identified, relevantmethods
can be used to assess the probability of pipeline corrosion. In
recent years, Bayesian networks have increasingly been applied
to this task. For example, Ayello et al. (2014) used a Bayesian
network model to analyze the corrosion probability in crude oil
pipelines, representing the causal relationships in complex systems
as conditional probabilities. Meanwhile, the author employed
a Bayesian network model to assess corrosion in a pipeline,
successfully calculating the failure rate with limited known
information, finding a 7% failure rate after about 20 years of
use. Shabarchin and Tesfamariam (2016) established an internal
corrosion probability model using a Bayesian network, simplifying
corrosion model calculations and improving prediction accuracy.
Shan et al. (2019) proposed a step-by-step approach using Bayesian
networks to assess external and internal corrosion in buried oil
pipelines by analyzing complex causal relationships through fault
models, existing system knowledge, and expert input. Han et al.
(2024) transformed the bowtie model into a bowtie-Bayesian
model by means of logic mapping to further analyze the failure
probability of the filling control system for aviation oil storage and
transportation; Hu et al. (2023) combined the bowtie (BT) and
dynamic Bayesian network (DBN) models to analyze the pipeline
leakage behavior in the high-consequence area, and used the fuzzy
probability and the Leaky Noisy-or Gate model to determine the
a priori probability and conditional probability of the DBN model,
and introduced the time dimension in the nodes of human factors
and corrosion conditions for dynamic settings to obtain the time-
varying characteristics of the probability of pipeline leakage and
the probability of occurrence of accident consequences. Xiang and
Zhou (2020) used the expectation-maximization algorithm to learn
the parameters of the Dynamic Bayesian model for the reliability-
based corrosion management of oil and natural gas pipelines.
The application of the model on simulated and real corrosion
data demonstrated the effectiveness of parameter learning and
the accuracy of corrosion growth predicted by the DBN model.
However, these studies primarily focus onoil or conventional natural
gas pipelines, with few reports on corrosion probability prediction
for shale gas pipelines.

FIGURE 1
A simple Bayesian network structure diagram.

Given this, this study aims to establish a shale gas pipeline
internal corrosion probability model based on Bayesian networks,
considering common cause failures. This model can predict the
location and timing of pipeline corrosion, which is of great
significance for analyzing the safety and reliability of shale gas
pipelines.

2 Shale gas pipeline internal corrosion
probability model based on Bayesian
network

2.1 Basic concepts

Bayesian network is a directed acyclic graph based on graph
theory and probability theory, designed to represent the dependency
relationships and probability distributions among a set of random
variables. This network typically consists of nodes, directed edges,
and probabilities. Figure 1 illustrates a simple Bayesian network
structure diagram.

In the diagram, C1, C2, B1, B2, and A represent a set of random
variables, with the arrows indicating the dependency relationships
among these variables. C1 is the parent node of B1, and B1 is the
child node of C1. C1 and C2, having no parent nodes, are referred
to as root nodes. Root nodes have corresponding prior probability
distributions, while non-root nodes have corresponding conditional
probability distributions. The Bayesian network calculates the
system’s failure probability using the Equation 1:

P(U) =
n

∏
i=1

P(Xi/Pa(Xi)) (1)

where Pa(Xi) represents the probability of the parent node Xi
occurring; P(Xi/Pa(Xi)) denotes the conditional probability value
of the child node occurring given that the parent node Xi has
occurred; and P(U) signifies the failure probability value of the
system under study.
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TABLE 1 Main influencing factors for various corrosion modes.

Corrosion mode Main influencing factors

Uniform corrosion T, CO2, O2

Local corrosion Gas velocity, gas density, fluid velocity, liquid
holdup, pipe inclination

SRB corrosion SRB quantity, T, CO2 partial pressure, pH, Cl−,
SO4

2−, Ca2+, HCO3
−

2.2 Construction of Bayesian network
structure

The construction of a Bayesian network structure primarily
involves determining the network topology and, based on this,
establishing the conditional probability distributions for each node.
Using causal relationships to build the network structure simplifies
themodel andmakes the probability distributions between variables
easier to analyze. In this study, the No. 1 pipeline from a shale gas
field in Sichuan Province, China, is used as an engineering case to
construct the Bayesian network structure.

2.2.1 Node selection and variable setting
Based on field investigations, the corrosion occurring in the No.

1 pipeline primarily includes uniform corrosion, local corrosion,
and SRB corrosion. The main influencing factors for each type
of corrosion are listed in Table 1 below, where T represents
temperature. Each influencing factor corresponds to a node in the
Bayesian network.

2.2.2 Bayesian network model
In this study, a causal relationship diagram with 38 nodes is

established based on existing experience. All Bayesian network
models are modeled and computed using GeNIe 2.0 software.
The modeling approach employs the two-phase method, and the
Bayesian network inference utilizes the variable eliminationmethod.
The Bayesian network model, constructed using data derived from
expert knowledge and experiments, is illustrated in Figure 2.

2.2.3 Prior probabilities of root nodes
The prior probabilities of root nodes in a Bayesian network

refer to the probabilities derived from historical statistical data or
expert experience analysis. The prior probabilities of root nodes are
solely related to their own factors and are not influenced by external
factors. There are two methods to determine the prior probabilities
of root nodes: one is established through consulting experts, and
the other is established through historical data.This study primarily
constructs the Bayesian network by combining expert knowledge
with historical data. According to relevant research, the states of root
nodes can be divided into five levels (Du, 2019): very high (VH), high
(H), medium (M), low (L), and very low (VL). The probability level
criteria for root node occurrences are shown in Table 2 below.

Based on the systematic combing and analysis of historical data,
this study adopts the extreme difference method to construct a
five-level classification evaluation system. The full distance range
of the data is determined by the extreme value method, and

the research parameters are divided into five consecutive grade
intervals by applying the principle of equal distance grading, and
the frequency distribution statistics are performed on the number of
samples in each interval, which in turn calculates their proportionate
weights.The priori probabilities of some variables obtained based on
historical data are shown in Table 3.

In Bayesian network analysis, many factors possess uncertainty.
This study primarily employs fuzzy set theory to address data
uncertainty (Zou and Yue, 2020). The probabilities of input events
are treated as fuzzy numbers within fuzzy set theory, with these
assignments derived from expert knowledge. In practice, when
prior probabilities cannot be accurately obtained from historical
data, expert knowledge serves as a crucial and viable method
for acquiring objective failure data of input events. During this
process, fuzzy set theory is utilized to resolve the ambiguity,
imprecision, and subjectivity inherent in expert knowledge (Faisal
and Ebrahim, 2014).

When determining prior probabilities using expert knowledge,
the concept of “fuzziness” is introduced to categorize the probability
levels of root nodes. The probability level of a root node is vaguely
described through the central value of a probability interval. Experts
can assess the state of root nodes based on these probability
levels. The weighting of experts is determined by factors such as
educational background, years of experience, and level of expertise.

Due to varying educational levels and professional backgrounds,
knowledge from multiple experts may be inconsistent. Therefore,
it is necessary to aggregate the subjective opinions of multiple
experts regarding input events into a single opinion. Various
techniques are available for aggregating knowledge from different
experts, among which the weighted average method is the
simplest, allowing for aggregation based on the prior weights of
parameters. The Equation 2 is used to aggregate the knowledge of
m experts.

Pi =
∑m

j=1
wjPij

∑m
j=1

wj
(2)

where Pi represents the aggregated fuzzy number of input event i;
Pij denotes the fuzzy number of input event i provided by expert j;
wj is the weight assigned to expert j; and m stands for the number
of experts.

The estimated fuzzy numbers need to be converted into
crisp values (Wang et al., 2022). This study employs the max-
min aggregation method to carry out the defuzzification process.
Themaximum fuzzy set and the minimum fuzzy set are represented
as Equations 3, 4, respectively.

fmax(x) =
{
{
{

x, 0 ≤ x ≤ 1

0, others
(3)

fmin(x) =
{
{
{

1− x, 0 ≤ x ≤ 1

0, others
(4)

By solving the membership function, the maximum fuzzy set,
and the minimum fuzzy set, the left and right scores of the fuzzy set
(P) can be calculated. The fuzzy possibility score (FPS) of the fuzzy
number P can be determined by Equation 5.

FPS(Pi) = [FPSRight(Pi) + 1− FPSLeft(Pi)]/2 (5)
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FIGURE 2
Bayesian network model.

TABLE 2 Probability level criteria for root node occurrences.

Probability level Probability interval Center of probability State description

1 (0, 0.2] 0.1 The probability of corrosion during the
service life of the pipeline is very low

(VL)

2 (0.2, 0.4] 0.3 The probability of corrosion during the
service life of the pipeline is low (L)

3 (0.4, 0.6] 0.5 The probability of corrosion during the
service life of the pipeline is medium

(M)

4 (0.6, 0.8] 0.7 The probability of corrosion during the
service life of the pipeline is high (H)

5 (0.8, 1] 0.9 The probability of corrosion during the
service life of the pipeline is very high

(VH)

The FPS can be transformed into a failure probability using the
Equations 6, 7.

p f =
{{
{{
{

1
10k
 FPS ≠ 0

0 FPS = 0
(6)

k = 2.301× [(1− FPS)/FPS]1/3 (7)

In this study, three experts were invited to estimate the
probabilities of the basic events, and their information is presented
in Table 4. The analytic hierarchy process (AHP) was employed to
determine the weights of their opinions (w). The expertise of the
experts was assessed based on three aspects: job category, work
experience, and educational level. The weights assigned to the
experts were derived from the overall ranking of the hierarchical
structure, as shown in Table 4.

Frontiers in Materials 04 frontiersin.org

https://doi.org/10.3389/fmats.2025.1575960
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Gong et al. 10.3389/fmats.2025.1575960

TABLE 3 Prior probabilities of some variables based on historical data.

Node variables VL L M H VH

T 0.81094258 0.11584678 0.06225149 0.01090552 0.00005363

CO2 0.82307614 0.11428207 0.04538675 0.01640020 0.00085484

Number of SRB 0.82672667 0.11026451 0.02004984 0.04241256 0.00054643

CO2 partial pressure 0.75998897 0.19264816 0.02712414 0.02001586 0.00022287

pH 0.77763944 0.14985359 0.05720090 0.01530010 0.00000596

HCO3
− 0.80329444 0.10381341 0.07930264 0.01351052 0.00007898

Ca2+ 0.80216057 0.10006297 0.06883110 0.02893526 0.00001010

SO4
2− 0.81127319 0.11844734 0.05266886 0.01674582 0.00086479

Cl− 0.82761467 0.13836611 0.02354764 0.01025681 0.00021477

TABLE 4 Expert information and estimated weights.

Expert number Type of work Service time (year) Degree of education Estimated weight (w)

1 Pipe management engineer 10 Master 0.21

2 Petroleum engineering professor 14 Dr. 0.34

3 Associate professor of oil and gas
safety engineering

31 Dr. 0.45

Selected examples of the experts’ assessments regarding
the input events are delineated in Table 5. To address the
uncertainties inherent in subjective judgments, fuzzy numbers
are utilized, and a weighted average approach is adopted to
aggregate the diverse expert opinions. The integration of expert
knowledge with fuzzy set theory facilitates the derivation of
prior probabilities for the root nodes, as encapsulated in the
aforementioned equations. Subsequently, these probabilities are
instrumental in the constructed Bayesian Network, enabling the
computation of probability distributions via Bayesian Network
inference.

2.3 Prediction of internal corrosion
probability in pipelines

The objective of the study is to calculate the probability
of corrosion given certain causes, hence causal reasoning is
employed. The results of this reasoning are illustrated in the figure
below.

It should be noted that the “state” in Figure 3 correspond to
the corrosion probability classes presented in Table 2. Taking “T” in
Figure 3 as an example, the value of “state” corresponds to the priori
probabilities of “T” in Table 3, “state 0” corresponds to the “VL” state,
“state 1” corresponds to the “L” state, “state 2” corresponds to the “M”

state, “state 3” corresponds to the “H” state, and “state 4” corresponds
to the “VH” state.

2.4 Case study for model validation

This study takes the No. 1 pipeline from a shale gas field
in Sichuan Province, China, as an engineering case study. A
total of 147 excavation points over the past 3 years serve as the
model validation samples. The state of corrosion is determined
based on the wall thickness loss measured during excavation.
Parameters such as pressure, temperature, average fluid velocity,
liquid holdup, and others are represented by data from the pipeline
inlet near the time of excavation or from separator sampling tests.
Consequently, a total of 147 sets of pipeline corrosion samples
were collected for the validation of the probability model. These
147 samples are listed in Supplementary Appendix Table 1. Figure 4
illustrates the discrepancy between the corrosion degrees predicted
by the Bayesian network model and the measured corrosion
degrees.

As depicted in Figure 4, themaximum relative error between the
corrosion probability predicted by themodel and the field-measured
data reaches two degrees (approximately 40%). This indicates that
the prediction accuracy remains relatively low.Therefore, to enhance
the precision of the model, it is considered to incorporate common
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TABLE 5 The derivation process of selected nodes’ prior probabilities.

Node Expert knowledge (E1,
E2, E3)

Aggregate fuzzy
numbers (P1, P2, P3)

Defuzzify FPS State Prior probability

Gas velocity (VL, L, L) (0.1146, 0.2385, 0.2634) 0.223686 L 2.18E-03

Gas density (L, M, M) (0.2235, 0.4259, 0.5029) 0.420146 M 8.74E-02

Fluid velocity (VH, H, H) (0.3512, 0.5261, 0.6278) 0.535136 M 2.16E-01

liquid holdup (L, VL, VL) (0.8224, 0.6253, 0.7725) 0.732931 H 5.25E-01

Pipe inclination (M, M, H) (0.4853, 0.5543, 0.6527) 0.58409 M 2.84E-01

O2 (L, VL, VL) (0.2625, 0.1843, 0.1053) 0.165172 VL 1.33E-04

Acidic/alkaline environment (L, M, L) (0.2214, 0.4025, 0.2659) 0.302999 L 1.72E-02

Anodic film (L, M, M) (0.2752, 0.4423, 0.5652) 0.462514 M 1.28E-01

Chloride (H, VH, VH) (0.6021, 0.8332, 0.8985) 0.814054 VH 6.68E-01

Sulfide (M, L, M) (0.4213, 0.2568, 0.5016) 0.401505 M 7.19E-02

Hydrocarbons (M, L, L) (0.4023, 0.2958, 0.3022) 0.3210303 L 2.39E-02

Corrosion inhibitor (L, M, M) (0.2315, 0.4512, 0.5069) 0.430128 M 9.63E-02

FIGURE 3
Causal reasoning results of Bayesian network.
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FIGURE 4
Comparison of predicted and measured corrosion degrees.

FIGURE 5
Bayesian network of a two-component parallel system: (a) without consideration of common-cause failures; (b) with common cause failure.

cause failure analysis to refine the internal corrosion probability
model.

3 Modified model by considering
common cause failure analysis

3.1 Overview of common cause failure

When two or more elements within a system fail
simultaneously due to the same cause, it is referred to as common

cause failure (Gu et al., 2018). Currently, models for analyzing
common cause failures include the β factor model, α factor model,
square root model, basic parameter model, and mixed parameter
model, among others.The β factormodel requires the determination
of only one parameter and does not need to consider the issue of
data loss, hence this study employs the β factor model for common
cause failure analysis.

In calculations using this model, only two failure scenarios
are considered: one is the independent failure of the unit itself,
and the other is the simultaneous failure of all units due to
a common cause. Therefore, the failure probability of a unit
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FIGURE 6
Bayesian network model considering common cause failures.

FIGURE 7
Causal reasoning results of Bayesian network.
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FIGURE 8
Comparison of predicted and measured corrosion degrees.

consists of two parts, namely, the unit’s own failure probability
and the common cause failure probability, which can be calculated
according to the Equation 8.

Q = Q1 +Q2 (8)

where Q1 represents the failure probability of the unit itself; Q2
denotes the common cause failure probability; and Q is the system
failure probability.

The symbols λ1, λ2, and λ represent the failure rate of the unit
itself, the common cause failure rate, and the failure rate of the entire
system, respectively. The calculation expression for the common
cause factor β is given by the Equation 9:

β =
Q2
Q
=

Q2
Q1 +Q2

= 1− e
−λ2t

1− e−λ2t
= 1− e−λ2t

(1− e−λ1t) + (1− e−λ2t)
≈
λ2
λ
=

λ2
λ1 + λ2

(9)

Generally, the β factor ranges from 0 to 0.25 (where 0 indicates no
occurrence of common cause failures). Research shows that the value
of the β factor accounts for 0.1%–10% of the hardware failure rate. If
the related components are relatively sensitive to external conditions,
theywill have ahigherβvalue.To simplify the calculationandanalysis,
when considering the impact of common cause failures onmulti-state
systems, it is assumed that the impact of common cause failures on
the system is decisive, meaning that when components are affected by
common cause failures, they completely fail.

Under general circumstances, if there are k components failing
out of m units, the failure probability for these k components is
given by the Equation 10:

Qk =
{{{{
{{{{
{

(1− β)Qt (k = 1)

0 (1 < k <m)

βQt (k =m)

(10)

where Qk represents the total failure probability of the unit; and Qt
signifies the common cause failure probability of the unit.

The β factor varies depending on the system in question. The
value of the β factor also differs when the system is in different states.
The estimation formula for the β factor is as Equation 11 shows:

̂β =
∑m

k=2
knk

∑m
k=1

knk
(11)

where nk represents the number of common cause failure events
associated with a specific component.

The β factor model solution examples are as follows:
In Figure 5, nodes X1 and X2 represent the independent failure

factors of the components, and node C is the common cause failure
factor, which can be determined through the β factor model. After
adding the common cause node C, the common cause failure factor
C is in series with nodes X1 and X2, while the intermediate nodes
M1 andM2 remain in parallel. Each component has the potential to
fail independently, or to experience multiple-component common
cause failures with several components, or to have a common
cause failure where n components fail simultaneously. Since the
probability of multiple components failing independently at the
same time is extremely low, this study does not consider it for
the time being. The value of the β factor is estimated, and
the common cause failure factor for components X1 and X2 is
taken as 0.1 (Song, 2021).
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3.2 Bayesian network model considering
common cause failures

The common cause failure groups are identified through
common cause failure analysis. The corresponding modeling is
completed using the explicit modeling method, and relevant
common cause nodes are introduced into the Bayesian network
model. Conditional probability tables are generated according to
the logical relationships, ultimately producing a Bayesian network
model that includes common cause failures. Through the analysis
of the shale gas gathering pipeline structure, it is determined that
gas velocity and fluid velocity, as well as pipeline inclination and
liquid holdup, satisfy the conditions for common cause failures,
forming common cause failure groups. The established Bayesian
network model that includes common cause failures is shown
in Figure 6.

3.3 Updated prediction and analysis of
corrosion probability

The results of the reasoning are illustrated in Figure 7. Figure 8
shows a comparison between the model’s predicted results and the
actual measured results. After considering common cause failures,
the maximum relative error between the corrosion levels predicted
by the model and the field measurement data has been reduced
to below 20%. Clearly, the probability prediction analysis becomes
more accurate when common cause failures are taken into account.
Therefore, it is necessary to consider common cause failures when
using Bayesian networks to predict corrosion probabilities in shale
gas pipelines.Thismethod holds significant practical importance for
engineering guidance.

4 Conclusion

The following conclusions can be drawn from this study:

(1) A Bayesian network-based probabilistic model for internal
corrosion of shale gas pipelines was established, and the
internal corrosion probability of pipelines in a shale gas field
in Sichuan Province, China, was predicted. The maximum
error between the predicted results and the measured results
reached 40%.

(2) Using a modified model that considers common cause failure
for predicting the internal corrosion probability of pipelines,
the error between the predicted results and the measured
results was reduced to below 20%.

(3) Through qualitative analysis and quantitative evaluation
of the Bayesian network corrosion probability model that
considers common cause failure, the corrosion locations and
times of pipelines can be effectively determined, providing
reasonable guidance for corrosion prediction in shale
gas pipelines.

(4) The established uniform corrosion failure probability model
and pitting corrosion failure probability model only consider
changes in one-dimensional space. Subsequent research
could consider the impact of multi-dimensional space to

further study the internal corrosion probability prediction
technology for shale gas pipelines, making the model
more mature.
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